首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The corn dry-grind process is the most widely used method in the U.S. for generating fuel ethanol by fermentation of grain. Increasing demand for domestically produced fuel and changes in the regulations on fuel oxygenates have led to increased production of ethanol mainly by the dry-grind process. Fuel ethanol plants are being commissioned and constructed at an unprecedented rate based on this demand, though a need for a more efficient and cost-effective plant still exists.A process and cost model for a conventional corn dry-grind processing facility producing 119 million kg/year (40 million gal/year) of ethanol was developed as a research tool for use in evaluating new processing technologies and products from starch-based commodities. The models were developed using SuperPro Designer® software and they handle the composition of raw materials and products, sizing of unit operations, utility consumptions, estimation of capital and operating costs, and the revenues from products and coproducts. The model is based on data gathered from ethanol producers, technology suppliers, equipment manufacturers, and engineers working in the industry. Intended applications of this model include: evaluating existing and new grain conversion technologies, determining the impact of alternate feedstocks, and sensitivity analysis of key economic factors. In one sensitivity analysis, the cost of producing ethanol increased from US$ 0.235 l−1 to US$ 0.365 l−1 (US$ 0.89 gal−1 to US$ 1.38 gal−1) as the price of corn increased from US$ 0.071 kg−1 to US$ 0.125 kg−1 (US$ 1.80 bu−1 to US$ 3.20 bu−1). Another example gave a reduction from 151 to 140 million l/year as the amount of starch in the feed was lowered from 59.5% to 55% (w/w).This model is available on request from the authors for non-commercial research and educational uses to show the impact on ethanol production costs of changes in the process and coproducts of the ethanol from starch process.  相似文献   

2.
The color (L*, a*, b* parameters), the total phenols content and the global chemical composition (moisture, protein, fat, carbohydrates and ash) of four fresh varieties of olive leaves (Chemlali, Chemchali, Zarrazi and Chetoui) were determined. Fresh olive leaves are characterized by a green color (greenness parameter, a*, varying from ?5.01 ± 0.26 to ?9.14 ± 1.21), an intermediate moisture content (0.85 to 1.00 g/g dry matter, i.e. 46 to 50 g/100 g fresh matter) and a variable amount of total phenols according to the olive leaf variety (from ≈2.32 to ≈1.40 g caffeic acid/100 g dry matter).Fresh leaves were submitted to blanching and/or infrared drying at 40, 50, 60 and 70 °C in order to be stabilized by reducing their moisture contents. The impact of IR drying temperature on some quality attributes (color, total phenols and moisture rate removal) was evaluated. Nevertheless, the effect of prior blanching treatment on the quality attributes of dried leaves is less significant and it depends on the olive leaf variety. The infrared drying induces a considerable moisture removal from the fresh leaves (more than 85%) and short drying durations (varying from ≈162 at 40 °C to 15 min at 70 °C). IR drying temperature showed a significant effect of on total phenols content and the color of the leaves whatever the leaf variety. In fact, total phenols content of dried olive leaves increased if compared to fresh ones. For example, total phenols of Chemlali leaves increased from 1.38 ± 0.02 (fresh leaves) to 2.13 ± 0.29 (dried at 40 °C) and to 5.14 ± 0.60 g caffeic acid/100 g dry matter (dried at 70 °C). IR drying allows preserving the greenness color of fresh leaves and enhancing their luminosity. It could be suggested for preserving olives leaves before their use in food or cosmetic applications.  相似文献   

3.
The results of characterization for four different vine shoot varieties, grown using two different methods, revealed no significant differences in composition among vine varieties or between growing methods. The holocellulose content of vine shoots (67.14%) is lower than those of other non-wood raw materials (e.g. wheat straw, sunflower stalks, cotton stalks, etc.), but similar to those of pine and higher to those of olive trimmings. On the other hand, their lignin content (20.27%) is similar to those of eucalyptus and the non-wood raw materials. Also, their contents in cold-water, hot-water and 1% soda solubles, and ethanol–benzene extractables, are higher than for pine and eucalyptus.Soda, kraft, ethanol and ethylene–glycol pulping processes have low yields (29–47%) relative to the pulping processes applied to olive trimmings and wheat straw. Kraft pulp is that exhibiting the best properties, including a higher α-cellulose content (73.74%) than pulp from wheat straw or olive trimmings, but a higher lignin content (17.18%). Also, kraft pulp provides paper with the highest breaking length, burst index and tear index (viz. 1316 m, 1.63 kN/g and 1.59 mN m2/g, respectively); these values, which are intermediate among those for olive trimmings, wheat straw and sunflower seeds, are low and can be substantially improved by appropriate refining of the pulp.  相似文献   

4.
An experimental design was performed to study the influence of process variables (135–175 °C for temperature, 60–120 min for pulping time and 15–25% for active alkali) on the properties of pulps (yield, Kappa index, viscosity, 1% NaOH solubles, alcohol–benzene extractives holocellulose, lignin and α-cellulose contents and brightness) and paper sheets (stretch index, burst index, and tear index) obtained from olive trimming residues. Obtaining pulps with acceptably high physical and chemical properties entails operating at a temperature of 175 °C for 90 min and 25% of active alkali. The paper sheets obtained from olive trimming residues pulps that were produced in different degrees of refining are characterised for their stretch index, burst index, and tear index. An increase in the different parameters for the paper sheet upon increasing the degree of refining is found. All pulps reached between 33 and 39 kN m/kg in the stretch index, between 1.5 and 2 kN/g for the burst index and 0.7–2.5 N m2/g for the tear index and not in excess of the refining degree (<45 °SR).  相似文献   

5.
Modelling of the Acetosolv treatment of the cardoon bark (Cynara cardunculus) was accomplished using a second-order face-centred factorial design. We considered as independent (experimental) variables: cooking time (60–180 min), acetic acid concentration in the cooking liquor (60–90%) and hydrochloric acid concentration in the cooking liquor (0.20–0.80%); as well as dependent variables: pulp yield, kappa number and viscosity.Empirical models were deduced to satisfactorily fit experimental data with the values of the independent variables and allow quantifying the effects of each variable.An optimisation with constraints led to the calculation of the region of the experimental domain (time = 180 min, acetic acid concentration  71.3% and HCl concentration > 0.41%) leading to pulps with kappa numbers < 25 at a maximal pulp yield and viscosity, giving us maximum possible values for pulp yield (46.3%) and viscosity (557 mL/g).  相似文献   

6.
This work deals with the alkaline hydrolysis of brewer's spent grain (BSG) for the extraction of ferulic and p-coumaric acids, compounds of considerable interest for applications in the food, health, cosmetic, and pharmaceutical industries. A 23 full factorial design with three replicates at the center point was used to investigate the simultaneous effects of the variables: NaOH concentration (1.0, 1.5 and 2.0%, w/v), temperature (80, 100 and 120 °C), and reaction time (30, 60 and 90 min), on the alkaline hydrolysis. The assays were performed using a solid:liquid ratio of 1:20 (w/w). The Student's t-test revealed a positive influence (p < 0.05) of all the studied variables on the ferulic and p-coumaric acids extraction from BSG. Linear models were well fitted (R2 > 0.90) to the experimental data to describe the extraction of these acids as a function of the operational variables employed. The best alkaline hydrolysis conditions consisted in using a 2% NaOH concentration, at 120 °C for 90 min. Under these conditions, a liquor containing 145.3 mg/l ferulic acid and 138.8 mg/l p-coumaric acid was obtained. These values corresponded to 9.65 mg ferulic acid and 9.22 mg p-coumaric acid per gram of solubilized lignin.  相似文献   

7.
An important aspect of extraction using an organic solvent that is often ignored in many laboratory scale studies is thorough solvent recovery. Although most of the solvent can be recovered with a centrifuge, the solvent left on the ‘dry’ stream must be evaporated. A custom built pilot-scale settling tank was used to separate maize particles from ethanol extracts into water with little dilution of the extract liquid. The larger particles that settled in the first one-fourth of the tank were carried out by a continuous water flow 76 cm below the extract layer. The large particles had 80% higher protein mass fraction than the smaller particles that collected in the bottom of the settling tank downstream from the extract inlet. Water flow was confined to the bottom of the tank and extracted particles were prevented from accumulating in the settling tank with a much lower water/extract flow rate ratio than needed for a smaller settling tank. The mass ratio of entrained extract liquid/settled solids (0.5) was one-half that observed in previous methods using smaller tanks. This is caused by a more stable extract/water interface. The yield from finer, 1 mm meal, was slightly lower than 2 mm meal and increased extract liquid entrainment. Consequently, the 2 mm particle size is the minimum that should be used with this process.  相似文献   

8.
Polyols are one of the predominate reactants in polyurethane synthesis. Soy-based polyols are potentially low-cost materials in plastic and polymer industrials for decades. However, the performance of most commercial soy-based polyols is limited by their low molecular weights (low hydroxy equivalent weights), low alcohol reactivity due to the prominence of secondary moieties, and limited control on crystalline behavior due to large non-functional branches on the soy-based polyols.The objective of this investigation was to produce new soy-based polyols from enzyme hydrolysis. Soy-based polyols were synthesized by a two-step process consisting of heat bodying soybean oil followed by enzyme hydrolysis of bodied soybean oil. Possible advantages of this approach include the production of primary alcohol moieties, reduction of saturated fatty acid moieties, control of hydroxy equivalent weights, and elimination of organic co-reagents.Several commercial enzymes were investigated for removing saturated fatty acids and imparting the hydroxy functional groups in order to produce the better soy-based polyols. The lipase from Candida rugosa significantly hydrolyzed palmitic acid and was recommended to be used to produce the soy-based polyols. Burkholderia cepacia, Aspergillus niger, Mucor javanicus, and Rhizomucor miehei lipases showed some significance in the hydrolysis against palmitic acid and against stearic acid for some reaction conditions.The soy-based polyols were produced with a hydroxy number of about 50 mg KOH/g after only 3 h of the simple hydrolysis reaction by lipase C. rugosa. Higher hydroxy numbers could be obtained with the longer reaction time. However, polyol yield was reduced and undesirable acid residue was increased when the percent hydrolysis increased.  相似文献   

9.
《Field Crops Research》1999,61(3):193-199
The prominent effects of a soil surface crust on crop production, impedance to seedling emergence and reduced infiltration rate, were examined using a quantitative land evaluation model under the Sahelian environmental and soil conditions of north-central Burkina Faso. The model integrated data from climate, soil and crop for quantifying potential grain yield of sorghum (Sorghum bicolor), grown on a sandy loam soil for 14 production years (1977–1990). Crust development was induced using `simulated rainfall' with an intensity of 75 mm h−1 from a 2 m height. Results revealed that seeding sorghum in small holes without sufficiently breaking the surface crust depressed grain yield. Observed and potential yield correlated closely over a 7-year period (r = 0.79, p < = 0.05). Substantial yield gap was found between estimated potential yield (crust broken scenario set to 75% of the predicted yield) and observed, indicating however, the possibility of significantly improving yield by using appropriate tillage to break the crust before seeding.  相似文献   

10.
A response surface method was employed to study the effect of α-amylase concentration, hydrolysis temperature and time on the production of high protein glutinous rice flour (HPGRF). The suspension of glutinous rice flour (15%) that contained 6.52% protein was gelatinized and subsequently hydrolyzed by thermostable α-amylase. The hydrolysis yielded 0.144–0.222 g/g HPGRF with 29.4%–45.4% protein content. Hydrolysis time exerted a significant effect, while enzyme concentration and hydrolysis temperature showed insignificant effect on the protein content and production yield of HPGRF. The result of response surface method showed that the optimum condition for the production of HPGRF that contained at least 36% protein was treating gelatinized 15% glutinous rice flour suspension with 0.90 Kilo Novo α-amylase Unit (KNU)/g α-amylase at 80 °C for 99 min. By carrying out the predicted hydrolysis condition, HPGRF with 35.9% protein and 61.8% carbohydrates was resulted. The process yielded 0.172 g/g HPGRF. HPGRF contained higher amount of essential amino acids compared to glutinous rice flour. HPGRF had higher solubility and lower swelling power, and also showed no pasting peak compared with glutinous rice flour.  相似文献   

11.
The demand for diesel fuel far exceeds the current and future biodiesel production capabilities of the vegetable oil and animal fat industries. New oilseed crops that do not compete with traditional food crop are needed to meet existing energy demands. Hybrid hazelnut oil is just such an attractive raw material for production of biodiesel. Hazelnut oil was extracted from hybrid hazelnuts and the crude oil was refined. Hazelnut oil-based biodiesel was prepared via the transesterification of the refined hazelnut oil with excess methanol using an alkaline catalyst. The effects of reaction temperature, time and catalyst concentration on the yield of diesel were examined, and selected physical and chemical properties of the biodiesel were evaluated. The biodiesel yield increased with increasing temperature from 25 to 65 °C and with increasing catalyst concentration from 0.1 to 0.7 wt%. The increase in yield with reaction time was nonlinear and characterized by an initial faster rate, followed by a slow rate. Hazelnut oil-based biodiesel had an average viscosity of 8.82 cP at 25 °C, which was slightly higher than that of the commercial soy-based diesel (7.92 cP at 25 °C). An approximate 12 °C higher onset oxidative temperature and a 10 °C lower cloud point of hazelnut oil biodiesel than those of its commercial soy counterpart indicated a better oxidative stability and flowability at low temperature. The average heat of combustion of hazelnut oil biodiesel was 40.23 kJ/g, and accounted for approximately 88% of energy content of diesel fuel. The fatty acid composition of hazelnut oil-based biodiesel was the same as the nature oil.  相似文献   

12.
《Field Crops Research》2006,96(1):48-62
In order to quantify the effects, at different stages during grain filling, of alternating day/night high temperature regimes on sunflower grain yield and quality, heads were exposed to high temperatures during 7 or 6 days starting either 10–12 days after anthesis (daa, HT1), 18 daa (HT2) or 24 daa (HT3). Also, heads were exposed to high temperatures for periods of 2, 4 or 6 days in each of HT1 and HT2. Temperatures covered a range of mean daily grain temperature of 20–40 °C and peak grain temperatures (i.e., those prevailing during the central 5 h of the daylight period) of 26–45 °C. High temperature stress for periods of 4 days or longer produced significant (p < 0.05) reductions in grain yield and grain quality. Early (HT1) exposure to stress reduced yield by 6%/°C above a mean grain temperature threshold of 29 °C; later (HT2 + HT3) exposures reduced yield by 4%/°C above a threshold of 33 °C. These reductions in yield were attributable to reductions in unit grain weight at all positions (periphery, intermediate, central) on the head, and an increase in the proportion of very small (10–30 mg) grains, termed half-full (HF) grains in this paper. In both full and HF grains, stress in either HT1 or HT2 reduced final pericarp weight, associated with fewer number of cell layers and thinner cell walls in the schlerenchyma. High temperatures reduced both the rate and duration of oil deposition in the grain, with the greatest effects being found with early (HT1) exposures. The unsaturation (oleic acid/linoleic acid) ratio of oil from mature grain was altered only when exposure to heat stress overlapped with the cessation of deposition of storage lipids. The effects of duration and intensity of heat stress on relative (to control) grain yield and oil content could be reasonably summarized using a linear response to cumulative hourly heat load calculated with a base temperature of 30 °C. We conclude that: (i) 4 days of alternating day/night temperatures resulting in mean daily grain temperatures of >30 °C can reduce sunflower grain yield and quality; (ii) the magnitude of these effects is strongly dependent on the timing of exposure and their nature on the grain growth processes active at the time of stress; and (iii) an hourly heat load (base = 30 °C) provides a useful integrative estimator of the effects of exposure to heat stress on grain yield and oil content for a given phase of grain filling.  相似文献   

13.
The conversion of rice hulls into fermentable saccharides was explored through steam pretreatment employing 2.5% SO2. The interaction between temperature and time was assessed by means of the response surface method to achieve optimum contents of C6-sugars in water-insoluble solids (WIS) and C5-sugars in the liquor. Pretreatment carried out at 218 °C for 2.3 min released liquor containing 55.4 g/L of sugars (29.1 g/L of xylose). In parallel, the WIS was subjected to enzymatic saccharification using different solid and enzyme loads via an experimental design: assays using 22.0% WIS and 20.0 filter paper units (FPU)/g led to 90.6 g/L of glucose, corresponding to a yield of 86.4% and an overall yield of 72.4%. The data reported are the highest ever found for such raw material, making it attractive to compete with conventional lignocellulosic biomass.  相似文献   

14.
《Field Crops Research》2004,85(2-3):213-236
Three different experiments were designed to study the effects of N fertilizer rate, timing and splitting, and the response to combined application of N and S fertilizer on the bread-making quality of hard red spring wheat (Triticum aestivum L.) over a 3-year period in Vertisols under rainfed Mediterranean conditions. The following parameters were analyzed: grain yield, test weight, grain protein content, gluten index and alveograph parameters (W: alveogram index; P: dough tenacity; L: dough extensibility; P/L: tenacity–extensibility ratio). The N rate experiment included rates of 0, 100, 150 and 200 kg N ha−1 applied on four different sites. The experiment was designed as a randomized complete block with four blocks. For the experiment on N timing and splitting, a single rate of 150 kg N ha−1 was used, different fractions being applied at sowing, tillering and stem elongation, at a single site; again, experimental design was a randomized complete block with four blocks. Finally, for the experiment on the response to combined application of N and S fertilizer, a single fertilizer dose of 150 kg N ha−1 was applied in two forms (urea+ammonium nitrate and urea+ammonium nitrosulfate) with one leaf application at ear emergence (zero, 25 kg S ha−1, 25 kg N ha−1, 25kgSha−1+25 kg N ha−1 and 50 kg N ha−1), also at a single site, using a split-plot design with four replications. Year-on-year variation in rainfall led to marked variations in wheat yield, grain protein content and bread-making quality indices. A close correlation was observed between rainfall over the September–May period and both grain yield and grain protein content (optimum values for both being recorded in the rainfall range 500–550 mm) as well as the alveogram index. A negative correlation was observed between mean maximum temperatures in May and both test weight and alveogram index (W). N fertilizer rate had a more consistent effect on bread-making quality than on grain yield. The highest values for grain yield were recorded at an N rate of 100 kg ha−1, while maximum grain protein content values were recorded at 150 kg ha−1. Application of half or one-third of total fertilizer N at stem elongation improved grain yield and grain protein content with respect to applications at sowing alone or at both sowing and tillering. Increased N rates led to a considerable increase in W values and to a reduction in the P/L ratio, thus improving dough balance, with a negative effect on the gluten index. Leaf application of N at ear emergence only affected grain protein content and the W index. Soil or leaf application of S had no effect on protein quality indices. The response of grain yield and grain protein content to fertilizer N differed from that reported for temperate climates.  相似文献   

15.
《Field Crops Research》2006,96(1):125-132
The late-season foliar application of urea may increase yield and grain quality of wheat (Triticum aestivum L.). Limited information is available regarding the effect of late urea spraying on the performance of wheat cultivars under various basal N fertilization rates. Field experiments were conducted during 2000 through 2002 to evaluate the responses of six winter wheat cultivars to foliar urea (30 kg N ha−1) treatment around flowering at low (67 kg N ha−1) and high (194 kg N ha−1) basal N fertilization rates. Following urea spraying at low N rate, all cultivars increased grain yields to a similar extent (by an average of 7.8% or 509 kg ha−1) primarily due to an increase in the 1000-kernel weight. No yield response to the late-season urea treatment occurred at high basal N rate where grain yields averaged 24.9% (1680 kg ha−1) higher than those at low N rate. In contrast, late foliar urea application similarly improved grain quality at both low and high N rates by an average of 5 g kg−1 (4.5%) for protein content, 3.2 cm3 (11.9%) for Zeleny sedimentation, and 20 g kg−1 (8.6%) for wet gluten. These quality increments were consistent in all growing seasons regardless of significant variations in grain yields and protein concentrations across years. However, most cultivars failed to achieve breadmaking standards at low N rate as quality increments associated with the urea treatment were relatively small when compared to those achieved by high basal N rate. Late urea spraying had no effect on the falling number, whereas some cultivars showed small, but significant reduction in the gluten index at both N rates. Cultivars improved the hectolitre weight with the late-season urea treatment only at low N rate. Significant cultivar × urea interactions existed for most quality traits, which were due to the cultivar differences in the magnitude of responses. Thus, late-season urea spraying consistently produced larger yields at low basal N rate, and resulted in cultivar-dependent increases in protein content, Zeleny sedimentation, and wet gluten at both low and high N rates.  相似文献   

16.
《Field Crops Research》2005,91(2-3):307-318
A 3-year field experiment examined the effects of non-flooded mulching cultivation and traditional flooding and four fertilizer N application rates (0, 75, 150 and 225 kg ha−1 for rice and 0, 60,120, and 180 kg N ha−1 for wheat) on grain yield, N uptake, residual soil Nmin and the net N balance in a rice–wheat rotation on Chengdu flood plain, southwest China. There were significant grain yield responses to N fertilizer. Nitrogen applications of >150 kg ha−1 for rice and >120 kg ha−1 for wheat gave no increase in crop yield but increased crop N uptake and N balance surplus in both water regimes. Average rice grain yield increased by 14% with plastic film mulching and decreased by 16% with wheat straw mulching at lower N inputs compared with traditional flooding. Rice grain yields under SM were comparable to those under PM and TF at higher N inputs. Plastic film mulching of preceding rice did not affect the yield of succeeding wheat but straw mulching had a residual effect on succeeding wheat. As a result, there was 17–18% higher wheat yield under N0 in SM than those in PM and TF. Combined rice and wheat grain yields under plastic mulching was similar to that of flooding and higher than that of straw mulching across N treatments. Soil mineral N (top 60 cm) after the rice harvest ranged from 50 to 65 kg ha−1 and was unaffected by non-flooded mulching cultivation and N rate. After the wheat harvest, soil Nmin ranged from 66 to 88 kg N ha−1 and increased with increasing fertilizer N rate. High N inputs led to a positive N balance (160–621 kg ha−1), but low N inputs resulted in a negative balance (−85 to −360 kg ha−1). Across N treatments, the net N balances of SM were highest among the three cultivations systems, resulting from additional applied wheat straw (79 kg ha−1) as mulching materials. There was not clear trend found in net N balance between PM and TF. Results from this study indicate non-flooded mulching cultivation may be utilized as an alternative option for saving water, using efficiently straw and maintaining or improving crop yield in rice–wheat rotation systems. There is the need to evaluate the long-term environmental risks of non-flooded mulching cultivation and improve system productivity (especially with straw mulching) by integrated resource management.  相似文献   

17.
Moringa oleifera Lam. (M. pterygosperma Gaertn [Moringaceae]) is a fast-growing small tree native to the sub-Himalayan tracts of Northern India. The recognition that moringa oil has value in cosmetics has increased interest in cultivating it for seed-oil. The experimental trials were conducted in a semi-commercial moringa plantation in the subtropical northwestern region of Argentina, considering the similar climate conditions to the plant native region. Pods per tree, seeds per pod, weight of seed per pod, kernel weight, kernels oil content and fatty acid composition of PKM-1 and African cultivars were determined. One individual, E4-9, a PKM-1 plant, had significantly (P < 0.05) higher production than all other plants. In addition, this individual was the highest extrapolated oil producer in both 2003 and 2004, with 595 and 564 kg ha?1, respectively (ave. 580 kg ha?1). Seed weight (200-seed wt.) was significantly greater in 2003 than 2004; no other traits studied showed significant differences between years. Both cultivars produced-oil with practically identical fatty acid composition, and the monounsaturated ω-9 oleic fatty acid accounted for more than 70% of the total for both cultivars. The polyunsaturated ω-6 linoleic fatty acid content of the African cultivar was slightly, but significantly (P < 0.05), higher than that of PKM-1.  相似文献   

18.
《Field Crops Research》2001,69(3):259-266
Water-use efficiency (WUEDM) is directly related to radiation-use efficiency (RUE) and inversely related to crop conductance (gc). We propose that reduced WUEDM caused by shortage of nitrogen results from a reduction in RUE proportionally greater than the fall in conductance. This hypothesis was tested in irrigated wheat crops grown with contrasting nitrogen supply; treatments were 0, 80 and 120 kg N ha−1 in 1998 and 0, 80, 120 and 160 kg N ha−1 in 1999. We measured shoot dry matter, yield, intercepted solar radiation and soil water balance components. From these measurements, we derived actual evapotranspiration (ET), soil evaporation and transpiration, WUEDM (slope of the regression between dry matter and ET), WUEY (ratio between grain yield and ET), RUE (slope of the regression between dry matter and intercepted radiation), and gc (slope of the regression between transpiration and intercepted radiation). Yield increased from 2.3 in unfertilised to an average 4.7 t ha−1 in fertilised crops, seasonal ET from 311 to 387 mm, WUEDM from 23 to 37 kg ha−1 mm−1, WUEY from 7.6 to 12.4 kg ha−1 mm−1, RUE from 0.85 to 1.07 g MJ−1, while the fraction of ET accounted for soil evaporation decreased from 0.20 to 0.11. In agreement with our hypothesis, RUE accounted for 60% of the variation in WUEDM, whereas crop conductance was largely unaffected by nitrogen supply. A greater fraction of evapotranspiration lost as soil evaporation also contributed to the lower WUEDM of unfertilised crops.  相似文献   

19.
Thymus zygis ssp. gracilis shrubs were cultivated as an experimental crop under different watering level, in order to achieve 81, 63, 44 and 30% of the local potential evapotranspiration (ETo). After 4 years of cultivation, thyme leaves were analyzed on the basis of their essential oil (yield and quality), total phenolic content, free radical-scavenging activity and polyphenolic profile.Essential oil yield values ranged between (2.3 ± 0.7) and (3.6 ± 0.7)% for 81 and 30% ETo equivalent, respectively. The comparison of essential oil production at the 2nd and 4th years of cultivation showed that using watering levels higher than 30% ETo equivalents reduced significantly (P < 0.05) the essential oil yielded by these shrubs with time.Analysis of total phenolic content, polyphenolic profile, and radical scavenging activity were performed using post-distillation dry leaves. Total phenolic content values ranged from (122.2 ± 19.3) to (108.5 ± 19.2) mg of gallic acid equivalents (GAEs)/g of dry plant for the highest and lowest watering level treatment, respectively. Regarding the polyphenolic profile, rosmarinic acid, followed by apigenin, ferulic, carnosic and caffeic acids, was the phenolic component quantified at the highest concentrations. Radical-scavenging activities (IC50) concentrations varied from (3.7 ± 1.6) mg/mL for 81% ETo to (7.4 ± 2.3) mg/mL 30% ETo.In spite of the intra-specific variability detected, the individual analysis of shrubs has allowed the selection of plants which are characterised by having adequate levels of essential oil and polyphenolic extract (yield and quality), almost all of them being cultivated under a 60% ETo watering level. These selected shrubs will allow us to make further vegetative propagations in order to obtain homogeneous field crops with plants of contrasted quality cultivated under a 60% ETo watering level.  相似文献   

20.
Malnutrition related to micronutrient deficiency can create immense economic and societal problems. The objective of this study was to quantify the mineral element concentration distribution in milled fractions, using 43 common wheat (Triticum aestivum L.) cultivars sown in Jinan, China during the 2005–2006 crop season. All 43 cultivars had low Fe (average 28.2 mg Kg−1) and Zn (28.6 mg Kg−1) concentrations, and wide ranges of variation for mineral element concentrations. Highly significant effects among milling fractions and cultivars on all traits were observed, with fraction effect being the larger. There was an uneven distribution of mineral element concentrations in wheat grain. Shorts and bran fractions had the highest mineral element concentrations, whereas flours from break and reduction had low concentrations. Compared with those in the central endosperm, the concentration of inorganic phosphorus (Pi) decreased the most with decreasing flour yield, whereas the concentration of phytic acid P (PAP), phytase activity, and Ca decreased the least. Pi was the most concentrated element in the aleurone, whereas PAP, phytase activity, and Ca were the least, compared to those in the central endosperm. Milling technique through adjusting flour yield can be used to improve the element composition of flour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号