首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of salinity and Mg2+ alkalinity on the size and activity of the soil microbial communities were investigated. The study was conducted along the border area of the alluvial fan of the Taolai River. Thirty soil samples were taken which had an electrical conductivity (EC) gradient of 0.93-29.60 mS cm−1. Soil pH ranged from 8.60 to 9.33 and correlated positively with Mg2+/Ca2+ ratio, exchangeable Mg2+ percentage and HCO3+CO32−. Mg2+/Ca2+ varied considerably from 3.04 to 61.31, with an average of 23.03. Exchangeable Mg2+ percentage generally exceeded 60% and had a positive correlation with Mg2+/Ca2+. HCO3+CO32− averaged 1.63 cmol kg−1 and usually did not exceed 2.0 cmol kg−1.Microbial biomass, indices of microbial activity and the activities of the hydrolases negatively correlated with Mg2+/Ca2+ or exchangeable Mg2+ percentage. Biomass C, biomass N, microbial quotient (the percentage of soil organic C present as biomass C), biomass N as a percentage of total N, potentially mineralizable N, FDA hydrolysis rate and arginine ammonification rate decreased exponentially with increasing EC. The biomass C/N tended to be lower in soils with higher salinity and Mg2+ alkalinity, probably reflecting the bacterial dominance in microbial biomass in alkalized magnesic soils. The metabolic quotient (qCO2) positively correlated with salinity and Mg2+ alkalinity, and showed a quadratic relationship with EC, indicating that increasing salinity and Mg2+ alkalinity resulted in a progressively smaller, more stressed microbial communities which was less metabolically efficient. Consequently, our data suggest that salinity and Mg2+ alkalinity are stressful environments for soil microorganisms.  相似文献   

2.
Soil microbial activity, biomass, and community structure were examined during the transition from oxic to anoxic conditions after the addition of glucose and with or without nitrate addition. In two sets of treatments, samples were incubated for up to 35 d in closed ampoules either aerobically until oxygen was depleted or anoxically throughout the experiment. Heat‐flow rate was monitored to indicate microbial activity. Microbial biomass and community structure were measured by adenylate and phospholipid fatty acid (PFLA) content, and adenylate energy charge (AEC) was used to monitor the physiological status of the microbial biomass. Microbial activity was highest under oxic conditions and abruptly decreased under anoxic conditions. Activity peaks were observed after about 9 d of anoxic conditions probably triggered by increased nutrient availability from dying microbial biomass, but these peaks were smaller after initial oxic incubation or nitrate addition. Microbial biomass was unchanged under oxic conditions but decreased under anoxic conditions. Most surviving microbes switched into dormancy. Changes in the microbial‐population structure were small and occurred only after 9 d of anoxic incubation. The results show that the nutrient status and the availability of electron acceptors such as nitrate were important factors ruling the direction and the extent of shifts in the microbial activity and community structures due to anoxic conditions.  相似文献   

3.
Soil amendment with manures from intensive animal industries is nowadays a common practice that may favorably or adversely affect several soil properties, including soil microbial activity. In this work, the effect of consecutive annual additions of pig slurry (PS) at rates of 30, 60, 90, 120 and 150 m3 ha−1 y−1 over a 4-year period on soil chemical properties and microbial activity was investigated and compared to that of an inorganic fertilization and a control (without amendment). Field plot experiment conducted under a continuous barley monoculture and semiarid conditions were used. Eight months after the fourth yearly PS and mineral fertilizer application (i.e. soon after the fourth barley harvest), surface soil samples (Ap horizon, 0-15 cm depth) from control and amended soils were collected and analysed for pH, electrical conductivity (EC), contents of total organic C, total N, available P and K, microbial biomass C, basal respiration and different enzymatic activities. The control soil had a slightly acidic pH (6.0), a small EC (0.07 dS m−1), adequate levels of total N (1.2 g kg−1) and available K (483 mg kg−1) for barley growth, and small contents of total organic C (13.2 g kg−1) and available P (52 mg kg−1). With respect to the control and mineral fertilized soils, the PS-amended soils had greater pH values (around neutrality or slightly alkaline), electrical conductivities (still low) and contents of available P and K, and slightly larger total N contents. A significant decrease of total organic C was observed in soils amended at high slurry rate (12.3 g kg−1). Compared with the control and mineral treatments, which produced almost similar results, the PS-amended soils were characterized by a higher microbial biomass C content (from 311 to 442 g kg−1), microbial biomass C/total organic C ratio (from 2.3 to 3.6%) and dehydrogenase (from 35 to 173 μg INTF g−1), catalase (from 5 to 24 μmol O2 g−1 min−1), BAA-protease (from 0.7 to 1.9 μmol  g−1 h−1) and β-glucosidase (from 117 to 269 μmol PNP g−1 h−1) activities, similar basal respirations (from 48 to 77 μg C-CO2 g−1 d−1) and urease activities (from 1.5 to 2.2 μmol  g−1 h−1), and smaller metabolic quotients (from 6.4 to 7.7 ng C-CO2 μg−1 biomass C h−1) and phosphatese activities (from 374 to 159 μmol PNP g−1 h−1). For example, statistical analysis of experimental data showed that, with the exception of metabolic quotient and total organic C content, these effects generally increased with increasing cumulative amount of PS. In conclusion, cumulative PS application to soil over time under semiarid conditions may produce not only beneficial effects but also adverse effects on soil properties, such us the partial mineralization of soil organic C through extended microbial oxidation. Thus, PS should not be considered as a mature organic amendment and should be treated appropriately before it is applied to soil, so as to enhance its potential as a soil organic fertilizer.  相似文献   

4.
Microbial biomass and metabolic activity in four acid soils   总被引:2,自引:0,他引:2  
The fumigation method was used to estimate microbial biomass C in four Haplumbrepts developed over different kinds of rock. In order to investigate the relationship between metabolic activity and microbial biomass and population density, CO2 release from the glucose-enriched and unenriched soils was measured during 28 days of incubation.

Biomass C levels lay between 36 and 112 mg 100 g−1 of dry soil, and made up only a small proportion of total soil C (0.77–1.38%). Only a small fraction of this biomass was detected by counting viables, but the microbial population was nevertheless significantly correlated with the biomass determined by fumigation. Among the physico-chemical properties of the soils, microbial biomass and population size were both chiefly affected (favourably) by humidity, total C and N and Al gel content. Metabolic activity was slight, either because part of the micro-organisms are inactive or because of a limited supply of substrate (the organic matter present may be unsuitable as a substrate or protected from microbial attack). Percentage C mineralization was inversely related to organic matter, silt and Al gel contents, and likewise failed to exhibit positive correlation with respiration, the biomass determined by fumigation or the counted population. The metabolic activity of the biomass appeared to depend upon the quality and nature of soil organic matter rather than its quantity, which nevertheless controlled microbial population size.

Neither microbial biomass estimates nor viable population counts faithfully reflected metabolic activity in the soils.  相似文献   


5.
Four contrasting soils were amended with glucose at concentrations up to 10 mg g?1 soil. The soils were incubated at 22°C for 14 days and the biomass determined at various times by chloroform fumigation or substrate-induced respiration. The adenosine triphosphate (ATP) content or the amylase and dehydrogenase activities were also determined. The size of the increases in biomass, ATP content and the enzyme activities was generally related to the amount of glucose added. The initially higher ATP levels quickly declined, and apparent substrate conversion figures up to 84% indicated that substrate-induced respiration overestimated the biomass. There were generally no significant correlations between ATP, biomass or enzyme activities.  相似文献   

6.
This study examines the effects of atrazine on both microbial biomass C and C mineralization dynamics in two contrasting agricultural soils (organic C, texture, and atrazine application history) located at Galicia (NW Spain). Atrazine was added to soils, a Humic Cambisol (H) and a Gleyic Cambisol (G), at a recommended agronomic dose and C mineralization (CO2 evolved), and microbial biomass measurements were made in non-treated and atrazine-treated samples at different time intervals during a 12-week aerobic incubation. The cumulative curves of CO2–C evolved over time fit the simple first-order kinetic model [Ct = Co (1 − e kt )], whose kinetic parameters were quantified. Differences in these parameters were observed between the two soils studied; the G soil, with a higher content in organic matter and microbial biomass C and lower atrazine application history, exhibited higher values of the total C mineralization and the potentially mineralizable labile C pool than those for the H soil. The addition of atrazine modified the kinetic parameters and increased notably the C mineralized; by the end of the incubation the cumulative CO2–C values were 33–41% higher than those in the corresponding non-added soils. In contrast, a variable effect or even no effect was observed on the soil microbial biomass following atrazine addition. The data clearly showed that atrazine application at normal agricultural rates may have important implications in the C cycling of these two contrasting acid soils.  相似文献   

7.
A forest ecosystem study was conducted along a deposition gradient of air pollutants in old Scots pine stands located near the industrial belt around the city of Bitterfeld in northeast Germany from 1999 to 2000. In order to estimate the impact of different atmospheric deposition loads on microbial biomass and enzyme activities, samples were taken from the forest floor (L, F, and H horizon) and the mineral topsoil (0–10 cm). The emission-induced increases in ferromagnetic susceptibility, soil pH, concentrations of mobile (NH 4NO 3 extractable) Cr and Ni, effective cation exchange capacity, and base saturation in the humus layer along the 25-km long transect reflected that great portions of the past depositions were characterized by alkaline fly ash. Alkaline depositions significantly ( P <0.05) decreased the microbial biomass C and N contents, microbial biomass C-to-organic C ratios, and microbial respiration rates, but increased the metabolic quotient (qCO 2) of the mineral topsoil and forest floor. Variations in microbial biomass and activity can mainly be predicted ( r 2 =0.60) by the concentrations of Ca, Zn and Cd in these forest soils. The specific activities (activity kg -1 organic C) of l-asparaginase, l-glutaminase, arylsulfatase, and in part, acid phosphatase were significantly ( P <0.05) higher at forest sites receiving higher fly ash loads than those of the other sites, and thus followed the trend of the qCO 2. In contrast, the specific activity of ß-glucosidase was significantly ( P <0.05) decreased at heavily affected sites compared to moderate and less affected sites, suggesting an inhibition of C mineralization in the forest floor of pine stands affected by predominantly alkaline emissions. A great portion ( r 2=0.91) of the variation in the specific enzyme activity data in forest soils in emission areas can be predicted from a linear combination of the variables total organic C and NH 4Cl-extractable Ca, pH and effective cation exchange capacity.  相似文献   

8.
A long-term study on the effect of different crop rotations [soybean/wheat, S/W; maize/wheat, M/W or cotton/wheat, C/W] and tillage regimes [no-tillage (NT) or conventional tillage (CT)] on microbial biomass and other soil properties is reported. The experiment was established in 1976 in southern Brazil as a split-plot experimental design in three replications. Soil samples were taken in 1997 and 1998 at 0- to 5-, 5- to 10- and 10- to 20-cm depths and evaluated for microbial biomass C, N, P and S by direct extraction methods. The NT system showed increases of 103%, 54%, 36%, and 44% for microbial biomass C, N, P, and Cmic:Corg percentage, respectively at the 0- to 5-cm depth. NT systems also increased the C to N:S:P ratios. These results provide evidence that tillage or crop rotation affect microbial immobilization of soil nutrients. The larger amount of C immobilized in microbial biomass suggests that soil organic matter under NT systems provides higher levels of more labile C than CT systems.  相似文献   

9.
Microbial biomass in soils of Russia under long-term management practices   总被引:6,自引:0,他引:6  
 Non-tilled and tilled plots on a spodosol (Corg 0.65–1.70%; pH 4.1–4.5) and a mollisol (Corg 3.02–3.13%, pH 4.9–5.3), located in the European region of Russia, were investigated to determine variances in soil microbial biomass and microbial community composition. Continuous, long-term management practices, including tillage and treatment with inorganic fertilizers or manure, were used on the spodosol (39 years) and mollisol (22 years). Total microbial biomass (Cmic), estimated by the substrate-induced respiration (SIR) method, and total fungal hyphae length (membrane filter technique) were determined seasonally over a 3-year period. Long-term soil management practices (primarily tillage and fertilizer application) led to decreases in total microbial biomass (80–85% lower in spodosol and 20–55% lower in mollisol), decreases in the contribution of Cmic to Corg (2.3- to 3.5-fold lower in spodosol and 1.2- to 2.3-fold lower in mollisol), and 50–87% decreases in total fungal hyphae length compared to non-tilled control plots. The contribution of fungi to total SIR in virgin mollisol and fallow spodosol plots was approximately 30%. However, the contribution of fungi to SIR was approximately two times greater in tilled spodosol plots compared to a fallow plot. In contrast, the contribution of fungi to SIR in tilled plots of mollisol was less (1.4–4.7 times) than for a virgin plot. In summary, long-term soil management practices such as tillage and treatment with organic or inorganic fertilizers are important determinants of soil microbial biomass and the contribution of fungi to total SIR. Received: 28 April 1998  相似文献   

10.
Summary The effects of heavy metals on microbial biomass and activity were investigated in 30 urban soils, contaminated mainly with Zn and Pb to different extents, in terms of the physicochemical and biological characteristics of the soils. Evaluated by simple and multiple regression analyses, the microbial biomass was not affected significantly by easily soluble Zn + Pb (extractable with 0.1 NHCI). The biomass was accounted for as a function of cation exchange capacity (CEC), total organic C and the numbers of fungal colonies present (R 2 = 0.692). Carbon dioxide evolution from soils, which reflected microbial activity, was studied on soils incubated with microbial-promoting substrates (glucose and ammonium sulfate) or without. Carbon dioxide evolution was negatively related to Zn+Pb, and this inhibitory effect of the metals was greater in the soils incubated with substrates. Carbon dioxide evolution in soils with substrates was closely related to Zn+Pb, bacterial numbers and the numbers of fungal colonies (R 2 = 0.718). Carbon dioxide evolution in soils without substrates was accounted for as a function of Zn + Pb, biomass and the C/N ratio (R 2 = 0.511). Using these relationships, the effects of heavy metals on soil microorganisms are discussed in terms of metabolically activated and dormant populations.  相似文献   

11.
Two Finnish agricultural soils (peat soil and loamy sand) were exposed to four freeze-thaw cycles (FTC), with a temperature change from −17.3±0.4 °C to +4.1±0.4 °C. Control cores from both soils were kept at constant temperature (+6.6±2.0 °C) without FTCs. Soil N2O and CO2 emissions were monitored during soil thawing, and the effects of FTCs on soil microbes were studied. N2O emissions were extremely low in peat soil, possibly due to low soil water content. Loamy sand had high N2O emission, with the highest emission after the second FTC. Soil freeze-thaw increased anaerobic respiration in both soil types during the first 3-4 FTCs, and this increase was higher in the peat soil. The microbial community structure and biomass analysed with lipid biomarkers (phospholipid fatty acids, 3- and 2- hydroxy fatty acids) were not affected by freezing-thawing cycles, nor was soil microbial biomass carbon (MIB-C). Molecular analysis of the microbial community structure with temperature gradient gel electrophoresis (TGGE) also showed no changes due the FTCs. These results show that freezing and thawing of boreal soils does not have a strong effect on microbial biomass or community structure.  相似文献   

12.
不同橡胶生长期土壤中的微生物生物量碳和有机碳   总被引:16,自引:6,他引:16  
ZHANG Hu  ZHANG Gan-Lin 《土壤圈》2003,13(4):353-357
Soil samples were collected from different rubber fields in twenty-five plots selected randomly in the Experimental Farm of the Chinese Academy of Tropical Agriculture Sciences located in Hainan, China, to analyse the ecological effect of rubber cultivation. The results showed that in the tropical rubber farm, soil microbial biomass C (MBC) and total organic C (TOC) were relatively low in the content but highly correlated with each other. After rubber tapping, soil MBC of mature rubber fields decreased significantly, by 55.5%, compared with immature rubber fields. Soil TOC also decreased but the difference was not significant. Ratios of MBC to TOC decreased significantly. The decreasing trend of MBC stopped at about ten years of rubber cultivation. After this period, soil MBC increased relatively while soil TOC still kept in decreasing. Soil MBC changes could be measured to predict the tendency of soil organic matter changes due to management practices in a tropical rubber farm several years before the changes in soil TOC become detectable.  相似文献   

13.
 The impacts of crop rotations and N fertilization on different pools of urease activity were studied in soils of two long-term field experiments in Iowa; at the Northeast Research Center (NERC) and the Clarion-Webster Research Center (CWRC). Surface soil samples (0–15 cm) were taken in 1996 and 1997 in corn, soybeans, oats, or meadow (alfalfa) plots that received 0 or 180 kg N ha–1, applied as urea before corn and an annual application of 20 kg P and 56 kg K ha–1. The urease activity in the soils was assayed at optimal pH (THAM buffer, pH 9.0), with and without toluene treatment, in a chloroform-fumigated sample and its nonfumigated counterpart. The microbial biomass C (Cmic) and N (Nmic) were determined by chloroform fumigation methods. The total, intracellular, extracellular and specific urease activities in the soils of the NERC site were significantly affected by crop rotation, but not by N fertilization. Generally, the highest total urease activities were obtained in soils under 4-year oats–meadow rotations and the lowest under continuous corn. The higher total activities under multicropping systems were caused by a higher activity of both the intracellular and extracellular urease fractions. In contrast, the highest values for the specific urease activity, i.e. of urease activity of the microbial biomass, were found in soils under continuous soybean and the least under the 4-year rotations. Total and extracellular urease activities were significantly correlated with Cmic (r>0.30* and >0.40**) and Nmic (r>0.39** and >0.44**) in soils of the NERC and CWRC sites, respectively. Total urease activity was significantly correlated with the intracellular activity (r>0.73***). About 46% of the total urease activity of the soils was associated with the microbial biomass, and 54% was extracellular in nature. Received: 25 May 1999  相似文献   

14.
 The impacts of crop rotations and N fertilization on different pools of arylsulfatase activity (total, intracellular, and extracellular) were studied in soils of two long-term field experiments in Iowa to assess the contibution of the microbial biomass to the activity of this enzyme. Surface-soil samples were taken in 1996 and 1997 in corn, soybeans, oats, or meadow (alfalfa) plots that received 0 or 180 kg N ha–1 before corn, and an annual application of 20 kg P ha–1 and 56 kg K ha–1. The arylsulfatase activity in the soils was assayed at optimal pH (acetate buffer, pH 5.8) before and after chloroform fumigation; microbial biomass C (Cmic) and N (Nmic) were determined by chloroform-fumigation methods. All pools of arylsulfatase activity in soils were significantly affected by crop rotation and plant cover at sampling time, but not by N fertilization. Generally, the highest total, intracellular, and extracellular arylsulfatase activities were obtained in soils under cereal-meadow rotations, taken under oats or meadow, and the lowest under continuous cropping systems.Total, intracellular, and extracellular arylsulfatase activities were significantly correlated with Cmic (r>0.41, P<0.01) and Nmic (r>0.38, P<0.01) in soils. The averages of specific activity values, i.e., of arylsulfatase activity of the microbial biomass, expressed per milligram Cmic, ranged from 315 to 407 μg p-nitrophenol h–1. The total arylsulfatase activity was significantly correlated with the intracellular activity, with r values >0.79 (P<0.001). In general, about 45% of the total arylsulfatase activity was extracellular, and 55% was associated with the microbial biomass in soils, indicating the importance of the microflora as an enzyme source in soils. Received: 23 April 1998  相似文献   

15.
The most favorable moisture conditions for the microbial destruction of chitin in soils are close to the total water capacity. The water content has the most pronounced effect on chitin destruction in soils in comparison with other studied substrates. It was found using gas-chromatographic and luminescent-microscopic methods that the maximum specific activity of the respiration of the chitinolytic community was at a rather low redox potential with the soil moisture close to the total water capacity. The range of moisture values under which the most intense microbial transformation of chitin occurred was wider in clayey and clay loamy soils as compared with sandy ones. The increase was observed due to the contribution of mycelial bacteria and actinomycetes in the chitinolytic complex as the soil moisture increased.  相似文献   

16.
Microbial biomass and its activities in salt-affected coastal soils   总被引:2,自引:0,他引:2  
Seasonal fluctuations in salinity are typical in coastal soils due to the intrusion of seawater in the groundwater. We studied the effect of salinity on the microbial and biochemical parameters of the salt-affected soils of the coastal region of Bay of Bengal, Sundarbans, India. The average pH values and average organic C (OC) contents of soils from nine different sites cultivated with rice (Oryza sativa) ranged from 4.8 to 7.8 and from 5.2 to 14.1 g kg−1, respectively. The average electrical conductivity of the saturation extract (ECe) during the summer season was about five times higher than that during the monsoon season. Within the nine sites, three soils (S3, S4, and S5) were the most saline. The average microbial biomass C (MBC), average basal soil respiration (BSR), and average fluorescein diacetate hydrolyzing activity (FDHA) were lowest during the summer season, indicating a negative influence of soil salinity. About 59%, 50%, and 20% variation in MBC/OC, FDHA/OC, and BSR/MBC (metabolic quotient, qCO2), respectively, which are indicators of environmental stress, could be explained by the variation in ECe. The decrease in MBC and microbial activities with a rise in salinity is probably one of the reasons for the poor crop growth in salt-affected coastal soils.  相似文献   

17.
For the development of management strategies in sustainable agriculture it is necessary to describe and predict the role of soil microbes in different management systems. The classical approach uses the microbial biomass as the key parameter for the entire system, but for ecological purposes the variability of biotic parameters in time and space has to be better described. Moreover, the biomass active in the total soil profile or its most active zones should be used as a basis for the assessment of soil activity. The sum of adenylates was found to be more closely related to the microbial biomass than was ATP, which however appeared to be a better indicator for the microbial activity. Fatty acids from phospholipids were highly correlated with the soil microbial biomass. The pattern of fatty acids from soils under different long-term management indicated a high potential to typify the microbial community in soils and special organism populations. To overcome the problem, that only a small portion of the soil inhabiting microbes can be cultivated, first steps to use serological and genetical methods to directly identify or localize specific populations in the rhizosphere are shown.  相似文献   

18.
The method of luminescent microscopy has been applied to study the structure of the microbial biomass of soils and soil-like bodies in East (the Thala Hills and Larsemann Hills oases) and West (Cape Burks, Hobbs coast) Antarctica. According to Soil Taxonomy, the studied soils mainly belong to the subgroups of Aquic Haploturbels, Typic Haploturbels, Typic Haplorthels, and Lithic Haplorthels. The major contribution to their microbial biomass belongs to fungi. The highest fungal biomass (up to 790 μg C/g soil) has been found in the soils with surface organic horizons in the form of thin moss/lichen litters, in which the development of fungal mycelium is most active. A larger part of fungal biomass (70–98%) is represented by spores. For the soils without vegetation cover, the accumulation of bacterial and fungal biomass takes place in the horizons under surface desert pavements. In the upper parts of the soils without vegetation cover and in the organic soil horizons, the major part (>60%) of fungal mycelium contains protective melanin pigments. Among bacteria, the high portion (up to 50%) of small filtering forms is observed. A considerable increase (up to 290.2 ± 27 μg C/g soil) in the fungal biomass owing to the development of yeasts has been shown for gley soils (gleyzems) developing from sapropel sediments under subaquatic conditions and for the algal–bacterial mat on the bottom of the lake (920.7 ± 46 μg C/g soil). The production of carbon dioxide by the soils varies from 0.47 to 2.34 μg C–CO2/(g day). The intensity of nitrogen fixation in the studied samples is generally low: from 0.08 to 55.85 ng С2Н4/(g day). The intensity of denitrification varies from 0.09 to 19.28 μg N–N2O/(g day).  相似文献   

19.
Chemical characteristics and some parameters related to biological components were determined in 16 soils from a fairly homogeneous area in the north of Italy, contaminated with different levels of heavy metals. Correlation analysis of the parameters studied showed close positive relationships among the metals and with the organic C content in the soils studied. Negative relationships were observed among the heavy metals, soil respiration, and the ratio between evolved CO2–C and microbial biomass C per unit time (specific respiratory activity). This was ascribed to an adverse heavy metal effect on the soil microflora, which appeared to increase the accumulation of organic matter as the heavy metal content increased, probably because the biomass was less effective in mineralising soil organic matter under these conditions.  相似文献   

20.
镁碱化盐土微生物生物量和土壤基础呼吸   总被引:5,自引:0,他引:5  
元炳成  刘权  黄伟  李凤成 《土壤》2011,43(1):67-71
通过测定甘肃河西走廊疏勒河中游昌马冲积扇缘不同镁碱度条件下10个采样点30个土样的化学性质和生物化学性质指标,研究了电导率和镁碱度对土壤微生物生物量及其基础呼吸的影响。结果表明:微生物生物量碳(氮)和土壤基础呼吸与电导率、镁碱度和Mg2+/Ca2+之间显著负相关,表明盐度和镁碱度对土壤微生物群落有显著的抑制作用,而且盐度的抑制作用比镁碱度更大;微生物代谢熵(qCO2)和电导率、镁碱度、Mg2+/Ca2+之间为正相关关系,也说明镁碱化盐土对土壤微生物而言是一种严重的胁迫环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号