首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of putrescine (PUT) in regulating fruit softening, antioxidative enzymes and biochemical changes in fruit quality was investigated during ripening and cold storage of mango (Mangifera indica cv. Samar Bahisht Chaunsa). Fruit were treated with various PUT concentrations (0.0, 0.1, 1.0 and 2.0 mM) and were allowed to ripen at 32 ± 2 °C for 7 days, or stored at 11 ± 1 °C for up to 28 days. Respiration rate and ethylene production were measured daily during ripening and cold storage. Cell wall degrading enzymes such as exo-polygalacturonase (exo-PG), endo-polygalacturonase (endo-PG), pectin esterase (PE), endo-1,4-β-d-glucanase (EGase), antioxidative enzymes including superoxide dismutase (SOD), peroxidase (POX), and catalase (CAT), fruit firmness as well as biochemical fruit quality characteristics were estimated during ripening and cold storage at 2 and 7 day intervals, respectively. PUT treatments reduced respiration rate, ethylene production and maintained higher fruit firmness during ripening as well as cold storage. PUT-treated fruit exhibited significantly suppressed activities of cell wall enzymes (exo-, endo-PG and EGase), but retained higher PE activity during ripening and cold storage. Total phenolic and antioxidant contents were significantly higher in PUT-treated fruit during ripening as well in the cold storage period than in the controls. Activities of antioxidative enzymes (CAT, POX and SOD) were also significantly higher in PUT-treated fruit during ripening as well as cold storage. SSC and SSC:TA were lower in PUT-treated fruit, while TA and ascorbic acid content showed the reverse trend. In conclusion, pre-storage 2.0 mM PUT treatment inhibited ethylene production and suppressed the activities of cell wall enzymes, while resulting in higher activities of antioxidative enzymes and maintaining better fruit quality during ripening and cold storage.  相似文献   

2.
The mode of action of nitric oxide (NO) in inhibiting ethylene biosynthesis and fruit softening during ripening and cool storage of mango fruit was investigated. Hard mature green mango (Mangifera indica L. cv. ‘Kensington Pride’) fruit were fumigated with 20 μL L−1 NO for 2 h at 21 °C and allowed to ripen at 21 ± 1 °C for 10 d, or stored at 13 ± 1 °C for 21 d. During ripening and cool storage, ethylene production and respiration rate from whole fruit were determined daily. The 1-aminocyclopropane-1-carboxylic acid (ACC) content, activities of ACC synthase (ACS), ACC oxidase (ACO), and fruit softening enzymes such as pectin esterase (PE), endo-1,4-β-d-glucanase (EGase), exo- and endo-polygalacturonase (exo-PG, endo-PG) as well as firmness and rheological properties of pulp were determined at two- and seven-day intervals during ripening and cool storage, respectively. NO fumigation inhibited ethylene biosynthesis and respiration rate, and maintained higher pulp firmness, springiness, cohesiveness, chewiness, adhesiveness, and stiffness. NO-fumigated fruit during cool storage and ripening had lower ACC contents through inhibiting the activities of both ACS and ACO in the fruit pulp. NO-fumigated fruit showed decreased activities of exo-PG, endo-PG, EGase, but maintained higher PE activity in pulp tissues during ripening and cool storage. In conclusion, NO fumigation inhibited ethylene biosynthesis through inhibition of ACS and ACO activities leading to reduced ACC content in the fruit pulp which consequently, reduced the activities of fruit softening enzymes during ripening and cool storage.  相似文献   

3.
Strawberries at white ripening stage were heat treated at 45 °C for 3 h in an air oven and then stored at 20 °C for 72 h. Firmness, activity of enzymes associated to cell wall degradation, and expression of related genes were determined during the storage. Fruit firmness decreased during the incubation time, and after 24 h of storage the heat-treated fruit softened less than the control fruit. However, after 3 days at 20 °C no differences in firmness were detected between control and heat-treated fruit. Immediately after heat treatment application, the activity of endo-1,4-β-d-glucanase (EGase), β-xylosidase and β-galactosidase decreased, while polygalacturonase activity remained at a level similar to the control fruit. However, lower activities of all these enzymes, including polygalacturonase, were detected in heat-treated fruit after 24 h at 20 °C. The enzyme activity of β-xylosidase, β-galactosidase and polygalacturonase increased after 72 h up to similar or higher values than those of controls. However, endo-1,4-β-d-glucanase activity remained lower in heat-treated samples even after 72 h at 20 °C. The expression of genes encoding endoglucanase (FaCel1), β-xylosidase (FaXyl1), polygalacturonase (FaPG1) and expansin (FaExp2) was reduced immediately after treatment and during the following 4 h, and then increased after 24 h to levels similar to or higher than those of control fruit.

Therefore, the selected treatment (45 °C, 3 h in air) effectively reduced strawberry softening and caused a temporary reduction of both the expression of above-mentioned genes and the activity of a set of enzymes involved in cell wall disassembly.  相似文献   


4.
Softening during ripening in climacteric fruit is generally attributed to degradation in cell wall assembly, particularly the solublization of pectin. These changes could involve increased activities of various cell wall hydrolases. Their activity is believed to be regulated by ripening-related hormones and/or other signal molecules. Activities of pectin methyl esterase (PME), polygalacturonase (PG), pectate lyase (PL) and cellulase in banana cv. dwarf cavendish fruit were measured over a period of 7 days after ripening was initiated with ethylene. Effects of treatments with 1-methylcyclopropene (1-MCP), abscisic acid (ABA) and indole acetic acid (IAA) on activities of these hydrolases were measured in order to help elucidate their roles during banana ripening. Ethylene stimulated activities of all four enzymes, at best differentially. 1-MCP and IAA suppressed the ethylene effects. ABA stimulated activities of all hydrolases except polygalacturonase. ABA stimulation was most evident for pectate lyase. Thus ethylene plays a major role in up-regulating the activities of various cell wall hydrolases. In contrast IAA suppresses their activity. ABA can enhance softening with or without ethylene.  相似文献   

5.
To investigate the effects of postharvest application of 1-MCP on ethylene production and fruit softening, activities of ethylene biosynthesis and fruit softening enzymes were measured during postharvest ripening of plum (Prunus salicina Lindl. cv. Tegan Blue) fruit after being exposed to 1-MCP (0, 0.5, 1.0 or 2.0 μL L−1) at 20 ± 1 °C for 24 h. Following the treatments, fruit were allowed to ripen at ambient temperature (20 ± 1 °C), and ethylene production in fruit, activities of ACS and ACO, ACC content and fruit softening enzymes (PE, EGase, exo-PG and endo-PG) in fruit skin and pulp were recorded at different intervals. Postharvest application of 1-MCP significantly delayed and suppressed the climacteric ethylene production with reduction in the activities of ethylene biosynthesis enzymes (ACS, ACO) and ACC content, and fruit softening enzymes (PE, EGase, exo-PG and endo-PG) in the skin as well as in pulp tissues. The reduction was more pronounced with increased concentrations of 1-MCP. 1-MCP treated fruit showed different rates of fruit softening and activities of ethylene biosynthesis enzymes in the skin and pulp tissues which warrant further investigation on regulation of gene expression related to these enzymes with the inhibitory effect of 1-MCP.  相似文献   

6.
果实成熟衰老过程中软化机理研究进展   总被引:1,自引:0,他引:1  
介绍了果实成熟衰老过程中呼吸作用、乙烯释放量、细胞壁超微结构和组分变化,以及与果实软化有关的细胞壁酶的活性变化。多数果实软化是由于细胞壁的破坏,细胞中的果胶溶液化,纤维素解体等。与果实软化相关较为密切的4种细胞壁酶:多聚半乳糖醛酸酶(PG)、β-半乳糖苷酶(β-Gal)、纤维素酶(Cx)和果胶甲酯酶(PME)。为深入研究果实软化机理提供参考。  相似文献   

7.
In order to obtain a better understanding of the active defense strategy of cherimoya (Annona cherimola Mill.) fruit, hydrolytic and antifungal activity, as well as expression of proteins functionally and immunogenically related to the pathogenesis-related proteins chitinase (PR-Q) and 1,3-β-glucanase (PR-2), were estimated in fruit at different ripening stages. Increase in expression of the 27 kDa constitutive chitinase and the induction of two new proteins, a 26 kDa chitinase and a 51 kDa 1,3-β-glucanase were associated with enhanced in vitro hydrolytic and antifungal activity of the acidic protein extract in ripe fruit. Ripening modified the expression of constitutive basic isoenzymes, with a sharp decrease in both relative accumulation and hydrolytic activity. Likewise, a new basic 33 kDa chitinase was induced in the over-ripe fruit, concomitant with accumulation of a basic constitutive 76 kDa 1,3-β-glucanase. At this stage, the basic protein extract modified in vitro growth inhibition of Botrytis cinerea. Short-term high CO2 treatment delayed fruit ripening and maintained a similar distribution of activity and isoenzymatic pattern in both protein fractions to that in unripe fruit. These results indicate that the changes in the pattern of defense proteins and hydrolytic activity in cherimoyas appear to be associated with ripening. Moreover, unlike the constitutively expressed isoenzymes, only the transitorily induced chitinases and 1,3-β-glucanases were associated with an active defense-related response.  相似文献   

8.
The role of abscisic acid (ABA) in triggering ethylene biosynthesis and ripening of mango fruit was investigated by applying ABA [S-(+)-cis,trans-abscisic acid] and an inhibitor of its biosynthesis [nordihydroguaiaretic acid (NDGA)]. Application of 1 mM ABA accelerated ethylene biosynthesis through promoting the activities of ethylene biosynthesis enzymes (1-aminocyclopropane-1-carboxylic acid synthase, ACS; 1-aminocyclopropane-1-carboxylic acid oxidase, ACO) and accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC), enhanced fruit softening and activity of endo-polygalacturonase and reduced pectin esterase activity in the pulp. The activities of ethylene biosynthesis and softening enzymes were significantly delayed and/or suppressed in the pulp of NDGA-treated fruit. The ABA-treated fruit had higher total sugars and sucrose as well as degradation of total organic acids, and citric and fumaric acids compared with NDGA treatment. These results suggest that ABA is involved in regulating mango fruit ripening and its effects are, at least in part, mediated by changes in ethylene production.  相似文献   

9.
10.
11.
Although volatiles have been previously studied in kiwifruit (Actinidia spp.), there has been no co-ordinated study of volatile release and softening through the full edible period. In this report, the two most important commercial cultivars A. deliciosa ‘Hayward’ and A. chinensis ‘Hort16A’ were evaluated for volatiles released at different ripening stages corresponding to their typical commercial shelf life, and compared to the sensory quality assessed by a trained taste panel. Gas chromatography–mass spectrometry data indicated that large amounts of straight-chain aldehydes and esters were the dominant volatiles in the two cultivars. In particular, butanoates, the main fruity esters in both fruit, significantly increased during ripening and an extremely high level of butanoates was found in the over-ripe fruit. Sensory results indicated that with fruit softening, some of the changes in volatile content could explain changes in fruit flavor detected by a trained panel, and differences in characteristic flavor of the two cultivars. The results have implications for fruit sample handling and volatile assessment.  相似文献   

12.
采后嘎拉苹果果实细胞壁代谢及关键酶基因表达特性研究   总被引:2,自引:0,他引:2  
以嘎拉苹果为试材,研究其果实细胞壁代谢及关键酶基因表达特性及受1-MCP、乙烯利和低温的影响效应。结果表明,常温下,嘎拉果实硬度变化与WSP显著正相关,与CSP和半纤维素显著负相关,与ISP的关系不大;1-MCP和低温处理显著抑制了WSP含量上升,减缓了CSP和半纤维素降解。嘎拉果实细胞壁酶中,β-Gal活性最高、增加最快,其基因表达亦迅速增加,α-L-Af活性和基因表达虽增加速率低于β-Gal,但二者变化规律相似,均显著受到1-MCP和0℃低温的抑制;PG和PME活性和基因表达量亦呈增加趋势,但未能完全被1-MCP处理和0℃低温所抑制;相关性分析表明,其细胞壁酶活性变化均与硬度呈显著负相关性,并显著受到1-MCP和低温的影响。但是,乙烯利处理虽对嘎拉果实软化有一定的促进作用,但效果不显著。  相似文献   

13.
细胞壁分解酶与果实软化的关系研究进展   总被引:3,自引:0,他引:3  
王中凤 《中国农学通报》2009,25(18):126-130
软化是影响果实采后寿命的重要因素,是果实成熟过程一系列细胞壁酶有序作用的结果。各种酶在不同种类果实成熟与软化过程的表现各有特点。本文针对细胞壁分解相关的各种酶,综述果实成熟与软化过程酶活性变化、酶基因表达的最新研究进展,并推测果实软化的分子机理。  相似文献   

14.
Nitric oxide (NO), an important signalling molecule, has shown diverse physiological functions in plants. We investigated physiological responses of harvested tomato fruit (Solanum lycopersicum cv. Ailsa Craig, AC) to NO treatment. NO released by 1 mM sodium nitroprusside (SNP) aqueous solution could effectively retard pericarp reddening of tomato fruit, suppress ethylene production, and influence quality parameters during storage. The activity of antioxidant enzymes in NO-treated tomato fruit was higher in the late storage period compared to the control. RT-PCR analysis showed that expression of six genes related to fruit ripening was regulated by NO treatment, resulting in an increase in resistance of tomato fruit to gray mold rot caused by Botrytis cinerea. Our results demonstrated that application of NO could be a potential method for treating harvested fruit in order to delay ripening, maintain quality and enhance resistance of fruit to fungal pathogens.  相似文献   

15.
Changes in the activity of the cell wall hydrolases – polygalacturonase (EC 3.2.1.15), pectinesterase (EC 3.2.1.11) and β-galactosidase (EC 3.2.1.23) – have been investigated following wounding of tomato fruit pericarp tissue (Lycopersicon esculentum cv. Ailsa Craig). In ripening fruit wounding appears to arrest the further synthesis of polygalacturonase. β-Galactosidase synthesis may also have been arrested in ripening fruit. The level of pectinesterase declined over the first 24 h following harvest, and since this was apparent in both wounded and unwounded tissue may be related to a harvest, rather than a wounding effect. There was a recovery of activity in intact fruit by 48 h after harvest but this seems to be impaired in wounded tissue. In the case of pectinesterase, this observation was extended to examine the changes in isoform profile and it appeared that the decline of this enzyme may be associated with the reduction of one specific isoform — PE2. In contrast to ripening fruit, wounding of fruit at the fully ripe stage appears to have no significant effects on the activities of any of these three enzymes.  相似文献   

16.
Preclimacteric avocado (Persea americana Mill. cv. Booth 7) fruit were treated with aqueous 1-methylcyclopropene (1-MCP) at 0.93 and 9.3 mmol m−3 and then stored at 20 °C to investigate the effect of 1-MCP on antioxidant systems of mesocarp tissue during ripening. Exposure to 1-MCP concentrations significantly delayed softening and peak ethylene production. 1-MCP significantly delayed accumulation of total soluble phenolics, flavonoids, and total antioxidant capacity although levels eventually reached control fruit maxima. The influence of 1-MCP was more pronounced at the higher concentration. Activities of peroxidase [POD (EC 1.11.1.7)], superoxide dismutase [SOD (EC 1.15.1.1)], catalase [CAT (1.11.1.6)] and l-ascorbate peroxidase [APX (EC 1.11.1.11)] increased during early ripening of control fruit followed by slight (CAT) or significant (POD, APX) declines with further ripening. Increases in activities of all enzymes were delayed in proportion to 1-MCP concentration, and maximum activities attained during ripening were largely unaffected by 1-MCP. Postclimacteric declines in POD and APX were not observed at the higher 1-MCP concentration, possibly reflecting incomplete ripening. The results indicate that changes in antioxidant parameters of avocado fruit are not markedly influenced by 1-MCP but are delayed or altered in proportion to the general suppression of ripening as indicated by ethylene production and fruit softening trends. Together with previously published reports, the data also indicate that the effects of ethylene-action suppression on antioxidant parameters during ripening vary considerably among different fruits. Relationships between antioxidant systems, ethylene and ripening are discussed.  相似文献   

17.
18.
We present a segmented partial least squares (PLS) prediction model for firmness of ‘Rocha’ pear (Pyrus communis L.) during fruit ripening under shelf-life conditions. Pears were collected from three different orchards. Orchard I provided the pears for model calibration and internal validation (set 1). These were transferred to shelf-life in the dark at 20 ± 2 °C and 70% RH, immediately after harvest. External validation was performed on the pears from the other two orchards (sets 2 and 3), which were stored under different conditions before shelf-life. Fruit was followed in the shelf-life period by visible/near infrared reflectance spectroscopy (Vis/NIRS) in the range 400–950 nm. The correlation between firmness and the reflectance at some wavelength bands was markedly different depending on ripening stage. A segmented partial least squares model was then constructed to predict firmness. This PLS model has two segments: (1) unripe and ripening/ripe pears (high firmness); (2) over-ripe pears (low firmness). The prediction is done in two steps. First, a full range model (full model) is applied. When the full model prediction gives a low firmness value, then the over-ripe model is applied to refine the prediction. The full model is reasonably significant in regression terms, robust, but allows only a coarse quantitative prediction (standard deviation ratio, SDR = 2.48, 1.50 and 2.40 for sets 1, 2 and 3, respectively). Also, RMSEP% = 139%, 91% and 56%, indicating large relative errors at low firmness values. The segmented model improved moderately the correlation, and the values of RMSEC, RMSEP and SDR; it improved significantly the RMSEP% (29%, 55% and 31%), providing an improvement of the relative prediction errors at low firmness values. This method improves the ordinary PLS models. Finally, we tested whether chlorophyll alone was enough for a predictive model for firmness, but the results showed that the absorption of chlorophyll alone does not explain the performance of the PLS models.  相似文献   

19.
调控果实成熟的基因工程研究进展   总被引:2,自引:0,他引:2  
阐述了在果实成熟过程中与乙烯生物合成和细胞壁降解相关的酶(ACC合酶、ACC氧化酶、多聚半乳糖醛酸酶和果胶甲基酯酶)及其调控果实成熟的基因工程研究进展。  相似文献   

20.
The aim of this study was to dissect the physicochemical aspects of cell wall components in relation to chilling injury symptoms, expressed as flesh browning and postulated as internal breakdown in the present study, in a non-melting peach cultivar (Prunus persica L. Batsch, cv. Andross) during ripening after 4 weeks cold storage at 5 °C. Uronic acids, neutral sugars and cellulose contents were assayed in order to determine the correlation between them and flesh browning. Cation distribution in cell wall material and activities of pectin-modifying enzymes were also monitored. Uronic acid content was higher in both water-soluble and -insoluble pectin fractions in sound peach fruit compared to fruit with internal breakdown symptoms. The chilling-injured fruit were characterized by 26% higher content in total neutral sugars compared to sound fruit, which was mainly attributed to increased galactose, arabinose and glucose contents, whereas tissue derived from sound fruit had a 27% higher cellulose content compared to chilling-injured tissue. Decreased activities of both polygalacturonase and pectin methyl esterase, accompanied by decreased levels of cation binding in the cell walls, primarily of calcium, were recorded in the brown-fleshed tissue. Since the examined tissues originated from fruit subjected to common storage treatments, differences reported here are related to the development of internal breakdown symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号