首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The lipid profile of nuts from Ximenia caffra and Ricinodendron rautanenii was determined and compared. Although the total oil content of X. caffra and R. rautanenii nuts was similar (47.6 ± 7.5% versus 53.3 ± 13.7%), the fatty acid profiles differed significantly. X. caffra had a higher content (p < 0.05) of saturated fatty acids than R. rautanenii (20.19 ± 1.07% versus 13.87 ± 3.68%) and contained C22:0 and C24:0 which were lacking in R. rautanenii. Total monounsaturated fatty acids were higher in X. caffra than R. rautanenii (71.48 ± 0.99% versus 36.66 ± 1.95%). Oleic acid (C18:1n9) was the major monounsaturated fatty acid (MUFA) in X. caffra whereas erucic acid (C22:1n9), the major MUFA in R. rautanenii, was undetectable in X. caffra. R. rautanenii had a greater polyunsaturated fatty acid content than X. caffra which contained C18:3n3 (α-linolenic acid) and nervonic acid (24:1n9). X. caffra is potentially an important source of essential fatty acids.  相似文献   

2.
Thymus zygis ssp. gracilis shrubs were cultivated as an experimental crop under different watering level, in order to achieve 81, 63, 44 and 30% of the local potential evapotranspiration (ETo). After 4 years of cultivation, thyme leaves were analyzed on the basis of their essential oil (yield and quality), total phenolic content, free radical-scavenging activity and polyphenolic profile.Essential oil yield values ranged between (2.3 ± 0.7) and (3.6 ± 0.7)% for 81 and 30% ETo equivalent, respectively. The comparison of essential oil production at the 2nd and 4th years of cultivation showed that using watering levels higher than 30% ETo equivalents reduced significantly (P < 0.05) the essential oil yielded by these shrubs with time.Analysis of total phenolic content, polyphenolic profile, and radical scavenging activity were performed using post-distillation dry leaves. Total phenolic content values ranged from (122.2 ± 19.3) to (108.5 ± 19.2) mg of gallic acid equivalents (GAEs)/g of dry plant for the highest and lowest watering level treatment, respectively. Regarding the polyphenolic profile, rosmarinic acid, followed by apigenin, ferulic, carnosic and caffeic acids, was the phenolic component quantified at the highest concentrations. Radical-scavenging activities (IC50) concentrations varied from (3.7 ± 1.6) mg/mL for 81% ETo to (7.4 ± 2.3) mg/mL 30% ETo.In spite of the intra-specific variability detected, the individual analysis of shrubs has allowed the selection of plants which are characterised by having adequate levels of essential oil and polyphenolic extract (yield and quality), almost all of them being cultivated under a 60% ETo watering level. These selected shrubs will allow us to make further vegetative propagations in order to obtain homogeneous field crops with plants of contrasted quality cultivated under a 60% ETo watering level.  相似文献   

3.
Moringa oleifera Lam. (M. pterygosperma Gaertn [Moringaceae]) is a fast-growing small tree native to the sub-Himalayan tracts of Northern India. The recognition that moringa oil has value in cosmetics has increased interest in cultivating it for seed-oil. The experimental trials were conducted in a semi-commercial moringa plantation in the subtropical northwestern region of Argentina, considering the similar climate conditions to the plant native region. Pods per tree, seeds per pod, weight of seed per pod, kernel weight, kernels oil content and fatty acid composition of PKM-1 and African cultivars were determined. One individual, E4-9, a PKM-1 plant, had significantly (P < 0.05) higher production than all other plants. In addition, this individual was the highest extrapolated oil producer in both 2003 and 2004, with 595 and 564 kg ha?1, respectively (ave. 580 kg ha?1). Seed weight (200-seed wt.) was significantly greater in 2003 than 2004; no other traits studied showed significant differences between years. Both cultivars produced-oil with practically identical fatty acid composition, and the monounsaturated ω-9 oleic fatty acid accounted for more than 70% of the total for both cultivars. The polyunsaturated ω-6 linoleic fatty acid content of the African cultivar was slightly, but significantly (P < 0.05), higher than that of PKM-1.  相似文献   

4.
The compositions of essential oils of 19 accessions belonging to six different Achillea species, transferred from the natural habitats in 10 provinces of Iran to the field conditions, were assessed. The relationship between the leaf areas of selected accessions with their essential oil content was also investigated. Essential oil yield of dried plants obtained by hydro-distillation ranged from 0.1 to 2.7% in leaves. Results indicated a significant variation in oil composition among and within species. Total of 94 compounds were identified in 19 accessions belonging to the six species of A. millefolium, A. filipendulina, A. tenuifolia, A. santolina, A. biebersteinii and A. eriophora. The major constituents of the leaves in the tested genotypes were determined as germacrene-D, bicyclogermacrene, camphor, borneol, 1,8-cineole, spathulenol and bornyl acetate. According to the major compounds, four chemotypes were defined as: (I) spathulenol (1.64–34.31%) + camphor (0.2–15.61%) (7 accessions); (II1) germacrene-D (18.78–23.93%) + borneol (7.93–8.26%) + bornyl acetate (11.56–14.66%) (5 accessions); (II2) germacrene-D (13.28–36.28%) + bicyclogermacrene (5.93–8.4%) + 1,8-cineole (15.26–19.41%) + camphor (14.95–23.32%) (2 accessions); (III) borneol + camphor (52.04–63.27) (2 accessions); (IV) germacrene-D (45.86–69.64%) (3 accessions). The relationships of chemotypes with soil type and climatic conditions of collected regions were assessed, as probable reasons of high variations in essential oil components, and discussed.  相似文献   

5.
Changes in fatty acids were studied during maturation of coriander (Coriandrum sativum L.) fruits cultivated in the North-East of Tunisia (Charfine). The fruits matured in 55 days after flowering (DAF). Oil and petroselinic acid synthesis proceeded at a steady rate up to 32 DAF. The first results showed a rapid oil accumulation started at newly formed fruits (9.6 ± 0.2%) and continued until their full maturity (26.4 ± 0.5%). During fruit maturation, fatty acid profiles varied significantly among the nine stages of maturity. At the 32th DAF, palmitoleic, gadoleic, erucic and docosahexenoic acids were not detected and petroselinic acid had a highest amount (84.8 ± 4.5%). Fruits development resulted mainly in an increase of petroselinic acid and a decrease of palmitic acid (C16:0). At full maturity, the main fatty acids were petroselinic acid (80.9 ± 5.7%), followed by linoleic (13.6 ± 2.9%), palmitic (3.6 ± 0.1%) and stearic (0.7 ± 0.1%) acids. Saturated and polyunsaturated fatty acids decreased significantly and monounsaturated fatty acids increased during maturation of coriander fruit. Coriander fruits at the first four stages of maturity have a healthy nutritional value and the last five stages were with important economic and industrial applications. Results of this study indicate that the variation in the fatty acid composition of coriander fruit during maturation may be useful in understanding the source of nutritionally and industrially important fatty acids in this fruit. Coriander fruit is potentially an important source of petroselinic acid which has numerous industrial applications.  相似文献   

6.
《Field Crops Research》2006,99(1):67-74
An inverse relationship between soybean [Glycine max (L.) Merr.] seed protein and oil concentration is well documented in the literature. A negative correlation between protein and yield is also often reported. The objective of this study was to determine the effect of high rates of N applied at planting on seed protein and oil. Nitrogen was surface-applied at soybean emergence at rates of 290 kg ha−1 in 2002, 310 kg ha−1 in 2003, and 360 kg ha−1 in 2004. Eight cultivars ranging from Maturity Group II–IV were evaluated under the Early Soybean Production System (ESPS). However, not all cultivars were evaluated in all 3 years. Glyphosate herbicide was used in all 3 years and a non-glyphosate herbicide treatment was applied in 2002. Cultivars grown in 2003 were also evaluated under an application of 21.3 kg ha−1 of Mn. All cultivar, herbicide, and Mn treatments were evaluated in irrigated and non-irrigated environments with fertilizer N (PlusN treatment) or without fertilizer N (ZeroN treatment). When analyzed over all management practices (years, cultivars, herbicide, and Mn treatments), the PlusN treatment resulted in a significant decrease in protein concentration (2.7 and 1.9%), an increase in oil concentration (2.2 and 2.7%), and a decrease in the protein/oil ratio (4.7 and 4.6%) for the irrigated and non-irrigated environments, respectively. However, the overall protein and oil yield increased with the application of fertilizer N at planting (protein: 5.0% irrigated, 12.7% non-irrigated and oil: 9.9% irrigated and 18.9% non-irrigated). These increases were due to the increase in seed yield with the application of large amounts of fertilizer at planting. Additionally, a significant correlation (r = 0.45, P = 0.0001) was found between seed protein concentration and seed yield. No significant correlation was found between seed oil concentration and seed yield. The data demonstrate the inverse relationship between protein and oil and indicate that large amounts of N applied at planting do not change this relationship.  相似文献   

7.
Studies were conducted on the properties of seeds and oil extracted from Maclura pomifera seeds. The following values (on a dry-weight basis) were obtained for M. pomifera seed, respectively: moisture 5.88%, ash 6.72%, oil 32.75% and the high protein content 33.89%. The carbohydrate content (20.76%) can be regarded as a source of energy for animals if included in their diets. The major nutrients (mg/100 g oil) were: potassium (421.65), calcium (218.56) and magnesium (185.00). The physicochemical properties of the oil include: the saponification number 174.57; the iodine value 141.43; the p-anisidine value 1.86; the peroxide value 2.33 meq O2/kg; the acid value 0.66; the carotenoid content 0.59 mg/100 g oil; the chlorophyll content 0.02 (mg/100 g oil) and the refractive index 1.45. Polymorphic changes were observed in thermal properties of M. pomifera seed oil. This showed absorbency in the UV-B and UV-C ranges with a potential for use as a broad spectrum UV protectant. The main fatty acids of the crude oil were linoleic (76.19%), oleic (13.87%), stearic (6.76%) and palmitic acid (2.40%). The polyunsaturated triacylglycerols (TAGs) LLL, PLL, POL + SLL, OLL, OOL (L: linoleic acid, O: oleic, P: palmitic acid and S: stearic acid) acids were the major TAGs found in M. pomifera seed oil. A relatively high level of sterols making up 852.93 mg/100 g seed oil was present. The sterol marker, β-sitosterol, accounted for 81% of the total sterol content in the seed oil and is followed by campesterol (7.4%), stigmasterol (4.2%), lupeol (4.1%) and Δ5-avenesterol (3.2%). The seed oil was rich in tocopherols with the following composition (mg/100 g): α-tocopherol 18.92; γ-tocopherol 10.80; β-tocopherol 6.02 and δ-tocopherol 6.29. The results showed that M. pomifera seed oil could be used in cosmetic, pharmaceutical and food products.  相似文献   

8.
Lesquerella (Lesquerella fendleri) is a potential alternative crop that is being studied for commercial oilseed production. Understanding the minimum temperatures for germination and seedling growth is important for determining potential areas for lesquerella production. The objectives of this study were to determine the cardinal temperatures for germination and seedling growth, and to screen ecotypes for germination and growth characteristics. A temperature gradient table arrangement was used to observe seed germination over a range of temperatures, and time to germination and shoot appearance. Times to 5 mm root length and 5 mm shoot length were also measured to assess cardinal temperatures for seedling survival and growth. Two different species were examined, L. fendleri and a species we refer to as ‘L. pallida aff.’ because it differed from typical L. pallida plants in chromosome number and in oil quality. We concluded that both germination and growth of L. pallida aff. occurred fastest at 22 °C, whereas L. fendleri germinated earlier at 18 °C, but grew faster at 22 °C. L. pallida aff. also had lower germination than L. fendleri over the range studied. Non-dormant seeds of improved lines of L. fendleri had better performance at temperatures above 22 °C than did unimproved accessions. Lines of L. fendleri selected for high oil content and salt tolerance had similar temperature requirements for germination except for improved line WCL-LO3, the current line being used in production. This line had optimal temperatures 6 °C higher for germination and growth than the other improved lines. Accessions of L. fendleri collected from elevations above 2000 m performed better at warmer temperatures, whereas those collected from elevations below 2000 m tended to perform better at cooler temperatures. Dormant seeds of L. fendleri germinated more quickly at low temperatures and had lower base (<3 °C) and optimal (22 °C) temperatures than non-dormant seeds (>7 °C and 28 °C, respectively). We speculate that this partial dormancy trait allows populations of L. fendleri to exploit a wider range of temperature conditions in the wild in order to thrive in extreme environments.  相似文献   

9.
There are 32 species of Flourensia genus with 9 native to Mexico. These species contain compounds with potential use for pest control. In this paper, we report the antifungal activities of ethanol extracts from three endemic species in Coahuila state: Flourensia microphylla, Flourensia cernua, and Flourensia retinophylla. Also, preliminary information on the chemical composition of the extracts is included. Antifungal activity was tested against three pathogens attacking commercial crops: Alternaria sp., Rhizoctonia solani, and Fusarium oxysporum. The extracts concentration varied from 10 to 1500 μl l−1. The ANOVA showed highly significant differences (P  0.01) with the extracts, the doses, and on the interaction extract × dose. Inhibition effect was observed from 10 μl l−1 in all three species. Total inhibition was found only with F. cernua and F. retinophylla at 1000 μl l−1 for R. solani, the three species inhibited the three pathogens at 1500 μl l−1. Infrared analysis showed similar absorption signals for the extracts of the three species although in different concentration. This suggests that similar compounds may be present. The control of these pathogens by natural compounds is interesting both for environmental and economic reasons. The use of semiarid lands plants may improve the socioeconomic level of the people within the region.  相似文献   

10.
《Field Crops Research》2005,91(2-3):217-229
Soybean [Glycine max (L.) Merr.] seed is a major source of protein for animal feed and oil for human consumption. Selection within elite soybean cultivars for the improvement of agronomic and seed traits is assumed to be ineffective due to the belief that cultivars are highly homogeneous. Previously reported data suggest that latent variation among the single plant selections within a cultivar exists and that mechanisms that generate de novo variation may also be present. The main objective of this study was to perform divergent single-plant selection at ultra-low plant density and investigate the presence of genetic variation for seed protein and oil within three elite soybean cultivars. A secondary objective was to investigate the variation for fatty acid composition. In 1995, single plants from the three cultivars were grown in a honeycomb design using a plant-to-plant spacing of 0.9 m. A total of 333 plants from ‘Benning’, 392 plants from ‘Haskell’, and 371 plants from ‘Cook’ were evaluated. Divergent single-plant selection for protein and oil content was performed to select a total of 20 plants for high or low protein and 20 plants for high or low oil from each cultivar. The selected plants were further evaluated in replicated row-plot experiments for 3 years. Our results indicate that single-plant selection at low plant density was successful in discovering significant variation for seed protein and oil within each of the three soybean cultivars. For protein content, the magnitude of intra-cultivar variation between the highest- and lowest-protein lines averaged 19 g kg−1 across the three cultivars and ranged from 13 to 24 g kg−1. For oil composition, the magnitude of variation between the most divergent lines averaged 12 g kg−1 across the three cultivars and ranged from 9 to 14 g kg−1. Significant variation among the selected progeny lines was also discovered for specific fatty acid composition. The magnitude of intra-cultivar variation averaged from 6 to 29 g kg−1 across the five fatty acids of soybean. The genetic variation discovered within the soybean cultivars is most likely due to latent variation and/or newly created variation. Our data provide evidence that single-plant selection at ultra-low plant density within elite cultivars can be effective in improving the seed composition of a soybean cultivar.  相似文献   

11.
Vanilla is a large genus of about 110 species in the orchid family (Orchidaceae), including the species Vanilla planifolia from which commercial vanilla flavoring is derived. Since most species of vanilla are considered rare and endangered there is an urgent need to conserve them through genetic analysis and propagation/conservation studies on this crop.The present study investigated the genetic diversity among nine leafy- and leaf-less Vanilla species employing 30 decamer RAPD primers and 10 ISSR primers. The species under study were diverse and displayed a range of variability (0–66% and 0–81% for RAPD and ISSR, respectively). A total of 154 RAPD polymorphic markers (83.24%, h = 0.378) and 93 ISSR polymorphic markers (86.11%, h = 0.363) were used to generate a genetic similarity matrix followed by the cluster analysis. Specific groupings were revealed by each cluster analysis with slight variation between two different markers. Among the nine species studied, V. planifolia, Vanilla aphylla and Vanilla tahitensis revealed very low level of variation within their collections, thus indicating a narrow genetic base. The large genetic distance of Vanilla andamanica from other species suggests its different origin. A close genetic affinity was observed between the pairs V. planifolia, V. tahitensis and Vanilla albida, V. aphylla. These are the first comparative results for RAPD and ISSR reporting inter-relationship among nine cultivated, wild and hybrid Vanilla species.  相似文献   

12.
《Field Crops Research》1986,15(1):57-72
Seed oil and fatty acid concentrations of wild annual sunflower (Helianthus annuus L.) seed vary greatly depending on the environmental conditions during development. Previous research has shown seed oil and fatty acid concentrations' response to temperature has been variable in wild and cultivated sunflower. The objective of the present study was to examine environmental factors, specifically temperature (maximum and minimum), total solar radiation and daylength for their direct and indirect effects on seed oil and fatty acid concentrations in seed oil of wild annual and cultivated sunflower using correlation and path-coefficient analyses. Ten populations of wild annual sunflower indigenous to areas from 29° to 46° N Lat. and 81° to 122° W Long. were grown in a randomized block design with three replications on Pullman clay loam (fine, mixed, thermic Torrertic Paleustoll) soils in 1980 and 1981. Three heads per genotype at early anthesis were sibbed or interpollinated at six different dates, and mature seeds were collected 28 days after sibbing for determination of seed oil and fatty acid concentrations. Hybrid ‘894’ was grown as a check for comparisons. Path-coefficient analyses indicated that minimum temperature and total solar radiation have the greatest direct effect on seed oil concentration in wild annual sunflower, though the influence was very low. In the cultivated hybrid, minimum temperature and daylength had the highest direct effect on seed oil concentration. Path-coefficient analyses also indicated that minimum temperature and solar radiation had the primary influence on oleic acid concentration in the wild and cultivated sunflower, with maximum temperature being less important. Linoleic acid concentration was primarily influenced (negatively) by minimum temperature and solar radiation as indicated by path-coefficient analyses in the wild and cultivated sunflower. The highest indirect effects of other environmental factors on fatty acid concentrations in the wild and cultivated sunflower were via minimum temperature followed by total solar radiation. There was a strong negative relation between linoleic and oleic fatty acid concentrations in the study. Path-coefficient analyses indicated that the wild annual sunflower reacted similarly to the cultivated sunflower to the environmental factors examined. This information will be useful to sunflower plant breeders when they incorporate the wild germplasm into commercial sunflower breeding lines.  相似文献   

13.
The feasibility of producing biodiesel from Idesia polycarpa var. vestita fruit oil was studied. A methyl ester biodiesel was prepared from refined I. polycarpa fruit oil using methanol and potassium hydroxide (KOH) in an alkali-catalyzed transesterification process. The experimental variables investigated in this study were catalyst concentration (0.5–2.0 wt.% of oil), methanol/oil molar ratio (4.5:1 to 6.5:1), temperature (20–60 °C) and reaction time (20–60 min). A maximum yield of over 99% of methyl esters in I. polycarpa fruit oil biodiesel was achieved using a 6:1 molar ratio of methanol to oil, 1.0% KOH (% oil) and reaction time for 40 min at 30 °C. The properties of I. polycarpa fruit oil methyl esters produced under optimum conditions were also analyzed for specifications for biodiesel as fuel in diesel engines according to China Biofuel Systems Standards. The fuel properties of the I. polycarpa fruit oil biodiesel obtained are similar to the No. 0 light diesel fuel and most of the parameters comply with the limits established by specifications for biodiesel.  相似文献   

14.
Premature ripening (PR) is one of the most important diseases of sunflower in France since the 90s. Previous results indicated that girdling canker of the stem base, caused by Phoma macdonaldii was its primary cause but elucidation of critical environmental factors involved is crucial for better control of the disease. A field study was conducted in three contrasting cropping seasons (2006–2008) and investigated the effect of N fertilization (0, 75 and 150 kg N ha?1) and water regime (rainfed, irrigated) on two cultivars with artificial inoculation (AI) and natural infection (NI). Disease assessment was recorded weekly to calculate the area under disease progress curve (AUDPC) and the final percentage of PR plants. Data showed that high levels of N fertilization led to significantly (P < 0.05) more PR than non-fertilization. Water deficit conditions were significantly (P < 0.05) involved in disease severity, and AUDPC and PR were increased when dry conditions were associated with high N supply. This was true for two cultivars which differed in their susceptibility to the disease but cv. Heliasol RM was significantly (P < 0.05) more affected than cv. Melody, partially resistant to PR. Despite contrasting weather patterns, these results demonstrated a clear role of crop management and environmental conditions on the incidence and severity of stem base attacks responsible for the PR syndrome. These findings suggest that sunflower crop husbandry should be adapted to minimize premature ripening induced by P. macdonaldii.  相似文献   

15.
Cuphea (Cuphea viscosissima Jacq. × C. lanceolata f. silenoides W.T. Aiton, line PSR23) is a new crop being developed in the North Central United States, as an industrial oilseed crop. Cuphea PSR23 seed oil is rich in medium-chain-length fatty acids such as capric acid used to manufacture soaps and detergents. The objective of this research was to determine the time when physiological maturity of cuphea seed is reached and how seed development affects seed moisture, weight, oil content, fatty acid content, germination, and seedling vigor. To evaluate seed development, 2000 cuphea flowers were tagged at anthesis in the field at Prosper, North Dakota in 2004 and 2005. Each flower was tagged when open and the position on the main stem or branch was recorded. Two hundred capsules from the tagged flowers were harvested at 3- to 4-d intervals from 5- to 48-d post anthesis (DPA). Seed weight increased as a function of growing degree days (GDD) and the days from anthesis. Physiological maturity occurred when maximum dry seed weight was attained. Seed weight increases followed the Gompertz function with a R2 = 0.90 (2004) and R2 = 0.95 (2005). All capsules, regardless of their position on the stem, followed the same growth function for seed weight. The maximum dry seed weight estimated by the Gompertz function was 3.61 for 2004 and 3.58 mg seed−1 for 2005. Physiological maturity estimated with a quadratic function occurred at 38 DPA or 270 GDD in 2004. In 2005, physiological maturity occurred at 26 DPA or 265 GDD. As a visual indicator when the capsules split-open seeds inside that capsule are physiologically mature. Seed moisture decreased from 900 g kg−1 at 37 GDD post anthesis to 450 g kg−1 at 319 GDD post anthesis in 2004; however, in 2005 seed moisture decreased from 850 to 81 g kg−1 at 293 GDD post anthesis. Seed germination increased as seed developed and it was 83% when harvested 234 GDD post anthesis. Oil content increased from 98 g kg−1 at 37 GDD post anthesis to 279 g kg−1 319 GDD post anthesis. Fatty acid composition varied throughout seed development. Seed development for 111 GDD and greater had more than 66% of capric acid (10:0). Cuphea should be harvested after 265 GDD post anthesis when most capsules on the main stem are split-open, have attained maximum seed weight, germination, seedling vigor, and oil content.  相似文献   

16.
Lesquerella fendleri (Gray) Wats. is a potential new oilseed crop for the arid southwestern United States. Lesquerella seed oil with similar properties as castor oil is being considered as a domestic replacement for the imported castor oil. Development of new crops with low irrigation needs is of high priority. Because the most critical stage of sensitivity to moisture deficits has not been determined in Lesquerella species, the objectives of this study were: (i) to identify the most critical stage or stages for moisture deficit and, (ii) to determine the effect of moisture deficit on yield, yield components, oil and fatty acid composition. Two-year field studies were conducted at the New Mexico State University, Leyendecker Plant Science Research Center. The experimental design was a randomized complete block. The treatments consisted of (a) T1: Continuous favorable soil moisture [irrigated at 50% soil water depletion (SWD)]. (b) T2: Moisture stress (75% SWD) from establishment to initial flowering with no stress from flowering to final harvest (50% SWD). (c) T3: No stress imposed from establishment to initial flowering (50% SWD) followed by stress to final harvest (75% SWD). (d) T4: Moisture stress (75% SWD) from establishment to final harvest. The amount of water applied ranged from 810 to 729 mm for the first year, and 810 to 625 mm for the second year. Seed weight per plant and number of pods per plant were generally higher when water availability was maintained at or above 50% SWD throughout the growing season. Neither seed number per pod nor seed size was influenced by irrigation treatments. Lesquerella was more sensitive to water availability during flowering and seed development as a greater loss in seed yield occurred when irrigation was delayed to 75% SWD during that stage of development. Seed yield and dry matter production from the 2 year field studies were closely related to the seasonal cumulative evapotranspiration. For each millimeter of evapotranspiration, seed yield increased from 1.8 kg ha−1 mm in 1994–1995 to 1.3 kg ha−1 mm for 1995–1996. The dry matter production increased 13.4 kg ha−1 for each mm increase in seasonal evapotranspiration during 1994–1995. This relationship was a second order polynomial with an R2 of 0.86 during 1995–1996. The WUEgr and WUEdm were highest under the most favorable water availability conditions for growth and seed development. Delaying irrigation to 75% SWD throughout the crop growth period resulted in the lowest oil content. Lesquerolic acid content was not affected by irrigation during both the growing seasons.  相似文献   

17.
The demand for diesel fuel far exceeds the current and future biodiesel production capabilities of the vegetable oil and animal fat industries. New oilseed crops that do not compete with traditional food crop are needed to meet existing energy demands. Hybrid hazelnut oil is just such an attractive raw material for production of biodiesel. Hazelnut oil was extracted from hybrid hazelnuts and the crude oil was refined. Hazelnut oil-based biodiesel was prepared via the transesterification of the refined hazelnut oil with excess methanol using an alkaline catalyst. The effects of reaction temperature, time and catalyst concentration on the yield of diesel were examined, and selected physical and chemical properties of the biodiesel were evaluated. The biodiesel yield increased with increasing temperature from 25 to 65 °C and with increasing catalyst concentration from 0.1 to 0.7 wt%. The increase in yield with reaction time was nonlinear and characterized by an initial faster rate, followed by a slow rate. Hazelnut oil-based biodiesel had an average viscosity of 8.82 cP at 25 °C, which was slightly higher than that of the commercial soy-based diesel (7.92 cP at 25 °C). An approximate 12 °C higher onset oxidative temperature and a 10 °C lower cloud point of hazelnut oil biodiesel than those of its commercial soy counterpart indicated a better oxidative stability and flowability at low temperature. The average heat of combustion of hazelnut oil biodiesel was 40.23 kJ/g, and accounted for approximately 88% of energy content of diesel fuel. The fatty acid composition of hazelnut oil-based biodiesel was the same as the nature oil.  相似文献   

18.
《Field Crops Research》1999,61(1):23-35
Field experiments were conducted to investigate the performance of temperate legume species in rice-based cropping systems in a warm-temperate environment in Nepal. Over the period 1994–1996, various legume species were grown during the winter season (October–May) in the Kathmandu valley (27° N, 1350 m asl) with the aim of evaluating their biomass production and N fixation. A wide range of legume species including food, feed and green manure crops proved to be very well adapted to the winter growing conditions in this environment. The cultivation of temperate legume crops therefore, constitutes an alternative to traditional cropping practices such as growing wheat or leaving the land fallow. The temperate species appeared to capitalise on generally favourable growing conditions such as long growing season, low pest and disease pressure, high radiant energy receipt and cool night temperatures. However, performance varied greatly between species and years. Total dry matter yields ranged from 2 to 20 t ha−1 obtained with lentil (Lens culinaris Medic) and bitter lupin (Lupinus mutabilis), respectively. Highest seed yields were produced by fababean (Vicia faba) (5 t ha−1) and field pea (Pisum sativum var. arvense) (3 t ha−1) in the first season. Nitrogen yields and quantities of N fixed ranged from 18 to 481 kg ha−1 and from 0 to 463 kg ha−1, respectively. Large amounts of N were fixed by species such as fababean, Persian clover (Trifolium resupinatum) and bitter lupin. Early sowing in autumn was shown to be beneficial for some crops such as fababean, vetch (Vicia benghalensis) and Persian clover. In these cases, it is, therefore, important to reduce the turn-around interval after rice. Further research is required to fully determine the potential of temperate legume species in these environments with particular emphasis given to the identification of the most adapted cultivars and to reduce the need for irrigation of these winter crops.  相似文献   

19.
《Field Crops Research》2006,96(1):48-62
In order to quantify the effects, at different stages during grain filling, of alternating day/night high temperature regimes on sunflower grain yield and quality, heads were exposed to high temperatures during 7 or 6 days starting either 10–12 days after anthesis (daa, HT1), 18 daa (HT2) or 24 daa (HT3). Also, heads were exposed to high temperatures for periods of 2, 4 or 6 days in each of HT1 and HT2. Temperatures covered a range of mean daily grain temperature of 20–40 °C and peak grain temperatures (i.e., those prevailing during the central 5 h of the daylight period) of 26–45 °C. High temperature stress for periods of 4 days or longer produced significant (p < 0.05) reductions in grain yield and grain quality. Early (HT1) exposure to stress reduced yield by 6%/°C above a mean grain temperature threshold of 29 °C; later (HT2 + HT3) exposures reduced yield by 4%/°C above a threshold of 33 °C. These reductions in yield were attributable to reductions in unit grain weight at all positions (periphery, intermediate, central) on the head, and an increase in the proportion of very small (10–30 mg) grains, termed half-full (HF) grains in this paper. In both full and HF grains, stress in either HT1 or HT2 reduced final pericarp weight, associated with fewer number of cell layers and thinner cell walls in the schlerenchyma. High temperatures reduced both the rate and duration of oil deposition in the grain, with the greatest effects being found with early (HT1) exposures. The unsaturation (oleic acid/linoleic acid) ratio of oil from mature grain was altered only when exposure to heat stress overlapped with the cessation of deposition of storage lipids. The effects of duration and intensity of heat stress on relative (to control) grain yield and oil content could be reasonably summarized using a linear response to cumulative hourly heat load calculated with a base temperature of 30 °C. We conclude that: (i) 4 days of alternating day/night temperatures resulting in mean daily grain temperatures of >30 °C can reduce sunflower grain yield and quality; (ii) the magnitude of these effects is strongly dependent on the timing of exposure and their nature on the grain growth processes active at the time of stress; and (iii) an hourly heat load (base = 30 °C) provides a useful integrative estimator of the effects of exposure to heat stress on grain yield and oil content for a given phase of grain filling.  相似文献   

20.
The magnitude of relationships among different traits is important in plant breeding programs to identify the best selection criteria and improve the efficiency of selection. This study was conducted to determine relationships between seed yield and seed oil content with other important agronomic traits among 36 diverse accessions of Vernonia (Vernonia galamensis variety ethiopica), a potentially novel industrial oilseed crop. Field evaluations were conducted during 2005, 2006 and 2007 at the Limpopo Province in South Africa using a partially balanced lattice design. Simple correlation and path analysis were performed to identify the best selection criteria for increased seed yield and seed oil content. Simple correlation and path analyses revealed that the formation of productive primary heads strongly associated with increased seed yield (rg = 0.81, p < 0.001). Furthermore, path analysis indicated selection for increased number of primary heads would bring about simultaneous and favorable change towards reduced days to maturity and shorter plant height. Further associational study of traits with seed oil content showed a significant (p < 0.05) correlation between oil content with 1000 seed weight (rg = 0.4). The path analysis, however, exposed seed yield followed by 1000 seed weight with significant direct effect on seed oil content. The study demonstrated that selection for increased number of productive primary heads is the principal selection criterion to improve seed yield. Whereas selection for 1000 seed weight and increased seed yield serve as major selection criteria to achieve increased oil content in V. galemanesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号