首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work was to study the specific effects of low temperature and 1-MCP treatment on ethylene metabolism and oxidative behaviour in plums (Prunus × salicina cv. Larry Ann). Control fruit were stored at 20 °C or 0 °C and the 1-MCP (625 nL L?1) treated fruit at 0 °C. Changes in the kinetics of ethylene production upon removal were related to changes in ACC metabolism (ACC and MACC levels), oxidative behaviour (H2O2 content) and enzymatic antioxidant potential (SOD, CAT and POX enzymes) during cold storage. Low temperature stress inhibited the synthesis of MACC, which appeared to be the basic process that regulated ACC and ethylene production at ambient temperature. Although 1-MCP treatment inhibited ethylene production and ACC accumulation in the cold, it did not inhibit the accumulation of MACC. Neither cold nor 1-MCP treatment induced oxidative stress. Nevertheless, the 1-MCP treatment significantly impaired the increase in POX activity observed during cold storage. Collectively these results showed the underlying role that ACC metabolism plays in the ripening behaviour of cold-stored plums, confirming previous results. The results also indicate that MACC and malonyl transferase activity are the key regulatory factors that control ripening and possibly some ethylene-related disorders such as chilling injury in cold-stored plums.  相似文献   

2.
3.
To investigate the effects of postharvest application of 1-MCP on ethylene production and fruit softening, activities of ethylene biosynthesis and fruit softening enzymes were measured during postharvest ripening of plum (Prunus salicina Lindl. cv. Tegan Blue) fruit after being exposed to 1-MCP (0, 0.5, 1.0 or 2.0 μL L−1) at 20 ± 1 °C for 24 h. Following the treatments, fruit were allowed to ripen at ambient temperature (20 ± 1 °C), and ethylene production in fruit, activities of ACS and ACO, ACC content and fruit softening enzymes (PE, EGase, exo-PG and endo-PG) in fruit skin and pulp were recorded at different intervals. Postharvest application of 1-MCP significantly delayed and suppressed the climacteric ethylene production with reduction in the activities of ethylene biosynthesis enzymes (ACS, ACO) and ACC content, and fruit softening enzymes (PE, EGase, exo-PG and endo-PG) in the skin as well as in pulp tissues. The reduction was more pronounced with increased concentrations of 1-MCP. 1-MCP treated fruit showed different rates of fruit softening and activities of ethylene biosynthesis enzymes in the skin and pulp tissues which warrant further investigation on regulation of gene expression related to these enzymes with the inhibitory effect of 1-MCP.  相似文献   

4.
The mode of action of nitric oxide (NO) in inhibiting ethylene biosynthesis and fruit softening during ripening and cool storage of mango fruit was investigated. Hard mature green mango (Mangifera indica L. cv. ‘Kensington Pride’) fruit were fumigated with 20 μL L−1 NO for 2 h at 21 °C and allowed to ripen at 21 ± 1 °C for 10 d, or stored at 13 ± 1 °C for 21 d. During ripening and cool storage, ethylene production and respiration rate from whole fruit were determined daily. The 1-aminocyclopropane-1-carboxylic acid (ACC) content, activities of ACC synthase (ACS), ACC oxidase (ACO), and fruit softening enzymes such as pectin esterase (PE), endo-1,4-β-d-glucanase (EGase), exo- and endo-polygalacturonase (exo-PG, endo-PG) as well as firmness and rheological properties of pulp were determined at two- and seven-day intervals during ripening and cool storage, respectively. NO fumigation inhibited ethylene biosynthesis and respiration rate, and maintained higher pulp firmness, springiness, cohesiveness, chewiness, adhesiveness, and stiffness. NO-fumigated fruit during cool storage and ripening had lower ACC contents through inhibiting the activities of both ACS and ACO in the fruit pulp. NO-fumigated fruit showed decreased activities of exo-PG, endo-PG, EGase, but maintained higher PE activity in pulp tissues during ripening and cool storage. In conclusion, NO fumigation inhibited ethylene biosynthesis through inhibition of ACS and ACO activities leading to reduced ACC content in the fruit pulp which consequently, reduced the activities of fruit softening enzymes during ripening and cool storage.  相似文献   

5.
Mangosteen (Garcinia mangostana L.) fruit were harvested when the peel (pericarp) was light greenish yellow with scattered pinkish spots. Fruit were exposed to 1 μL L−1 1-methylcyclopropene (1-MCP) for 6 h at 25 °C and were then stored at 25 °C (control) or 15 °C. The 1-MCP treatment only temporarily delayed softening of the fruit flesh, during storage. Storage life, defined as the time until the pericarp was dark purple, was much longer in fruit stored at 15 °C than in fruit stored at 25 °C. It was also longer in 1-MCP treated fruit (storage life at 15 °C: control 18 d, 1-MCP-treated fruit 27 d). The 1-MCP treatment also increased the length of shelf life, defined as the time until the pericarp turned blackish purple or showed calyx wilting, at 25 °C. 1-MCP treatment reduced ethylene production. It also reduced pericarp levels of 1-aminocyclopropane-1-carboxylic acid (ACC), and the pericarp activities of ACC synthase (ACS) and ACC oxidase (ACO). In the fruit flesh, in contrast, 1-MCP did not affect ACC levels and ACS activity, but the treatment reduced ACO activity. Taken together, both the storage life and the shelf life of the fruit were extended by the 1-MCP treatment. A decrease in ACO activity largely accounted for the effects of the 1-MCP on ethylene production in the pericarp.  相似文献   

6.
采后嘎拉苹果果实细胞壁代谢及关键酶基因表达特性研究   总被引:2,自引:0,他引:2  
以嘎拉苹果为试材,研究其果实细胞壁代谢及关键酶基因表达特性及受1-MCP、乙烯利和低温的影响效应。结果表明,常温下,嘎拉果实硬度变化与WSP显著正相关,与CSP和半纤维素显著负相关,与ISP的关系不大;1-MCP和低温处理显著抑制了WSP含量上升,减缓了CSP和半纤维素降解。嘎拉果实细胞壁酶中,β-Gal活性最高、增加最快,其基因表达亦迅速增加,α-L-Af活性和基因表达虽增加速率低于β-Gal,但二者变化规律相似,均显著受到1-MCP和0℃低温的抑制;PG和PME活性和基因表达量亦呈增加趋势,但未能完全被1-MCP处理和0℃低温所抑制;相关性分析表明,其细胞壁酶活性变化均与硬度呈显著负相关性,并显著受到1-MCP和低温的影响。但是,乙烯利处理虽对嘎拉果实软化有一定的促进作用,但效果不显著。  相似文献   

7.
Fruit of cv. Gros Michel banana were treated with 1-MCP (1000 nL L−1 for 4 h at 25 °C) and then packed in non-perforated polyethylene (PE) bags for modified atmosphere storage (MAP). The bags were placed in corrugated cardboard boxes and stored at 14 °C. Fruit were removed from cool storage and ripened at room temperature using ethephon. The length of storage life was determined by the change in peel color to yellow, after this ethephon treatment. Fruit treated with 1-MCP + MAP had a storage life of 100 days. The storage life of control fruit (no 1-MCP and no MAP) was 20 days. Fruit held in PE bags without 1-MCP treatment had a 40 day storage life, and the same was found in fruit treated with 1-MCP but without PE bags. 1-MCP is an inhibitor of ethylene action, but also inhibited ethylene production, mainly through inhibition of ACC oxidase activity in the peel. MAP inhibited ethylene production mainly through inhibition of ACC oxidase, both in the peel and pulp. The combination of 1-MCP treatment and MAP storage resulted in much lower ethylene production due to inhibition of both ACC synthase and ACC oxidase activity.  相似文献   

8.
9.
1-Methylcyclopropene (1-MCP) treatment maintains apple fruit quality during storage, but its efficacy is dependent on a number of conditions. ‘Tsugaru’ apples are a major early season cultivar in Japan, but because ‘Tsugaru’ fruit produce abundant ethylene, they have a short shelf-life, and efficacy of 1-MCP is not as high with ‘Tsugaru’ as with other cultivars. To improve 1-MCP efficacy, ‘Tsugaru’ fruit were pre-cooled at −1 °C or −3 °C for 24 h before 1-MCP treatment. Ethylene production decreased with the cold treatment, resulting in better storage after 1-MCP treatment. Although ethylene production was low at the end of 24 h of the cold pre-treatment, expression of ACS1, the ethylene receptor genes ERS1, ETR1(a), ETR1b, ETR2 and ETR5, and the cell wall degradation-related gene PG1 all increased with a 24 h cold treatment. It is assumed that these elevated gene expression levels were not caused by ethylene, but more directly by cold stimulus. Thus, a short period of cold stimulus suppresses ethylene production, but induces expression of some genes. 1-MCP treatment was more effective with some initial fruit chilling.  相似文献   

10.
以红星苹果果实为试材,设机械损伤、机械损伤+1-MCP、对照3种处理,进行贮藏期间伤诱导乙烯的生物合成过程中ACC合成酶(ACS)活性、ACC积累水平、ACC氧化酶(ACO)活性和乙烯释放速率变化的试验研究。试验结果表明,机械伤刺激了果实ACS和ACO活性,促进了果实乙烯释放,加速了果实衰老;而1-MCP则抑制了受伤果实中ACS和ACO活性,提高了受伤果实贮藏后期ACC积累水平,显著地减少了受伤果实乙烯的释放,改善了受伤果实的贮藏品质。  相似文献   

11.
1-MCP处理对不同贮藏设施条件下富士苹果保鲜效果的影响   总被引:1,自引:0,他引:1  
以富士苹果为试材,研究了不同贮藏设施(大型恒温冷库、小型组装式恒温贮藏库、改造土窑洞、传统土窑洞)条件下1-MCP处理对富士苹果采后生理特性和贮藏品质的影响。结果表明,富士苹果属呼吸跃变型果实,在四种不同贮藏设施条件下,1-MCP处理均可明显降低贮藏期间果实的呼吸速率和乙烯释放速率,较好地保持果实硬度和可滴定酸含量,且贮藏设施条件越好,1-MCP的处理效果越明显。但果实的可溶性固形物含量有所降低,可能是1-MCP处理延缓了果实的后熟、成熟度较低的缘故。  相似文献   

12.
In order to examine the influence of preharvest nitric oxide (NO) treatment on ethylene biosynthesis and soluble sugar metabolism in ‘Golden Delicious’ apples, apple trees were sprayed with 50 μM sodium nitroprusside (SNP) (a donor of NO) 14 days before harvest. The results indicated that preharvest SNP treatment can increase the NO content and the NOS activity in apple fruit, therefore, delay the accumulation of ethylene due to its inhibition on the activities of 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxydase (ACO). Fructose is the main sugar in ‘Golden Delicious’ apple. The synthesis of sucrose was stimulated and the decomposition of sucrose was inhibited by this treatment, thus causing the accumulation of sucrose. We can draw a conclusion that pre-harvest SNP (50 μM) treatment can increase the NO content of fruit during storage, while higher NO content can further regulate fruit ripening through its effect on ethylene and sugar metabolism in ‘Golden Delicious’ apple fruit during storage at 18 °C.  相似文献   

13.
14.
以珊夏苹果果实为试材,研究了500nL·L^-1、1000nL·L^-1和1500nL·L^-1浓度的1-MCP处理对果实冷藏期间硬度等贮藏品质的影响,并对果实冷藏100天后货架期期间的硬度、可溶性固形物含量、可滴定酸含量和果肉白度进行了分析。试验结果表明,3个浓度的1-MCP处理均可明显地降低果实在冷藏期间呼吸强度与乙烯释放速率,对于延缓珊夏果实冷藏期间和冷藏100天后货架期间的果肉硬度、可滴定酸含量和果肉白度的下降有明显的效果;在3个处理浓度中,500nL·L^-1与1500nL·L^-1浓度处理效果优于1000nL·L^-1的1-MCP处理效果。  相似文献   

15.
Ethylene biosynthesis in kiwifruit, Actinidia chinensis ‘Sanuki Gold’ was characterized using propylene, an ethylene analog, and 1-methylcyclopropene (1-MCP), an inhibitor of ethylene perception. In fruit harvested between a young stage (66 days after pollination) (DAP) and an early commercial harvesting stage (143 DAP), 2 days of exposure to propylene were sufficient to initiate ethylene biosynthesis while in fruit harvested at commercial harvesting stage (154 DAP), 4 days of propylene treatment were required. This observation suggests that response of ethylene biosynthesis to propylene treatment in kiwifruit declined with fruit maturity. Propylene treatment resulted in up-regulated expression of AC-ACO1, AC-ACO2, AC-SAM1 and AC-SAM2, prior to the induction of AC-ACS1 and ethylene production, confirming that AC-ACS1 is the rate limiting step in ethylene biosynthesis in kiwifruit. Treatment of fruit with more than 5 μL L?1 of 1-MCP after the induction of ethylene production subsequently suppressed ethylene production and expression of ethylene biosynthesis genes. Treatment of fruit with 1-MCP at harvest followed with propylene treatment delayed the induction of ethylene production and AC-ACS1 expression for 5 days. These observations suggest that in ripening kiwifruit, ethylene biosynthesis is regulated by positive feedback mechanism and that 1-MCP treatment at harvest effectively delays ethylene production by 5 days.  相似文献   

16.
以嘎啦苹果为试材,研究1-MCP与乙烯脱除剂不同处理对0℃贮藏180d的果实生理与品质变化的影响。结果表明,1-MCP处理可较持久地抑制果实的乙烯合成,进而抑制果实的呼吸作用,延缓衰老,保持果实品质,其中,1.0μL.L^-1浓度1-MCP处理的嘎啦苹果可贮藏180d,0.5μL·L^-1浓度的1-MCP处理可贮藏150d:乙烯脱除剂处理在贮藏前期对抑制果实乙烯合成、延缓衰老也有较好的作用.其中MA+2袋乙烯脱除剂处理可贮藏150d,MA+1袋乙烯脱除剂处理可贮藏120d;对照果实(MA贮藏)衰老较快.0℃条件下仅能贮藏90d。  相似文献   

17.
18.
A strong potent inhibitor of ethylene action, 1-methylcyclopropene (1-MCP) maintains apple fruit quality during storage. To understand the influence of time after harvest until 1-MCP treatment, we studied expression patterns of genes for ethylene biosynthesis enzymes and ethylene receptors in two apple cultivars, ‘Orin’ and ‘Fuji’, which differ in ethylene production. Ethylene production and expression of MdACS1, MdERS1, and MdERS2 were suppressed in all 1-MCP-treated ‘Fuji’ fruit, but in ‘Orin’, the later 1-MCP was applied after harvest, the less was the suppression of ethylene production and expression of these genes. In fruit in which 1-MCP had low efficacy (e.g., ‘Orin’ treated at 7 DAH), ethylene production and the level of MdERS1 were briefly reduced by 1-MCP treatment at 2 days after treatment, then began to increase. Since ethylene receptors negatively regulate the ethylene signalling pathway, the increased levels of ethylene production and ethylene receptors after 1-MCP treatment might reduce 1-MCP efficacy.  相似文献   

19.
The role of abscisic acid (ABA) in triggering ethylene biosynthesis and ripening of mango fruit was investigated by applying ABA [S-(+)-cis,trans-abscisic acid] and an inhibitor of its biosynthesis [nordihydroguaiaretic acid (NDGA)]. Application of 1 mM ABA accelerated ethylene biosynthesis through promoting the activities of ethylene biosynthesis enzymes (1-aminocyclopropane-1-carboxylic acid synthase, ACS; 1-aminocyclopropane-1-carboxylic acid oxidase, ACO) and accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC), enhanced fruit softening and activity of endo-polygalacturonase and reduced pectin esterase activity in the pulp. The activities of ethylene biosynthesis and softening enzymes were significantly delayed and/or suppressed in the pulp of NDGA-treated fruit. The ABA-treated fruit had higher total sugars and sucrose as well as degradation of total organic acids, and citric and fumaric acids compared with NDGA treatment. These results suggest that ABA is involved in regulating mango fruit ripening and its effects are, at least in part, mediated by changes in ethylene production.  相似文献   

20.
Lipoxygenase activity (LOX), levels of 1-aminocyclopropane-1-carboxylic acid (ACC) and of 1-malonyl-aminocyclopropane-1-carboxylic acid (MACC) and the capacity of isolated fruit disks to evolve ethylene were examined during storage of apples having different fruit mineral content. The internal ethylene concentration (IEC) of the whole fruit was also measured before removing discs of tissue. The results show that all these activities depend on the fruit mineral content and confirm general knowledge on the relations between minerals and fruit storage. For instance, fruits rich in calcium and/or phosphorus presented a lower LOX activity, a lower ACC content and a lower ethylene emission while fruits rich in potassium and/or with a relatively high K/Ca presented a higher LOX activity, a higher ACC level and a higher ethylene emission. Results are discussed in an attempt to explain the effects of minerals on storage quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号