首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In this study, the susceptibility of turbot juveniles to two betanodavirus strains was assessed, a RGNNV/SJNNV reassortant (Ss160.03) and a SJNNV strain. The reassortant isolate exhibits a slightly modified SJNNV CP, with two amino acid substitutions in the C‐terminal domain (positions 247 and 270). To analyse the role of these residues as virulence and host determinants in turbot, three recombinant strains (rSs160.03247, rSs160.03270, rSs160.03247+270) harbouring site‐specific mutations in the CP sequence were also tested in experimental trials. Moderate mortalities (up to 50%) were recorded at 18 °C in the fish challenged with the Ss160.03 strain, whereas low mortalities (17%) were observed in the group challenged with the SJNNV strain. A slight decrease (around 10%) was observed in the mortalities caused by the mutants rSs160.03247 and rSs160.03270, whilst the mutation of both positions reduced mortality by more than half of that observed in fish challenged with the wild strain. These results are confirmed by the replication in brain tissues, because whereas the wild strain was detected from 5 to 30 dpi and reached the highest viral load, the recombinant virus harbouring both mutations was not detected in the brain until 20 dpi and with a moderate viral load.  相似文献   

2.
Betanodavirus reassortant strains (RGNNV/SJNNV) isolated from Senegalese sole harbour an SJNNV capsid featuring several changes with respect to the SJNNV‐type strain, sharing three hallmark substitutions. Here, we have employed recombinant strains harbouring mutations in these positions (r20 and r20 + 247 + 270) and have demonstrated that the three substitutions affect different steps of the viral replication process. Adsorption ability and efficiency of viral attachment were only affected by substitutions in the C‐terminal side of the capsid. However, the concurrent mutation in the N‐terminal side seems to slightly decrease these properties, suggesting that this region could also be involved in viral binding. Differences in the intracellular and extracellular production of the mutant strains suggest that both the C‐terminal and N‐terminal regions of the capsid protein may be involved in the particle budding. Furthermore, viral replication in sole brain tissue of the mutant strains, and especially double‐ and triple‐mutant strains, is clearly delayed with respect to the wt strain. These data support previous findings indicating that the C‐terminal side plays a role in virulence because of a slower spread in the fish host brain and suggest that the concurrent participation of the N‐terminal side is also important for viral replication in vivo.  相似文献   

3.
2012和2013年,山东某育苗场15–20日龄的半滑舌鳎(Cynoglossus semilaevis Günther)鱼苗出现暴发性大规模死亡,7 d内死亡率高达90%–100%。本研究调查了疾病的发生情况和临床特征,采集病鱼样品进行了组织病理学检查,并运用RT-PCR方法进行了病原的检测和基因序列分析。结果发现,半滑舌鳎鱼苗一般在7月和8月发病,发病时养殖水温为22–24℃。病鱼游泳行为异常,表现为上下翻游、螺旋性游动、全身大幅度波浪状浮动症状,但病鱼体表无出血和溃疡症状。组织病理检查发现,病鱼脑和视网膜组织出现严重的空泡化及坏死。病鱼样品的RT-PCR检测结果全部呈鱼类神经坏死病毒阳性。对得到的RT-PCR产物测序,进行BLAST比对,发现该病毒与鱼类神经坏死病毒的赤点石斑鱼神经坏死病毒(Red-spotted grouper nervous necrosis virus, RGNNV)基因型的相似性达98%以上,而与鱼类神经坏死病毒的其他3个基因型:黄带拟鲹神经坏死病毒(Striped jack nervous necrosis virus,SJNNV)、红鳍东方鲀神经坏死病毒(Tiger puffer nervous necrosis virus, TPNNV)和条斑星鲽神经坏死病毒(Barfin flounder nervous necrosis virus,BFNNV)的相似性仅为71%–78%。由此可以判定,本研究发现的引起半滑舌鳎鱼苗大规模死亡的神经坏死病毒为RGNNV基因型,半滑舌鳎也是鱼类神经坏死病毒的天然宿主。该发现在半滑舌鳎疾病防治和鱼类神经坏死病毒的流行机制研究方面都具有重要意义。  相似文献   

4.
Viral encephalopathy and retinopathy (VER) is a serious neuropathological fish disease affecting in the Mediterranean aquaculture mainly European sea bass, Dicentrarchus labrax. It is well known that betanodaviruses are neurotropic viruses that replicate in nerve tissues, preferentially brain and retina. However, routes of entry and progression of the virus in the central nervous system (CNS) remain unclear. The role of four tissues—eye, oesophagus, gills and skin—as possible gateways of a betanodavirus, the redspotted grouper nervous necrosis virus (RGNNV), was investigated after experimental challenges performed on European seabass juveniles. The dispersal pattern of Betanodavirus at primarily stages of the disease was also assessed, using a real-time qPCR assay. The development of typical clinical signs of VER, the presence of characteristic histopathological lesions in the brain and retina and the detection of viral RNA in the tissues of all experimental groups ascertained that successful invasion of RGNNV under all experimental routes was achieved. Transneuronal spread along pathways known to be connected to the initial site of entry seems to be the predominant scenario of viral progression in the CNS. Furthermore, viraemia appeared only after the installation of the infection in the brain.  相似文献   

5.
Viral encephalopathy and retinopathy (VER), otherwise known as viral nervous necrosis (VNN), is a severe pathological condition caused by RNA viruses belonging to the Nodaviridae family, genus Betanodavirus. The disease, described in more than 50 fish species worldwide, is considered as the most serious viral threat affecting marine farmed species in the Mediterranean region, thus representing one of the bottlenecks for further development of the aquaculture industry. To date, four different genotypes have been identified, namely red‐spotted grouper nervous necrosis virus (RGNNV), striped jack nervous necrosis virus (SJNNV), tiger puffer nervous necrosis virus and barfin flounder nervous necrosis virus, with the RGNNV genotype appearing as the most widespread in the Mediterranean region, although SJNNV‐type strains and reassortant viruses have also been reported. The existence of these genetically different strains could be the reason for the differences in mortality observed in the field. However, very little experimental data are available on the pathogenicity of these viruses in farmed fish. Therefore, in this study, the pathogenicity of 10 isolates has been assessed with an in vivo trial. The investigation was conducted using the European sea bass, the first target fish species for the disease in the Mediterranean basin. Naive fish were challenged by immersion and clinical signs and mortality were recorded for 68 days; furthermore, samples collected at selected time points were analysed to evaluate the development of the infection. Finally, survivors were weighed to estimate the growth reduction. The statistically supported results obtained in this study demonstrated different pathogenicity patterns, underlined the potential risk represented by different strains in the transmission of the infection to highly susceptible species and highlighted the indirect damage caused by a clinical outbreak of VER/VNN.  相似文献   

6.
7.
Betanodavirus infection was diagnosed in larvae of farm‐raised tilapia Oreochromis niloticus (L.), in central Thailand. Extensive vacuolar degeneration and neuronal necrosis were observed in histological sections with positive immunohistochemical staining for betanodavirus. Molecular phylogenetic analysis was performed based on the nucleotide sequences (1333 bases) of the capsid protein gene. The virus strain was highly homologous (93.07–93.88%) and closely related to red‐spotted grouper nervous necrosis virus (RGNNV).  相似文献   

8.
In the present study, a new cell line from the vertebra of mosquitofish Gambusia affinis was successfully established and characterized. The cell line is named as bone Gambusia affinis (BGA) and subcultured for more than 55 passages in Leibovitz's/L15 medium supplemented with 15% FBS at 28°C. The cell line has a modal chromosome number of 48. Molecular characterization of the partial sequence of the coi gene confirmed the origin of the BGA cell line from mosquitofish. These cells exhibited epithelial morphology confirmed by the cytokeratin marker. The BGA cells showed mineralization of their extracellular matrix when stained with alizarin red and von Kossa stain. BGA cells were found to be susceptible to RGNNV and SJNNV strains of betanodavirus (NNV) showing cytopathic effect with multiple vacuolations in the cells. The RT-PCR confirmed the betanodavirus infections in BGA cells. The SEM micrograph showed the morphological changes observed in the cell during virus infection. The in vivo challenge experiment also showed the viral replicating efficiency in the Gambusia affinis with increasing viral titre. Thus, our present results show that the BGA cell line is a useful tool for isolating betanodavirus and could be used to investigate bone cell differentiation and extracellular matrix mineralization.  相似文献   

9.
10.
Betanodaviruses are the causative agents of the disease known as viral nervous necrosis (VNN) or viral encephalopathy and retinopathy (VER) in a variety of marine and freshwater fish species. The aim of this study was to demonstrate experimental infection of an isolate of betanodavirus (RGNNV genotype) in freshwater fish, Gambusia affinis, for elucidation of transmission mechanism and potential use as a laboratory model. Morbidity and mortality rate was significantly higher by injection route of infection as compared to immersion by bath and resembled the natural infection of juvenile marine fish. The fish in disease affected group showed severe neurological disorders accompanied by extensive vacuolar degeneration and mild to moderate neuronal necrosis of the brain in comparison to control. Amplification of ~?427 bp product in the variable region of the coat protein gene of betanodavirus was achieved by RT-PCR with 100% sequence homology to RGNNV genotype.  相似文献   

11.
This work describes betanodavirus infection in two species of groupers (family Serranidae) from the Algerian coast: the dusky grouper Epinephelus marginatus and the golden grouper Epinephelus costae. At necropsy, characteristic clinical signs, external injuries, clouded eyes and brain congestion, generally associated with viral encephalopathy and retinopathy (VER) infection were observed. The partial sequences of RNA1 and RNA2 from two viral strains were obtained, and the phylogenetic analysis revealed the presence of the red-spotted grouper nervous necrosis virus (RGNNV) genotype closely related to strains previously detected in groupers in the same geographic area. Results obtained in this study support the hypothesis that VER disease is endemic in the Algerian grouper population.  相似文献   

12.
Piscine nodaviruses (betanodaviruses) have been tentatively divided into four genotypes (SJNNV, RGNNV, TPNNV and BFNNV) and it is suggested that host specificity is different among these genotypes. In the present study, a betanodavirus [sevenband grouper nervous necrosis virus (SGNNV)] belonging to the redspotted grouper nervous necrosis virus (RGNNV) genotype, to which most betanodaviruses from warm water fish are identified, was evaluated for its pathogenicity to hatchery-reared juveniles of several marine fish species. When challenged with the virus by a bath method (10(5.1) TCID50 mL(-1)), sevenband grouper, Epinephelus septemfasciatus, Japanese flounder, Paralichthys olivaceus, and tiger puffer, Takifugu rubripes, displayed behavioural abnormalities and mortalities with distinct histopathological signs of viral nervous necrosis and heavily immunostained cells were observed in the central nervous tissues and retina. Bath-challenged rock fish, Sebastiscus marmoratus, and a hybrid of sevenband grouper and kelp grouper, E. moara, did not display any behavioural abnormality or mortality during the experimental period, although many fish showed slight signs of viral infection in nerve cells. Kelp grouper and red sea bream, Pagrus major, showed no behavioural abnormality, mortality or immunohistopathological changes after the virus challenge. These results are, in part, consistent with the natural host range of RGNNV, indicating the complexity in the host specificity of betanodaviruses.  相似文献   

13.
14.
Asian sea bass, Lates calcarifer (Bloch), exhibited strong immune responses against a single injection of the formalin-inactivated red-spotted grouper nervous necrosis virus (RGNNV), a betanodavirus originally isolated in Japan. Fish produced neutralizing antibodies at high titre levels from days 10 (mean titre 1:480) to 116 (1:1280), with the highest titre at day 60 post-vaccination (1:4480). When fish were challenged with the homologous RGNNV at day 54 post-vaccination, there were no mortalities in both the vaccinated and unvaccinated control fish. However, a rapid clearance of the virus was observed in the brains and kidneys of vaccinated fish, followed by a significant increase in neutralizing-antibody titres. Furthermore, the vaccine-induced antibodies potently neutralized Philippine betanodavirus isolates (RGNNV) in a cross-neutralization assay. The present results indicate the potential of the formalin-inactivated RGNNV vaccine against viral nervous necrosis (VNN) of Asian seabass.  相似文献   

15.
Using two serially executed PCRs, the discriminative multiplex two‐step RT‐PCR (DMT‐2 RT‐PCR) following the detection seminested two‐step RT‐PCR (DSN‐2 RT‐PCR), we found a high frequency presence of BFNNV genotype as well as RGNNV in various domestic and imported shellfish. This was definitely different from the previous reports of outbreaks and asymptomatic infection only by the RGNNV genotype in cultured finfish in Korea. Cultivation of NNV entrapped in shellfish was performed successfully by a blind passage. Thus, in an attempt to elucidate the epidemiology of betanodavirus, experiments conducted on 969 shellfish samples concluded that (i) distribution of NNV genotype, especially BFNNV, in shellfish is clearly different from that found in finfish of the world; (ii) unlike RGNNV, which showed a high rate in summer, BFNNV showed no seasonal variation and this result suggests BFNNVs in the marine environment remain fairly constant throughout the year; and (iii) the entrapped virus in shellfish was alive and culturable in vitro. These results are the first report of high level prevalence of in vitro culturable NNV in shellfish, for both BFNNV and RGNNV, which may present a potential risk in transmitting nodaviruses to host species in a marine environment.  相似文献   

16.
Betanodaviruses are small ssRNA viruses responsible for viral encephalopathy and retinopathy, otherwise known as viral nervous necrosis, in marine fish worldwide. These viruses can be either horizontally or vertically transmitted and have been sporadically detected in invertebrates, which seem to be one of the possible viral sources. Twenty‐eight new betanodavirus strains were retrieved in three molluscs species collected from different European countries between 2008 and 2015. The phylogenetic analyses revealed that strains retrieved from bivalve molluscs are closely related to viruses detected in finfish in Southern Europe in the period 2000–2009. Nevertheless, a new betanodavirus strain, markedly different from the other members of the RGNNV genotype, was detected. Such a massive and varied presence of betanodaviruses in bivalve molluscs greatly stresses the risks of transmission previously feared for other invertebrates. Bivalve molluscs reared in the same area as farmed and wild finfish could act as a reservoir of the virus. Furthermore, current European regulations allow relaying activities and the sale of live bivalve molluscs, which could pose a real risk of spreading betanodaviruses across different geographic regions. To our knowledge, this is the first study, which focuses on the detection and genetic characterization of betanodaviruses in bivalve molluscs.  相似文献   

17.
An aquabirnavirus (ABV) and a formalin-inactivated betanodavirus [redspotted grouper nervous necrosis virus (RGNNV)] were investigated for their potential to prevent RGNNV-induced viral nervous necrosis (VNN) in the sevenband grouper, Epinephelus septemfasciatus (Thunberg). Three groups of fish were injected intramuscularly with ABV, intraperitoneally with inactivated RGNNV (iRGNNV) or with both ABV and iRGNNV. At 3, 7, 14, 21 and 28 days post-injection (p.i.), fish were challenged by intramuscular injection of RGNNV. Control fish, which received neither ABV nor iRGNNV, showed high mortalities in all RGNNV challenges. Fish that received only ABV exhibited relative percent survival (RPS) of >60 against RGNNV challenges at 3, 7, 14 and 21 days p.i., but not at 28 days p.i., while fish that received only iRGNNV showed significantly higher protection against RGNNV challenges only at 21 and 28 days p.i. In contrast, fish that received both ABV and iRGNNV showed 60 or higher RPS against all RGNNV challenges. Fish inoculated with iRGNNV with or without ABV exhibited similar high titres of neutralizing antibodies to RGNNV at 14, 21 and 28 days p.i. These results indicate that combined inoculation with iRGNNV and ABV conferred both rapid non-specific and delayed specific protection against VNN.  相似文献   

18.
神经坏死病毒(nervous necrosis virus,NNV)是一种世界范围内流行、严重危害多种海水和淡水鱼类的传染性病原。NNV为单一正链、2节段RNA病毒,基因组由RNA1(3.1 kb)和RNA2(1.4 kb)组成。在病毒复制过程中,会合成亚基因组RNA3。RNA1编码RNA聚合酶。RNA2编码衣壳蛋白,为病毒的唯一结构蛋白。RNA3编码B1和B2两种非结构蛋白。根据病毒衣壳蛋白的基因序列,神经坏死病毒可以分成4种基因型,分别为拟鲹、红鳍东方鲀、条斑星鲽和赤点石斑神经坏死病毒基因型。但是,目前只发现A、B、C三种病毒血清型,A对应拟鲹神经坏死病毒基因型,B对应红鳍东方鲀神经坏死病毒基因型、C对应条斑星鲽神经坏死病毒和赤点石斑神经坏死病毒基因型。病毒存在垂直和水平两种传播途径,而且广泛分布于养殖和野生鱼类中。阻断病毒在野生与养殖鱼类之间的传播和开展新型鱼类疫苗研发是将来研究趋势。  相似文献   

19.
We determined the complete genomic RNA sequence of a new type of betanodavirus Korea shellfish nervous necrosis virus (KSNNV) isolated from shellfish. Compared with other isolates representing four genotypes of betanodaviruses, the identity of the whole nucleotide sequence of the virus was in the range of 76%–83% with the presence of specific genetic motifs and formed a separate new branch in the phylogenetic analysis. In pathogenic analysis by immersion method, KSNNV‐KOR1 shows 100% cumulative mortality like SFRG10/2012BGGa1 (RGNNV) in newly hatched sevenband grouper and mandarin fish, which is clearly different from those found in negative control groups. There were no significant differences in increasing rates of mortality and viral intra‐tissue concentration of larval fishes infected with KSNNV‐KOR1 at both 20 and 25°C water temperature. Histopathological examination of each fish species in the moribund stage revealed the presence of clear vacuoles in both brain and retinal tissues similar to typical histopathology features of RGNNV. In the present study, we first report a new betanodavirus from shellfish as the aetiological agent of viral nervous necrosis disease in fish with complete genomic nucleotide sequence and pathogenic analysis.  相似文献   

20.
Viral encephalopathy and retinopathy disease caused by betanodavirus, genus of the family Nodaviridae, affects marine, wild and farmed species including sea bass, one of the most important farmed species in Europe. This work describes a reliable and sensitive indirect ELISA assay to detect betanodavirus in biological samples using a polyclonal antiserum (pAb 283) against the 283/I09 virus strain, the most common red‐spotted grouper nervous necrosis virus (RGNNV) genotype in the Mediterranean area, and a capture‐based ELISA using a monoclonal antibody (mAb 4C3) specific to a common epitope present on the capsid protein. Using adsorbed, purified VERv preparation, the detection limit of indirect ELISA was 2 μg mL?1 (3 × 105 TCID50 per mL), whereas for capture‐based ELISA, the sensitivity for the antigen in solution was 17 μg mL?1 (35 × 105 TCID50 per mL). The capture‐based ELISA was employed to detect VERv in brain homogenates of in vivo infected sea bass and resulted positive in 22 of 32 samples, some of these with a high viral load estimates (about 1.1 × 108 TCID50 per mL). The ELISA system we propose may be helpful in investigations where coupling of viral content in fish tissues with the presence of circulating VERv‐specific IgM is required, or for use in samples where PCR is difficult to perform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号