首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Heart and skeletal muscle inflammation (HSMI) caused by piscine orthoreovirus (PRV) and pancreas disease (PD) caused by salmonid alphavirus (SAV) are among the most prevalent viral diseases of Atlantic salmon farmed in Norway. There are limited data about the impact of disease in farmed salmon on wild salmon populations. Therefore, the prevalence of PRV and SAV in returning salmon caught in six sea sites was determined using real‐time RT‐PCR analyses. Of 419 salmon tested, 15.8% tested positive for PRV, while none were positive for SAV. However, scale reading revealed that 10% of the salmon had escaped from farms. The prevalence of PRV in wild salmon (8%) was significantly lower than in farm escapees (86%), and increased with fish length (proxy for age). Sequencing of the S1 gene of PRV from 39 infected fish revealed a mix of genotypes. The observed increase in PRV prevalence with fish age and the lack of phylogeographic structure of the virus could be explained by virus transmission in the feeding areas. Our results highlight the need for studies about the prevalence of PRV and other pathogens in Atlantic salmon in its oceanic phase.  相似文献   

2.
Several different viruses have been associated with myocarditis‐related diseases in the Atlantic salmon aquaculture industry. In this study, we investigated the presence of PMCV, SAV, PRV and the recently identified Atlantic salmon calicivirus (ASCV), alone and as co‐infections in farmed Atlantic salmon displaying myocarditis. The analyses were performed at the individual level and comprised qPCR and histopathological examination of 397 salmon from 25 farms along the Norwegian coast. The samples were collected in 2009 and 2010, 5–22 months post‐sea transfer. The study documented multiple causes of myocarditis and revealed co‐infections including individual fish infected with all four viruses. There was an overall correlation between lesions characteristic of CMS and PD and the presence of PMCV and SAV, respectively. Although PRV was ubiquitously present, high viral loads were with a few exceptions, correlated with lesions characteristic of HSMI. ASCV did not seem to have any impact on myocardial infection by PMCV, SAV or PRV. qPCR indicated a negative correlation between PMCV and SAV viral loads. Co‐infections result in mixed and atypical pathological changes which pose a challenge for disease diagnostic work.  相似文献   

3.
Piscine reovirus (PRV) was common among wild and farmed salmonids in British Columbia, western Canada, from 1987 to 2013. Salmonid tissues tested for PRV by real‐time rRT‐PCR included sections from archived paraffin blocks from 1974 to 2008 (n = 363) and fresh‐frozen hearts from 2013 (n = 916). The earliest PRV‐positive sample was from a wild‐source steelhead trout, Oncorhynchus mykiss (Walbaum), from 1977. By histopathology (n = 404), no fish had lesions diagnostic for heart and skeletal muscle inflammation (HSMI). In some groups, lymphohistiocytic endocarditis affected a greater proportion of fish with PRV than fish without PRV, but the range of Ct values among affected fish was within the range of Ct values among unaffected fish. Also, fish with the lowest PRV Ct values (18.4–21.7) lacked endocarditis or any other consistent lesion. From 1987 to 1994, the proportion of PRV positives was not significantly different between farmed Atlantic salmon, Salmo salar L. (44% of 48), and wild‐source salmonids (31% of 45). In 2013, the proportion of PRV positives was not significantly different between wild coho salmon, Oncorhynchus kisutch (Walbaum), sampled from British Columbia (5.0% of 60) or the reference region, Alaska, USA (10% of 58).  相似文献   

4.
Two cohorts of farmed Atlantic salmon, Salmo salar L., in British Columbia, Canada, were sampled for histopathology (nine organs) and piscine orthoreovirus (PRV-1) PCR after seawater entry at 2, 4, 6, 8, 10, 13, 16 and 19 months (20 fish per cohort per date). One cohort—from a PRV+ hatchery—remained PRV+ throughout the study (sample prevalence 80%–100%). In an adjacent pen, the other cohort—from a PRV− hatchery—was 0% PRV+ at 78 days, 30% PRV+ at 128 days and ≥95% PRV+ thereafter. Among sample cohorts that were ≥80% PRV+, median Ct values were nominally less among fish sourced from the PRV− hatchery (28.7–33.3) than the PRV+ hatchery (30.8–35.2). No microscopic lesions were associated with PRV Ct value (minimum = 25.6). About 3% of fish in both cohorts had moderate inflammatory heart lesions; among these fish, only one had skeletal muscle inflammation (mild), and PRV Ct values were similar to unaffected cohorts sampled the same day. Also, among 16 moribund or freshly dead fish sampled opportunistically during the study, 14 were PRV+, and none had significant inflammatory heart lesions. These data support the hypothesis that British Columbia PRV-1 does not contribute to mortality.  相似文献   

5.
6.
This is the first comprehensive study on the occurrence and distribution of piscine reovirus (PRV) in Atlantic salmon, Salmo salar L., caught in Norwegian rivers. PRV is a newly discovered reovirus associated with heart and skeletal muscle inflammation (HSMI), a serious and commercially important disease affecting farmed Atlantic salmon in Norway. A cross‐sectional survey based on real‐time RT‐PCR screening of head kidney samples from wild, cultivated and escaped farmed Atlantic salmon caught from 2007 to 2009 in Norwegian rivers has been conducted. In addition, anadromous trout (sea‐trout), Salmo trutta L., caught from 2007 to 2010, and anadromous Arctic char, Salvelinus alpinus (L.), caught from 2007 to 2009, were tested. PRV was detected in Atlantic salmon from all counties included in the study and in 31 of 36 examined rivers. PRV was also detected in sea‐trout but not in anadromous Arctic char. In this study, the mean proportion of PRV positives was 13.4% in wild Atlantic salmon, 24.0% in salmon released for stock enhancement purposes and 55.2% in escaped farmed salmon. Histopathological examination of hearts from 21 PRV‐positive wild and one cultivated salmon (Ct values ranging from 17.0 to 39.8) revealed no HSMI‐related lesions. Thus, it seems that PRV is widespread in Atlantic salmon returning to Norwegian rivers, and that the virus can be present in high titres without causing lesions traditionally associated with HSMI.  相似文献   

7.
The role of escaped farmed salmon in spreading infectious agents from aquaculture to wild salmonid populations is largely unknown. This is a case study of potential disease interaction between escaped farmed and wild fish populations. In summer 2012, significant numbers of farmed Atlantic salmon were captured in the Hardangerfjord and in a local river. Genetic analyses of 59 of the escaped salmon and samples collected from six local salmon farms pointed out the most likely source farm, but two other farms had an overlapping genetic profile. The escapees were also analysed for three viruses that are prevalent in fish farming in Norway. Almost all the escaped salmon were infected with salmon alphavirus (SAV) and piscine reovirus (PRV). To use the infection profile to assist genetic methods in identifying the likely farm of origin, samples from the farms were also tested for these viruses. However, in the current case, all the three farms had an infection profile that was similar to that of the escapees. We have shown that double-virus-infected escaped salmon ascend a river close to the likely source farms, reinforcing the potential for spread of viruses to wild salmonids.  相似文献   

8.
Piscine myocarditis virus (PMCV) is a double‐stranded RNA virus which has been linked to cardiomyopathy syndrome (CMS) in Atlantic salmon (Salmo salar L.). The first recorded outbreak of CMS in Ireland occurred in 2012. Heart tissue samples were collected in the current study from farmed Atlantic salmon from various marine sites around Ireland, and the open reading frames (ORFs) 1 and 3 were amplified and sequenced in order to examine the genetic diversity of PMCV. Results showed PMCV to be largely homogenous in Irish samples, showing little genetic diversity. However, several amino acid positions within both ORF1 and ORF3 showed consistent variations unique to the Irish PMCV strains when compared with previously published Norwegian strains. The phylogeny generated in the present study suggests that PMCV may have been introduced into Ireland in two waves, both coming from the southern part of PMCV's range in Norway. In addition, over three‐quarters of the PMCV strains which were sequenced came from fish not exhibiting any clinical signs of CMS, suggesting that either PMCV is evolving to become less virulent in Ireland or Irish Atlantic salmon are developing immunity to the disease.  相似文献   

9.
Losses due to cardiomyopathy syndrome (CMS) keep increasing in salmon‐producing countries in the North‐Atlantic. Recently, Piscine myocarditis virus (PMCV) has been detected in post‐smolts shortly after sea‐transfer, indicating a possible carry‐over from the hatcheries. In addition, there are reports of prevalences of PMCV as high as 70%–90% in certain groups of broodfish, and a recent outbreak of CMS in the Faroe Islands has been linked to the importation of eggs from a CMS‐endemic area. Thus, there is a need to investigate whether PMCV can be transmitted vertically from infected broodstock to their progeny. In the present study, samples from eggs, larvae, fingerlings and presmolt originating from PMCV‐positive broodstock from two commercial Atlantic salmon producers were tested for PMCV. The prevalence of PMCV in the broodstock was 98% in the hearts, 69% in the roe and 59% in the milt. Piscine myocarditis virus was detected in all stages of the progeny until and including the 40 g stage. Piscine myocarditis virus was also detected in presmolt sampled for tissue tropism. This provides farmers with several options for minimizing the risk of transfer of PMCV from broodstock to progeny, including screening of broodstock and aiming to use only those that are negative for PMCV or have low levels of virus.  相似文献   

10.
Cardiomyopathy syndrome (CMS) is a severe cardiac disease affecting Atlantic salmon Salmo salar L. The disease was first recognized in farmed Atlantic salmon in Norway in 1985 and subsequently in farmed salmon in the Faroe Islands, Scotland and Ireland. CMS has also been described in wild Atlantic salmon in Norway. The demonstration of CMS as a transmissible disease in 2009, and the subsequent detection and initial characterization of piscine myocarditis virus (PMCV) in 2010 and 2011 were significant discoveries that gave new impetus to the CMS research. In Norway, CMS usually causes mortality in large salmon in ongrowing and broodfish farms, resulting in reduced fish welfare, significant management‐related challenges and substantial economic losses. The disease thus has a significant impact on the Atlantic salmon farming industry. There is a need to gain further basic knowledge about the virus, the disease and its epidemiology, but also applied knowledge from the industry to enable the generation and implementation of effective prevention and control measures. This review summarizes the currently available, scientific information on CMS and PMCV with special focus on epidemiology and factors influencing the development of CMS.  相似文献   

11.
12.
Heart‐ and skeletal muscle inflammation (HSMI) caused by infection with Piscine orthoreovirus (PRV) is one of the most common viral diseases in farmed Atlantic salmon (Salmo salar) in Norway, and disease outbreaks have been reported in most countries with large‐scale Atlantic salmon aquaculture. Currently there is no vaccine available for protection against HSMI, partly due to the lack of a cell line for efficient virus propagation. Erythrocytes are the primary target cells for PRV in vivo and a potential source for isolation of PRV particles. In this study, PRV was purified from infected erythrocytes, inactivated and used in a vaccination trial against HSMI. A single immunization with adjuvanted, inactivated PRV induced protection against HSMI in Atlantic salmon infected by virus injection 6 weeks later, while a moderate protection was obtained in fish infected through natural transmission, i.e. cohabitation. The PRV vaccine significantly reduced PRV loads and histopathological lesions typical for HSMI compared to the unvaccinated control group. This is the first demonstration of protective vaccination against PRV, and promising for future control of HSMI in Atlantic salmon aquaculture.  相似文献   

13.
An epidemiological study was carried out in Norway in 2015–2018, investigating the development of infection with Piscine myocarditis virus (PMCV) and development of cardiomyopathy syndrome (CMS) in farmed Atlantic salmon. Cohorts from 12 sites were followed and sampled every month or every other month from sea transfer to slaughter. PMCV was detected at all sites and in all sampled cages, and fish in six sites developed clinical CMS. The initial infection happened between 1 and 7 months post‐sea transfer, and the median time from infection with PMCV until outbreak of CMS was 6.5 months. Generally, fish from sites with CMS had higher viral titre and a higher prevalence of PMCV, compared to sites that did not develop clinical CMS. The virus persisted until the point of slaughter at most (11 out of 12) of the sites. The detection of PMCV in all sites suggests that PMCV is more widespread than previously known. Screening for PMCV as a tool to monitor impending outbreaks of CMS must be supported by observations of the health status of the fish and risk factors for development of disease.  相似文献   

14.
A Jaundice Syndrome occurs sporadically among sea‐pen‐farmed Chinook Salmon in British Columbia, the westernmost province of Canada. Affected salmon are easily identified by a distinctive yellow discolouration of the abdominal and periorbital regions. Through traditional diagnostics, no bacterial or viral agents were cultured from tissues of jaundiced Chinook Salmon; however, piscine reovirus (PRV) was identified via RT‐rPCR in all 10 affected fish sampled. By histopathology, Jaundice Syndrome is an acute to peracute systemic disease, and the time from first clinical signs to death is likely <48 h; renal tubular epithelial cell necrosis is the most consistent lesion. In an infectivity trial, Chinook Salmon, Sockeye Salmon and Atlantic Salmon, intraperitoneally inoculated with a PRV‐positive organ homogenate from jaundiced Chinook Salmon, developed no gross or microscopic evidence of jaundice despite persistence of PRV for the 5‐month holding period. The results from this study demonstrate that the Jaundice Syndrome was not transmissible by injection of material from infected fish and that PRV was not the sole aetiological factor for the condition. Additionally, these findings showed the Pacific coast strain of PRV, while transmissible, was of low pathogenicity for Atlantic Salmon, Chinook Salmon and Sockeye Salmon.  相似文献   

15.
In 2017, a PCR‐based survey for Piscine orthoreovirus‐3 (PRV‐3) was conducted in wild anadromous and non‐anadromous salmonids in Norway. In seatrout (anadromous Salmo trutta L.), the virus was present in 16.6% of the fish and in 15 of 21 investigated rivers. Four of 221 (1.8%) Atlantic salmon (Salmo salar L.) from three of 15 rivers were also PCR‐positive, with Ct‐values indicating low amounts of viral RNA. All anadromous Arctic char (Salvelinus alpinus L.) were PCR‐negative. Neither non‐anadromous trout (brown trout) nor landlocked salmon were PRV‐3 positive. Altogether, these findings suggest that in Norway PRV‐3 is more prevalent in the marine environment. In contrast, PRV‐3 is present in areas with intensive inland farming in continental Europe. PRV‐3 genome sequences from Norwegian seatrout grouped together with sequences from rainbow trout (Oncorhynchus mykiss Walbaum) in Norway and Coho salmon (Oncorhynchus kisutch Walbaum) in Chile. At present, the origin of the virus remains unknown. Nevertheless, the study highlights the value of safeguarding native fish by upholding natural and artificial barriers that hinder introduction and spread, on a local or national scale, of alien fish species and their pathogens. Accordingly, further investigations of freshwater reservoirs and interactions with farmed salmonids are warranted.  相似文献   

16.
Thousands of Scottish wild fish were screened for pathogens by Marine Scotland Science. A systematic review of published and unpublished data on six key pathogens (Renibacterium salmoninarum, Aeromonas salmonicida, IPNV, ISAV, SAV and VHSV) found in Scottish wild and farmed fish was undertaken. Despite many reported cases in farmed fish, there was a limited number of positive samples from Scottish wild fish, however, there was evidence for interactions between wild and farmed fish. A slightly elevated IPNV prevalence was reported in wild marine fish caught close to Atlantic salmon, Salmo salar L., farms that had undergone clinical IPN. Salmonid alphavirus was isolated from wild marine fish caught near Atlantic salmon farms with a SAV infection history. Isolations of VHSV were made from cleaner wrasse (Labridae) used on Scottish Atlantic salmon farms and VHSV was detected in local wild marine fish. However, these pathogens have been detected in wild marine fish caught remotely from aquaculture sites. These data suggest that despite the large number of samples taken, there is limited evidence for clinical disease in wild fish due to these pathogens (although BKD and furunculosis historically occurred) and they are likely to have had a minimal impact on Scottish wild fish.  相似文献   

17.
The infectious salmon anaemia virus (ISAV) is capable of causing a significant disease in Atlantic salmon, which has resulted in considerable financial losses for salmon farmers around the world. Since the first detection of ISAV in Canada in 1996, it has been a high priority for aquatic animal health management and surveillance programmes have led to the identification of many genetically distinct ISAV isolates of variable virulence. In this study, we evaluated the virulence of three ISAV isolates detected in Atlantic Canada in 2012 by doing in vivo‐controlled disease challenges with two sources of Atlantic salmon. We measured viral loads in fish tissues during the course of infection. Sequences of the full viral RNA genomes of these three ISAV isolates were obtained and compared to a high‐virulence and previously characterized isolate detected in the Bay of Fundy in 2004, as well as a newly identified ISAV NA‐HPR0 isolate. All three ISAV isolates studied were shown to be of low to mid‐virulence with fish from source A having a lower mortality rate than fish from source B. Viral load estimation using an RT‐qPCR assay targeting viral segment 8 showed a high degree of similarity between tissues. Through genomic comparison, we identified various amino acid substitutions unique to some isolates, including a stop codon in the segment 8 ORF2 not previously reported in ISAV, present in the isolate with the lowest observed virulence.  相似文献   

18.
The infectious salmon anaemia virus (ISAV) has not been observed to cause natural disease in farmed rainbow trout, Onchorhynchus mykiss (Walbaum), but may cause high mortality in farmed Atlantic salmon, Salmo salar L. In this study, ISAV was passaged 10 times in succession by intraperitoneal injections of serum from previous passage into naïve rainbow trout. The serum viraemia was monitored by real‐time qPCR. The rainbow trout in this study became infected but did not develop ISA. No clinical signs were observed in the rainbow trout in any passage, but replication of ISAV was detected from Day 4 post‐infection (p.i.). Neither increased relative virus loads nor histopathological and immunohistochemical findings consistent with ISA were observed. However, the expression of interferon type I and Mx genes were slightly up‐regulated in the hearts of some individual fish at day 17 p.i. Sequencing of all open reading frames in the ISAV genome of the 10th passage revealed two nucleotide mutations, one in segment 6 coding for the haemagglutinin–esterase (HE) and one in segment 1 coding for the basic polymerase 2 (PB2). The mutation in HE resulted in an amino acid substitution T/K312.  相似文献   

19.
While investigating biomarkers for infection with salmonid alphavirus (SAV), the cause of pancreas disease (PD), a selective precipitation reaction (SPR) has been discovered in serum which could be an on‐farm qualitative test and an in‐laboratory quantitative assay for health assessments in aquaculture. Mixing serum from Atlantic salmon, Salmo salar, with SAV infection with a sodium acetate buffer caused a visible precipitation which does not occur with serum from healthy salmon. Proteomic examination of the precipitate has revealed that the components are a mix of muscle proteins, for example enolase and aldolase, along with serum protein such as serotransferrin and complement C9. The assay has been optimized for molarity, pH, temperature and wavelength so that the precipitation can be measured as the change in optical density at 340 nm (Δ340). Application of the SPR assay to serum samples from a cohabitation trial of SAV infection in salmon showed that the Δ340 in infected fish rose from undetectable to a maximum at 6 weeks post‐infection correlating with histopathological score of pancreas, heart and muscle damage. This test may have a valuable role to play in the diagnostic evaluation of stock health in salmon.  相似文献   

20.
The production of piscine viruses, in particular of koi herpesvirus (KHV, CyHV‐3) and infectious salmon anaemia virus (ISAV), is still challenging due to the limited susceptibility of available cell lines to these viruses. A number of cell lines from different fish species were compared to standard diagnostic cell lines for KHV and ISAV regarding their capability to exhibit a cytopathic effect (CPE) and to accumulate virus. Two cell lines, so far undescribed, appeared to be useful for diagnostic purposes. Fr994, a cell line derived from ovaries of rainbow trout (Oncorhynchus mykiss), produced constantly high ISA virus (ISAV) titres and developed a pronounced CPE even at high cell passage numbers, while standard cell lines are reported to gradually loose these properties upon propagation. Another cell line isolated from the head kidney of common carp (Cyprinus carpio), KoK, showed a KHV induced CPE earlier than the standard cell line used for diagnostics. A third cell line, named Fin‐4, established from the fin epithelium of rainbow trout did not promote efficient replication of tested viruses, but showed antigen sampling properties and might be useful as an in vitro model for virus uptake or phagocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号