首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Debra K.  Baird  DVM  John T.  Hathcock  DVM  MS  Steven A.  Kincaid  DVM  MS  PhD  Paul F.  Rumph  DVM  MS  John  Kammermann  MS  William R.  Widmer  DVM  MS  Denise  Visco  PhD  Donald  Sweet  MD 《Veterinary radiology & ultrasound》1998,39(3):167-173
Six healthy adult male mongrel dogs underwent cranial cruciate ligament transection in the left stifle. Survey radiography of both stifles and low-field (0.064 T) MRI of the left stifle were performed preoperatively and at 2, 6, and 12 weeks postoperatively. Focal changes in signal intensity were seen with MRI in the subchondral bone of the medial tibial condyle at 2 and 6 weeks postoperatively. At 12 weeks postoperative, a cyst-like lesion was detected using MRI in the subchondral bone of the medial tibial condyle in 4 of 6 dogs and a less defined lesion at this site in the remaining 2 dogs. The cyst-like lesion was spherical in shape and showed typical characteristics of fluid with low signal intensity on T1-weighted images, high signal intensity on T2-weighted images and high signal intensity on inversion recovery images. The lesion was seen in the subchondral bone of the caudal medial and/or middle region of the tibial plateau slightly cranial to the insertion of the caudal cruciate ligament. No subchondral cysts were seen in the tibia on radiographs. Histopathologically, the tibia was characterized by a loose myxomatous phase of early subchondral cyst formation.  相似文献   

2.
Low‐field magnetic resonance imaging (MRI) is commonly used to evaluate dogs with suspected cranial cruciate ligament injury; however, effects of stifle positioning and scan plane on visualization of the ligament are incompletely understood. Six stifle joints (one pilot, five test) were collected from dogs that were scheduled for euthanasia due to reasons unrelated to the stifle joint. Each stifle joint was scanned in three angles of flexion (90°, 135°, 145°) and eight scan planes (three dorsal, three axial, two sagittal), using the same low‐field MRI scanner and T2‐weighted fast spin echo scan protocol. Two experienced observers who were unaware of scan technique independently scored visualization of the cranial cruciate ligament in each scan using a scale of 0–3. Visualization score rank sums were higher when the stifle was flexed at 90° compared to 145°, regardless of the scan plane. Visualization scores for the cranial cruciate ligament in the dorsal (H (2) = 19.620, P = 0.000), axial (H (2) = 14.633, P = 0.001), and sagittal (H (2) = 8.143, P = 0.017) planes were significantly affected by the angle of stifle flexion. Post hoc analysis showed that the ligament was best visualized at 90° compared to 145° in the dorsal (Z = ?3.906, P = 0.000), axial (Z = ?3.398, P = 0.001), and sagittal (Z = ?2.530, P = 0.011) planes. Findings supported the use of a 90° flexed stifle position for maximizing visualization of the cranial cruciate ligament using low‐field MRI in dogs.  相似文献   

3.
OBJECTIVE: To test the effects of computed tomography (CT) image plane and window settings on diagnostic certainty for CT characteristics associated with dysplastic elbow joints (elbow joint dysplasia) in dogs and to provide optimal display guidelines for these CT characteristics. SAMPLE POPULATION: CT images of 50 dysplastic elbow joints from 49 lame dogs and 10 elbow joints from 5 sound dogs. PROCEDURES: CT image data were obtained in transverse, sagittal, and dorsal planes. Each plane was examined by use of 3 Hounsfield unit (HU) window settings. Two veterinary radiologists independently evaluated sets of CT images for evidence of 7 CT characteristics. Effect of elbow joint status, image plane, and window settings on diagnostic certainty for these CT characteristics was tested by use of a visual analogue scale. RESULTS: Diagnostic certainty for abnormalities of the medial coronoid process (MCP) and radial incisure was highest in the transverse plane, subchondral defects or sclerosis of the trochlea humeri was highest in the dorsal plane, and joint incongruity was highest in the sagittal plane. Certainty for hypoattenuating subchondral defects or fissures was highest at 2,500 or 3,500 HUs, whereas certainty for subchondral sclerosis was highest at 1,500 HUs and lowest at 3,500 HUs. CONCLUSIONS AND CLINICAL RELEVANCE: Diagnostic certainty for CT characteristics of elbow joint dysplasia in dogs was affected by image display variables. Diagnostic certainty for altered subchondral bone density was primarily influenced by window settings, whereas structural MCP abnormalities and joint incongruity were influenced most by image plane.  相似文献   

4.
5.
ULTRASONOGRAPHIC ANATOMY OF THE NORMAL CANINE STIFLE   总被引:1,自引:0,他引:1  
Ultrasonographic examination of the normal canine stifle joint was performed to characterize its normal anatomy. Stifles of four normal adult dogs were imaged in sagittal and transverse planes and each anatomic structure visualized was recorded. Normal anatomic structures consistently seen included the patellar tendon, medial and lateral menisci, the cranial cruciate ligament and femoral condyle cartilage. The caudal cruciate ligament was visualized in two dogs. Collateral ligaments and meniscal ligaments were not visualized. The dogs were then euthanized and each stifle was isolated. Following removal of superficial muscles and skin, each stifle was imaged in a water bath to definitively identify the structures that had previously been visualized on the live dogs. The ultrasonographic appearance of the isolated stifle specimens was similar to that found in live dogs. The results of this study indicate that ultrasound can be used to image the normal anatomy of the canine stifle. The echogenicity of the patellar ligament, cruciate ligaments, menisci and articular cartilage was similar to that previously reported in equine stifles and human knees.  相似文献   

6.
The purpose of this study was to define normal gross anatomic structures in the equine stifle with magnetic resonance images. Magnetic resonance (MR) images were made in sagittal, 15° supinated, transverse, and dorsal planes of two equine stifles. The MR images were scrutinized by comparing MR images to dissection specimens and frozen cross sections of stifle joints. Sagittal and 15° supinated images were the most valuable in assessing articular cartilage, subchondral bone, and soft tissue structures within the joint. Cranial and caudal cruciate ligaments, medial and lateral menisci, meniscotibial and meniscofemoral ligaments, long digital extensor tendon, and patellar ligaments were easily evaluated. MR images provided substantially more gross anatomical information than the currently available imaging modalities.  相似文献   

7.
Susceptibility artifacts caused by ferromagnetic implants compromise magnetic resonance imaging (MRI) of the canine stifle after tibial plateau leveling osteotomy (TPLO) procedures. The WARP‐turbo spin echo sequence is being developed to mitigate artifacts and utilizes slice encoding for metal artifact reduction. The aim of the current study was to evaluate the WARP‐turbo spin echo sequence for imaging post TPLO canine stifle joints. Proton density weighted images of 19 canine cadaver limbs were made post TPLO using a 3 Tesla MRI scanner. Susceptibility artifact sizes were recorded and compared for WARP vs. conventional turbo spin echo sequences. Three evaluators graded depiction quality for the tibial tuberosity, medial and lateral menisci, tibial osteotomy, and caudal cruciate ligament as sufficient or insufficient to make a diagnosis. Artifacts were subjectively smaller and local structures were better depicted in WARP‐turbo spin echo images. Signal void area was also reduced by 75% (sagittal) and 49% (dorsal) in WARP vs. conventional turbo spin echo images. Evaluators were significantly more likely to grade local anatomy depiction as adequate for making a diagnosis in WARP‐turbo spin echo images in the sagittal but not dorsal plane. The proportion of image sets with anatomic structure depiction graded adequate to make a diagnosis ranged from 28 to 68% in sagittal WARP‐turbo spin echo images compared to 0–19% in turbo spin echo images. Findings indicated that the WARP‐turbo spin echo sequence reduces the severity of susceptibility artifacts in canine stifle joints post TPLO. However, variable depiction of local anatomy warrants further refinement of the technique.  相似文献   

8.
Magnetic resonance imaging was conducted on previously frozen left carpi from six normal dogs using a 1.5 Tesla magnet in combination with a transmit/receive wrist coil. Three-millimeter thick T1-weighted spin-echo images and 1-mm thick T2*-weighted gradient-recalled 3-D images were obtained in dorsal and sagittal planes. Carpi were embedded, sectioned, and stained. Anatomic structures on the histologic sections were correlated with the MR images. All of the carpal ligaments plus the radioulnar articular disc and the palmar fibrocartilage were identified on MR images. The accessorio-quartile ligament, which had not been well described previously in dogs, was also identified. It originated on the accessory carpal bone and inserted on the fourth carpal bone. The T2*-weighted gradient echo imaging technique provided better images than T1-weighted technique, largely because thinner slices were possible (1 mm vs. 3 mm), resulting in less volume averaging of thin ligaments with surrounding structures. Although MRI is currently the imaging modality of choice to identify ligamentous injury in humans, further studies are needed to determine if abnormalities can be detected in canine carpal ligaments using MRI.  相似文献   

9.
The purpose of this study was to determine the magnetic resonance (MR) imaging characteristics of bone marrow in the pelvis and femur of normal, young dogs. Six greyhounds were imaged at 4, 8, 12, and 16 months of age. Sagittal images of the femur and dorsal images of the pelvis were obtained with T1-weighted, fast spin echo (FSE) T2-weighted, and short tau (T1) inversion recovery (STIR) sequences. On T1-weighted images areas with high signal intensity, similar to fat, included the femoral heads, mid-diaphysis of the femur, femoral condyles, and the body of the ilium. T2-weighted images were characterized by uniform intermediate signal intensity (less than fat, but greater than muscle) in the femoral head, high signal intensity, similar to fat, in the mid-diaphysis of the femur and ilial body, and intermediate to high signal intensity in the femoral condyle. By 16 months high signal intensity was seen in the diaphysis and distal metaphysis on both T1- and T2-weighted images. On STIR images the femoral head had intermediate to low signal intensity, compared with muscle. The mid-diaphysis of the femur was of low signal intensity, similar to fat, and the body of the ilium had mixed signal intensity at all ages. The femoral condyle had inhomogenous, intermediate to low signal intensity at 4 months, but was of uniform low signal intensity at 8-16 months.  相似文献   

10.
OBJECTIVE: To evaluate thin-slice 3-dimensional gradient-echo (GE) magnetic resonance imaging (MRI) of the pituitary gland in healthy dogs. ANIMALS: 11 healthy dogs. PROCEDURES: By use of a 0.2-Tesla open magnet, MRI of the skull was performed with T1-weighted GE sequences and various protocols with variations in imaging plane, slice thickness, and flip angle before and after administration of contrast medium; multiplanar reconstructions were made. The pituitary region was subjectively assessed, and its dimensions were measured. Image quality was determined by calculation of contrast-to-noise and signal-to-noise ratios. RESULTS: Best-detailed images were obtained with a T1-weighted GE sequence with 1-mm slice thickness and 30 degrees flip angle before and after administration of contrast medium. Images with flip angles > 50 degrees were of poor quality. Quality of multiplanar reconstruction images with 1-mm slices was better than with 2-mm slices. The bright signal was best seen without contrast medium. With contrast medium, the dorsal border of the pituitary gland was clearly delineated, but lateral borders were more difficult to discern. CONCLUSIONS AND CLINICAL RELEVANCE: MRI of the canine pituitary gland with a 0.2-Tesla open magnet should include a T1-weighted GE sequence with 1-mm slice thickness and flip angle of 30 degrees before and after administration of contrast medium. The neurohypophysis was best visualized without contrast medium. The MRI examination permitted differentiation between the pituitary gland and surrounding structures.  相似文献   

11.
The stifle joints of eleven military working dogs were evaluated using conventional magnetic resonance (MR) imaging and MR arthrography. A protocol optimizing MR imaging of the canine stifle joint is discussed, as well as potential uses for administration of intra-articular gadolinium. The technique for performing MR arthrography is described, and post-contrast image findings are reviewed. MR arthrography was performed by using an intra-articular injection of diluted gadolinium. Consistently good quality images were obtained, and no complications were clinically detected following MR arthrography. Cranial cruciate ligament abnormalities were seen in six dogs, meniscal abnormalities were visualized in nine menisci, and synovitis and medial ligament strain were seen in eight dogs. Surgical and post-mortem confirmation of these findings is discussed in seven dogs. Although MR arthrography adds an invasive procedure to conventional MR imaging, it can provide useful information on pathologic changes in the canine stifle joint.  相似文献   

12.
The purpose of this study was to describe the appearance of the femoral head of normal, young, small breed dogs, and dogs with avascular necrosis using low-field (0.3 T) magnetic resonance (MR) imaging. Images of the femoral heads were obtained in the dorsal plane, and included T1-weighted spin-echo, T2-weighted fast spin-echo, fast spin echo-inversion recovery, and fluid attenuated inversion recovery pulse sequences. MR imaging features of the asymptomatic femoral heads and necks included uniform high signal intensity compared with muscle on T1- and T2-weighted images. There was either uniform enhancement or no enhancement on postcontrast T1-weighted images. The MR imaging findings of dogs affected with avascular necrosis differed from those of asymptomatic dogs. Typically, the affected dogs had inhomogeneous intermediate to low-signal intensity within the femoral head and neck compared with muscle on T1-weighted images, inhomogeneous enhancement of the femoral head and/or neck on postcontrast T1-weighted images, and inhomogeneous low- to high- signal intensity within the femoral head and neck on T2-weighted images.  相似文献   

13.
14.
This study aimed to evaluate the stifle joint of marsh deer using imaging studies and in comparison with gross anatomy. Ten hindlimbs from 5 marsh deer (Blastocerus dichotomus) were used. Radiography, computed tomography (CT) and magnetic resonance imaging (MRI) were performed in each stifle joint. Two hindlimbs were dissected to describe stifle gross anatomy. The other limbs were sectioned in sagittal, dorsal or transverse planes. In the craniocaudal radiographic view, the lateral femoral condyle was broader than the medial femoral condyle. The femoral trochlea was asymmetrical. Subsequent multiplanar reconstruction revealed in the cranial view that the external surface of the patella was roughened, the medial trochlea ridge was larger than the lateral one, and the extensor fossa at the lateral condyle was next to the lateral ridge. The popliteal fossa was better visualized via the lateral view. Sagittal MRI images identified lateral and medial menisci, caudolateral and craniomedial bundles of cranial cruciate ligament, caudal cruciate ligament, patellar ligament and common extensor tendon. In conclusion, the marsh deer stifle presents some anatomical characteristics of the ovine stifle joint.  相似文献   

15.
16.
The purpose of this study was to describe the appearance of normal bone marrow in seven adult dogs using low-field (0.3 T) magnetic resonance (MR) imaging. The areas imaged included the lumbar spine, pelvis, and femur. T1-weighted, fast spin-echo T2-weighted, and short tau (T1) inversion recovery (STIR) sequences were obtained at all locations. Histopathology was performed on sections from the sixth lumbar vertebral body, the wing of the ilium, and the femur (head and neck, mid-diaphysis, and condyle) for evaluation of cellularity and fat content. The lumbar spine and pelvic marrow MR images were similar in all dogs. The lumbar vertebral bone marrow was uniform, intermediate signal intensity, and isointense to muscle on all sequences. There was variation between dogs in the bone marrow distribution with MR imaging of the femur. In the proximal and mid-diaphysis of the femur there was patchy high-signal intensity on T1- and T2-weighted images, and hypointense foci on the STIR images. The distal femoral metaphysis had a variable pattern ranging from intermediate-to-high signal on T1- and T2-weighted images and intermediate-to-low signal on STIR images. The femoral condyles were uniformly high signal on T1- and T2-weighted images and hypointense on STIR images. Histopathologically there was a normal variation in the bone marrow cellularity. The marrow was normocellular (25–75% cellularity) for all sites examined except the femoral condyles, which were hypocellular (<25% cellularity).  相似文献   

17.
Yunsang Seong  DVM    Kidong Eom  DVM  PhD    Haeoon Lee  DVM    Jeongmin Lee  DVM    Jinhee Park  DVM    Keunwoo Lee  DVM  PhD    Kwangho Jang  DVM  PhD    Taeho Oh  DVM  PhD    Junghee Yoon  DVM  PhD 《Veterinary radiology & ultrasound》2005,46(1):80-82
Ultrasonographic examination of both stifle joints of five clinically and radiographically normal adult dogs was performed before and after surgical transection of the cranial cruciate ligament (CrCL). At pre- and postsurgery, the hyperechoic patellar ligament and the infrapatellar fat interfered with sonographic visualization of the CrCL. When the stifle joint, however, was imaged via dynamic intra-articular saline injection, the hyperechoic ligament was visualized because of the separation of the infrapatellar fat and the CrCL and the contrasting effect of anechoic saline. When the stifle joint was imaged by real-time scanning after the transection of the CrCL, flutter of the ligament and an anechoic area between the bone and the CrCL were identified. The increased diameter of the ligament and the increased thickness of the joint space were identified as well. Ultrasonographic examination via dynamic saline injection into the joint space has potential as a diagnostic tool for assessing CrCL rupture.  相似文献   

18.
19.
OBJECTIVE: To measure the angles between the patellar ligament and the tibial plateau and between the patellar ligament and the common tangent at the tibiofemoral contact point (TFCP) throughout the full range of motion of the stifle joint in dogs and determine the flexion angles at which the patellar ligament is perpendicular to the tibial plateau or to the common tangent. SAMPLE POPULATION: 16 hind limbs from cadavers of 9 adult dogs without radiographically detectable degenerative joint disease. PROCEDURES: Mediolateral radiographic views of the stifle joints from full extension through full flexion were obtained (10 degrees increments). Angles between the tibial and femoral long axes (beta), between the patellar ligament and the tibial plateau gamma), and between the patellar ligament and the common tangent at TFCP (alpha) were measured. Data were analyzed via simple linear regression. RESULTS: In canine stifle joints, angles gamma and alpha decreased linearly with increasing flexion (angle beta). The patellar ligament was perpendicular to the tibial plateau and perpendicular to the common tangent at the TFCP at 90 degrees and 110 degrees of flexion, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: By use of the conventionally defined tibial plateau, data suggest that at approximately 90 degrees of flexion in stifle joints of dogs, shear force in the sagittal plane exerted on the proximal portion of the tibia shifts the loading from the cranial to the caudal cruciate ligament. Analyses involving the common tangent at the TFCP (a more anatomically representative reference point) identified this crossover point at approximately 110 degrees of joint flexion.  相似文献   

20.
Popliteal tendon transposition was performed in five dogs with surgically induced cranial cruciate ligament rupture. After a lateral approach to the stifle joint, the popliteal tendon was severed distal to the sesamoid bone and transposed cranially onto the tibial crest to mimic the sagittal orientation of the cranial cruciate ligament. The origin of the popliteal tendon on the lateral femoral condyle was preserved. Lameness was not clinically detectable 2 months after surgery. At 6 months postoperatively, there was minimal radiographic and histopathologic evidence of degenerative joint disease in the stifle joints that had underwent surgery. There was no gross or microscopic evidence of meniscal damage found at necropsy 6 months after surgery. Biome-chanical studies are warranted before recommending the procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号