共查询到20条相似文献,搜索用时 0 毫秒
1.
Bruno I Cappellozza David W Bohnert Maria M Reis Kendall C Swanson Stephanie J Falck Reinaldo F Cooke 《Journal of animal science》2021,99(6)
This experiment evaluated the influence of protein supplementation frequency (SF) and amount offered on intake, nutrient digestibility, and ruminal fermentation by rumen-fistulated beef steers consuming low-quality [2.9% crude protein (CP); dry matter (DM) basis], cool-season forage. Seven Angus × Hereford steers (300 ± 27 kg) fitted with ruminal cannulas were randomly assigned to 1 of 7 treatments in an incomplete 7 × 4 Latin square. Treatments, in a 2 × 3 factorial design plus a non-supplemented control (CON), consisted of 2 levels of supplemental soybean meal, 100% (F) or 50% (H) of the estimated rumen-degradable protein requirement, provided daily (D), once every 5 d (5D), or once every 10 d (10D). Experimental periods were 30 d and dry matter intake (DMI) was measured from days 19 to 28. On days 21 (all supplements provided) and 30 (only daily supplements provided; day immediately prior to supplementation for 5D and 10D treatments) ruminal fluid was collected for ruminal pH, ammonia-N (NH3), volatile fatty acids (VFA), and determination of ruminal fermentation variables. Forage and total DM, organic matter (OM), and nitrogen (N) intake increased with supplementation (P ≤ 0.04). However, a linear effect of SF × amount of supplement interaction was observed for forage and total DM, OM, and N intake (P ≤ 0.04), with each variable decreasing as SF decreased, but the decrease being greater with F vs. H. Apparent total tract DM, OM, and neutral detergent fiber digestibility was not affected by supplementation or amount of supplement provided (P ≥ 0.10). In contrast, N digestibility increased with supplementation and for F vs. H (P < 0.01). Digestibility of DM, OM, and N increased linearly as SF decreased (P ≤ 0.03). When all supplements were provided, ruminal NH3, total VFA, and molar proportions of all individual VFA increased with supplementation (P ≤ 0.04), whereas acetate:propionate ratio decreased (P < 0.01). When only daily supplements were provided, none of the aforementioned fermentation parameters were affected (P ≥ 0.09). In summary, reducing the amount of supplemental CP provided to ruminants consuming low-quality forages, when supplementation intervals are >5 d, can be a management tool to maintain acceptable levels of DMI, nutrient digestibility, and ruminal fermentation while reducing supplementation cost. 相似文献
2.
Seven ruminally and duodenally cannulated steers (264 +/- 8 kg BW) consuming low-quality forage (5% CP; 61% NDF; 31% ADF) were used to determine the influence of CP degradability and supplementation frequency (SF) on ruminal fermentation characteristics. Treatments included an unsupplemented control and degradable intake protein (DIP) or undegradable intake protein (UIP) provided daily, every 3 d, or every 6 d. The DIP treatments (18% UIP) were calculated to provide 100% of the DIP requirement, while the UIP treatments (60% UIP) were provided on an isonitrogenous basis compared with DIP. Ruminal NH3-N was increased on the day all supplements were provided with supplemental CP (P = 0.04) and for DIP compared with UIP (P < 0.01). Also, because ruminal NH3-N increased at a greater rate with DIP compared with UIP as SF decreased, a linear effect of SF x CP degradability interaction (P = 0.02) was observed. In addition, NH3-N was greater on the day only daily supplements were provided for supplemented treatments (P = 0.04), and decreased linearly (P < 0.01) as SF decreased. Concentration of total VFA increased linearly (P = 0.02) as SF decreased on the day all supplements were provided, whereas on the day only daily supplements were provided, total VFA were greater for UIP compared with DIP (P = 0.01), and decreased linearly (P < 0.01) as SF decreased. An interaction concerning the linear effect of SF and CP degradability (P = 0.02) was observed for ruminal liquid volume on the day all supplements were provided. This was the result of an increase in liquid volume with DIP as SF decreased compared with a minimal effect with UIP. In contrast, there was no influence of supplementation on liquid volume the day only daily supplements were provided. Ruminal liquid dilution rate was greater (P = 0.02) with CP supplementation on the day all supplements were provided. We did observe a quadratic effect of SF x CP degradability interaction (P = 0.01) for dilution rate because of a quadratic response with DIP (greatest value with the every-third-day treatment) compared with a decrease as SF decreased for UIP. On the day only daily supplements were provided, ruminal liquid dilution rate decreased linearly (P = 0.02) as SF decreased. These results suggest that DIP and UIP elicit different effects on ruminal fermentation when supplemented infrequently to ruminants consuming low-quality forage while not adversely affecting nutrient intake and digestibility. 相似文献
3.
A 2(3) factorial arrangement of treatments was used to study main effects and interactions between particle size of prairie hay (chopped vs ground), two levels of feed intake (60 and 90% of ad libitum) and ruminal degradability of protein sources [dry corn gluten feed (DCGF) vs dry distillers grains (DDG)] on ruminal and total tract digestion in eight ruminal- and duodenal-cannulated steers. Steers were fed every 2 h to approach steady-state feeding conditions. Steers fed ground hay diets digested higher (P less than .05) percentages of total digestible organic matter (OM) and neutral detergent fiber (NDF) in the rumen and had lower (P less than .05) nonammonia-nonbacterial N (NANBN) flows to the duodenum than did those fed chopped hay, probably because greater surface area of ground hay allowed more extensive ruminal fermentation. Protein source X intake interactions were noted for ruminal OM and NDF digestion when expressed as percentages of total digestion. At low intakes, steers fed DCGF had higher (P less than .05) percentages of total digestible OM and NDF disappearing in the rumen than did those fed DDG. Steers fed DCGF had lower total N, NANBN and total amino acid (AA) flows at the duodenum than did those fed DDG, indicating that less DCGF protein escaped ruminal degradation. Steers fed DDG had greater (P less than .05) total tract NDF digestion, suggesting that escape protein from DDG may stimulate hindgut fermentation and thereby affect site and extent of nutrient digestion. Regression analysis indicated that extent of ruminal fermentation and efficiency of microbial growth in vivo are associated with ruminal rates of passage within individual animals. When steers were fed at high-intake levels (1.6% of body weight), ruminal dilution rates were not increased (P less than .05) due to forage particle size or level of intake treatments, accounting, in part, for the lack of expected treatment differences in efficiency of bacterial growth and duodenal N flow, and for the low number of interactions between main effects. 相似文献
4.
Seven cannulated (rumen and duodenal) Angus x Hereford steers (264 +/- 8 kg BW) consuming low-quality forage (5% CP; 61% NDF; 31% ADF) were used to determine the influence of CP degradability and supplementation frequency (SF) on DMI and nutrient digestion. Treatments included an unsupplemented control and degradable intake protein (DIP) or undegradable intake protein (UIP) provided daily, every 3 d, or every 6 d. The DIP treatments (18% UIP) were calculated to provide 100% of the DIP requirement, while the UIP treatments (60% UIP) were provided on an isonitrogenous basis compared with DIP. Forage DMI was not affected by treatment. Total DM and N intake, duodenal N flow, and intestinal N disappearance increased (P < 0.01) with supplementation. Dry matter intake and duodenal N flow responded quadratically (P < 0.04; greatest values on the every-third-day treatments) as SF decreased. However, no differences in N intake or intestinal N disappearance were observed because of CP degradability or SF. Duodenal bacterial N flow and true bacterial N synthesis (g bacterial N/kg of OM truly digested in the rumen) were increased (P < 0.05) with supplementation. Also, duodenal bacterial N flow was greater (P < 0.05) for DIP compared with UIP. Duodenal nonbacterial N flow was increased (P = 0.02) with CP supplementation and for UIP compared with DIP (P < 0.01). Supplemental CP increased (P < 0.01) total tract DM and N digestibility with no difference due to CP degradability or SF. Results suggest CP supplements consisting of 20 to 60% UIP can be effectively used by steers consuming low-quality forage without adversely affecting DMI, nutrient digestibility, or bacterial CP synthesis, even when provided as infrequently as once every 6 d. 相似文献
5.
The objectives of this study were to evaluate the influence of supplemental whole flaxseed level on intake and site and extent of digestion in beef cattle consuming native grass hay. Nine Angus heifers (303 +/- 6.7 kg of BW) fitted with ruminal and duodenal cannulas were used in a triplicated 3 x 3 Latin square. Cattle were given ad libitum access to chopped native grass hay (9.6% CP and 77.5% NDF, OM basis). All animals were randomly allotted to 1 of 3 experimental treatments of hay plus no supplement (control); 0.91 kg/d whole flaxseed (23.0% CP, 36.3% NDF, and 25.5% total fatty acid, OM basis); or 1.82 kg/d whole flaxseed on a DM basis. Supplemental flaxseed tended to decrease (linear, P = 0.06) forage OM intake. However, total OM intake did not differ (P = 0.29) with increasing levels of flaxseed. Total duodenal OM flow increased (linear, P = 0.05) with additional flaxseed in the diet, and no differences (P = 0.29) were observed for microbial OM flow. True ruminal OM disappearance was not affected (P = 0.14) by supplemental flaxseed. Apparent lower tract OM digestibility increased (linear, P = 0.01) with level of whole flaxseed. Apparent total tract OM digestibility was not different (P = 0.41) among treatments. Nitrogen intake increased (linear, P < 0.001) with supplemental flaxseed. In addition, total duodenal N flow tended (P = 0.08) to increase with additional dietary flaxseed. However, true ruminal N digestibility did not differ (P = 0.11) across treatment. Supplemental whole flaxseed did not influence ruminal (P = 0.13) or total tract (P = 0.23) NDF digestibility. Ruminal molar proportion of propionate responded quadratically (P < 0.001) with increasing levels of whole flaxseed. An increase in the duodenal supply of 18:3n-3 (P < 0.001), total unsaturated fatty acids (P < 0.001), and total fatty acids (P < 0.001) was observed with additional dietary whole flaxseed. Apparent postruminal 18:3n-3 disappearance tended to decrease (P = 0.07) as intake of flaxseed increased. Overall, the inclusion of 1.82 kg/d of flaxseed does not appear to negatively influence nutrient digestibility of a forage-based diet and therefore can be used as an effective supplement to increase intestinal supply of key fatty acids important to human health. 相似文献
6.
Wickersham TA Titgemeyer EC Cochran RC Wickersham EE Gnad DP 《Journal of animal science》2008,86(11):3079-3088
We evaluated the effect of increasing amounts of rumen-degradable intake protein (DIP) on urea kinetics in steers consuming prairie hay. Ruminally and duodenally fistulated steers (278 kg of BW) were used in a 4 x 4 Latin square and provided ad libitum access to low-quality prairie hay (4.9% CP). The DIP was provided as casein dosed ruminally once daily in amounts of 0, 59, 118, and 177 mg of N/kg of BW daily. Periods were 13 d long, with 7 d for adaptation and 6 d for collection. Steers were in metabolism crates for total collection of urine and feces. Jugular infusion of (15)N(15)N-urea, followed by determination of urinary enrichment of (15)N(15)N-urea and (14)N(15)N-urea was used to determine urea kinetics. Forage and N intake increased (linear, P < 0.001) with increasing DIP. Retention of N was negative (-2.7 g/d) for steers receiving no DIP and increased linearly (P < 0.001; 11.7, 23.0, and 35.2 g/d for 59, 118, and 177 mg of N/kg of BW daily) with DIP. Urea synthesis was 19.9, 24.8, 42.9, and 50.9 g of urea-N/d for 0, 59, 118, and 177 mg of N/kg of BW daily (linear, P = 0.004). Entry of urea into the gut was 98.9, 98.8, 98.6, and 95.9% of production for 0, 59, 118, and 177 mg of N/kg of BW daily, respectively (quadratic, P = 0.003). The amount of urea-N entering the gastrointestinal tract was greatest for 177 mg of N/kg of BW daily (48.6 g of urea-N/d) and decreased (linear, P = 0.005) to 42.4, 24.5, and 19.8 g of urea-N/d for 118, 59, and 0 mg of N/kg of BW daily. Microbial incorporation of recycled urea-N increased linearly (P = 0.02) from 12.3 g of N/d for 0 mg of N/kg of BW daily to 28.9 g of N/d for 177 mg of N/kg of BW daily. Provision of DIP produced the desired and previously observed increase in forage intake while also increasing N retention. The large percentage of urea synthesis that was recycled to the gut (95.9% even when steers received the greatest amount of DIP) points to the remarkable ability of cattle to conserve N when fed a low-protein diet. 相似文献
7.
Nine ruminally cannulated mixed-breed steers were used in a split-plot design to evaluate effects of fat supplementation and forage maturity on intake, digestibility, and ruminal fermentation. Treatment was the main plot, and stage of forage maturity was the subplot. Treatments were supplements containing mineral pack (M) offered at 114 g/d; M plus fiber as soybean hulls-wheat middlings (MF) offered at 0.50% BW; and MF plus tallow (MFT) offered at 0.625% BW. Stages of wheat maturity were mid-March (MAR) and early April (APR). Steers grazed in a single wheat pasture with supplements offered individually at 0700 h daily. There were supplement type x forage maturity interactions (P < 0.05) for forage OM, CP, and NDF intakes. During MAR, forage OM, CP, and NDF intakes were not affected (P > 0.05) by supplementation. During APR, forage OM, CP, and NDF intakes differed (MF = M > MFT, P < 0.05). There was also supplement type x forage maturity interaction (P = 0.04) for forage OM digestibility. The OM digestibility differed during MAR (M = MF > MFT, P < 0.05) and during APR (MF > M > MFT, P < 0.05). Crude protein digestibility was affected by supplement type (M > MF > MFT, P < 0.05) and stage of forage maturity (MAR > APR, P < 0.01). Rates of DM and NDF ruminal disappearance were not affected (P > 0.05) by supplement or forage maturity. Supplementation increased (P < 0.05) ruminal propionate concentration (19.7, 21.4, and 25.1 +/- 0.49 mol/100 mol for M, MF, and MFT, respectively). Tallow can be used in supplements for cattle grazing wheat pasture to increase energy intake without negatively affecting forage intake or ruminal fermentation, particularly if used in the early stage of wheat maturity. 相似文献
8.
Experiments were conducted to determine the effects of increasing supplement protein concentration on performance and forage intake of beef cows and forage utilization of steers consuming stockpiled bermudagrass forage. Bermudagrass pastures were fertilized with 56 kg of N/ha in late August. Grazing was initiated during early November and continued through the end of January each year. Treatments for the cow performance trials were: no supplement or daily equivalents of 0.2, 0.4, and 0.6 g of supplemental protein per kilogram of BW. Supplements were formulated to be isocaloric, fed at the equivalent of 0.91 kg/d, and prorated for 4 d/wk feeding. Varying the concentration of soybean hulls and soybean meal in the supplements created incremental increases in protein. During yr 1, supplemented cows lost less weight and condition compared to unsupplemented animals (P < 0.05). During yr 2, supplemented cows gained more weight (P = 0.06) and lost less condition (P < 0.05) compared to unsupplemented cows. Increasing supplement protein concentration had no affect on cumulative cow weight change or cumulative body condition score change. Forage intake tended to increase (P = 0.13, yr 1 and P = 0.07, yr 2) in supplemented cows. Supplement protein concentration did not alter forage intake. In a digestion trial, four crossbred steers were used in a Latin square design to determine the effects of supplement protein concentration on intake and digestibility of hay harvested from stockpiled bermudagrass pasture. Treatments were no supplement; or 0.23, 0.46, and 0.69 g of supplemental protein per kilogram of BW. Forage intake increased (P < 0.05) 16% and OM intake increased (P < 0.01) 30% in supplemented compared to unsupplemented steers. Diet OM digestibility increased (P = 0.08) 14.5% and total digestible OM intake increased (P < 0.05) 49% in supplemented compared to unsupplemented steers. Supplement protein concentration did not alter forage intake, total digestible OM intake, or apparent digestibility of OM or NDF. During the initial 30 d after first killing frost, beef cows did not respond to supplementation. However, later in the winter, supplementation improved utilization of stockpiled bermudagrass forage. 相似文献
9.
Six cannulated Salers steers (305 +/- 17 kg initial BW) were used in a double 3 x 3 Latin square design to compare the effects of the nature of the cereal (wheat vs corn) and the corn genotype (dent vs flint) on rate, site, and extent of digestion of high-concentrate diets. The cereals were coarsely cracked, and the diets were balanced to have the same percentage of starch (47.7 +/- 2.3%) and CP (14.6 +/- .7%). Differences in ruminal starch digestion were observed between wheat- and corn-based diets (86.6 vs 47.8%; P < .001) and between corn genotypes (60.8 vs 34.8% for dent and flint corns; P < .001). For flint corn, more than half the starch was digested in the hindgut. Total tract digestion of starch was greater (P < .001) by steers fed wheat than by those fed corn and did not differ (P > .1) between the two corn genotypes. Ruminal mean pH (P < .01) was lower and total VFA concentration (P < .1) was higher for wheat- than for corn-based diets. Ruminal acetate:propionate tended to increase with the decrease in the amount of starch degraded in the rumen, but differences were not significant (P > .1). When wheat replaced corn, nonammonia, nonmicrobial N duodenal flow decreased (P < .01), and microbial duodenal flow increased (P < .05), so there were no differences in the duodenal flow of nonammonia N duodenal flow (P > .1). The lower nonammonia N duodenal flow for the dent corn- than for the flint corn-based diet (P < .05) was related to a lower passage of nonammonia, nonmicrobial N into the duodenum. Efficiency of microbial protein synthesis was inversely correlated with the amount of starch degraded in the rumen. Nature of the cereal, wheat vs corn, and genotype of the corn, dent vs flint, alter the site and extent of starch digestion. 相似文献
10.
L J Krysl M E Branine A U Cheema M A Funk M L Galyean 《Journal of animal science》1989,67(11):3040-3051
Six beef steers (British x Brahman) cannulated at the rumen, duodenum and ileum (avg wt 334 kg) and three mature steers (British x British) cannulated at the esophagus were used in a replicated 3 x 3 latin square design and fed no supplement (C), .5 kg soybean meal (SBM) or .5 kg steam-flaked sorghum grain (SFS).head-1.d-1 (DM basis) while grazing blue grama rangeland. Periods of the latin square included a minimum of 14 d for adaptation and 11 d for esophageal masticate collection and digesta sampling. In September, October and November, respectively, forage collected by esophageally cannulated steers averaged 74.5, 88.8 and 71.0% grasses; 2.06, 1.53 and 1.77% N and 68.3, (P greater than .10) by treatment, but total N intake was greater (P less than .05) for SBM vs C and SFS treatments. No differences (P greater than .10) were detected among treatments in OM, NDF, ADF and N digestibilities in the rumen, small intestine or hindgut, but total tract OM digestibility was greater (P less than .10) for SBM and SFS than for C, and total tract N digestibility was greater (P less than .10) for SBM than for C or SFS. Duodenal ammonia N flow was greater (P less than .05) when SBM was fed that when SFS and C were fed, but microbial N and non-ammonia, non-microbial N flows and microbial efficiency were not altered by treatment. Likewise, ileal N flow was not affected (P greater than .10) by treatment. Particulate passage rate, gastrointestinal mean retention time, forage in vitro OM disappearance and in situ rate of forage NDF digestion also were not affected (P greater than .10) by treatments. Ruminal fluid volume was greater (P less than .05) for SFS vs SBM and C treatments, but no differences were noted in fluid dilution rate. Ruminal fluid ammonia concentration was greater (P less than .05) when SBM was fed than when SFS and C were fed (13.5, 9.9 and 8.7 mg/dl, respectively), whereas pH and total VFA concentrations were not different (P greater than .10). Proportion of acetate in ruminal fluid was less (P less than .10) for SBM and SFS than for C. Small amounts of supplemental SBM and SFS had little effect on forage intake, ruminal fermentation and site of digestion but both increased total tract OM digestion in steers grazing blue grama rangeland. 相似文献
11.
Schauer CS Bohnert DW Ganskopp DC Richards CJ Falck SJ 《Journal of animal science》2005,83(7):1715-1725
The objectives of this research were to determine the influence of protein supplementation frequency on cow performance, grazing time, distance traveled, maximum distance from water, cow distribution, DMI, DM digestibility, harvest efficiency, percentage of supplementation events frequented, and CV for supplement intake for cows grazing low-quality forage. One hundred twenty pregnant (60 +/- 45 d) Angus x Hereford cows (467 +/- 4 kg BW) were used in a 3 x 3 Latin square design for one 84-d period in each of three consecutive years. Cows were stratified by age, BCS, and BW and assigned randomly to one of three 810-ha pastures. Treatments included an unsupplemented control (CON) and supplementation every day (D; 0.91 kg, DM basis) or once every 6 d (6D; 5.46 kg, DM basis) with cottonseed meal (CSM; 43% CP, DM basis). Four cows from each treatment (each year) were fitted with global positioning system collars to estimate grazing time, distance traveled, maximum distance from water, cow distribution, and percentage of supplementation events frequented. Collared cows were dosed with intraruminal n-alkane controlled-release devices on d 28 for estimation of DMI, DM digestibility, and harvest efficiency. Additionally, Cr2O3 was incorporated into CSM on d 36 at 3% of DM for use as a digesta flow marker to estimate the CV for supplement intake. Cow BW and BCS change were greater (P < or = 0.03) for supplemented treatments compared with CON. No BW or BCS differences (P > or = 0.14) were noted between D and 6D. Grazing time was greater (P = 0.04) for CON compared with supplemented treatments, with no difference (P = 0.26) due to supplementation frequency. Distance traveled, maximum distance from water, cow distribution, DMI, DM digestibility, and harvest efficiency were not affected (P > or = 0.16) by protein supplementation or supplementation frequency. The percentage of supplementation events frequented and the CV for supplement intake were not affected (P > or = 0.58) by supplementation frequency. Results suggest that providing protein daily or once every 6 d to cows grazing low-quality forage increases BW and BCS gain, while decreasing grazing time. Additionally, protein supplementation and supplementation frequency may have little to no effect on cow distribution, DMI, and harvest efficiency in the northern Great Basin. 相似文献
12.
4头初始体重为34.5±2.0kg、插有瘤胃瘘管的萨福克阉公羊羔被用来评估瘤胃蛋白降解率和添加频率对饲喂低质饲料的羔羊瘤胃特性的影响。羔羊以成熟皇冠干草(含4.2%CP)为基础日粮,各日粮组分为4组,分别是:1)RDP-D:每天饲喂高的瘤胃降解蛋白质(RDP);2)RDP-A:每隔1d饲喂高的RDP;3)RUP-A:每隔1d饲喂非瘤胃降解蛋白质(RUP);4)MIX-A:每隔1d按照RDP:RUP=1:1的比例来饲喂。结果显示,各处理组的羔羊粗饲料的有机质(OM)、氮(N)、中性洗涤纤维(NDF)或酸性洗涤纤维(ADF)的采食量没有显著差异;混合组(MIX-A)的羔羊瘤胃有机质的消化率比其他组的要高(P〈0.001);RUP-A组羔羊的真瘤胃氮消化率较其他处理组的低(P〈0.01);混合组MIX-A瘤胃NDF和ADF的代谢较其他处理组高(P≤0.01)。当在羔羊日粮中添加RUP相对添加RDP-D可以降低其瘤胃氨气浓度,且RUP-A组的羔羊的瘤胃氨气浓度最低。各处理组的瘤胃脲酶活性差异不显著,瘤胃微生物N流量差异不显著,不过RDP-D组的羔羊的瘤胃微生物N合成效率有增加趋势(P=0.004)。隔天饲喂羔羊混合组的日粮可以改善低质粗饲料的消化率,这可能是由于内源性氮循环利用增强导致瘤胃氨气浓度有所下降。 相似文献
13.
Tall fescue hay (H) supplemented with corn and urea (HU) or corn gluten meal (HCGM) and ammoniated tall fescue hay supplemented with corn (AH) or corn gluten meal (AHCGM) were fed to steers in two 4 X 4 Latin-square trials. Diets were fed to four Angus-Hereford steers (550 kg) at equal intakes in trial 1 and to four Hereford steers (350 kg) at ad libitum intakes in trial 2. Ammoniation reduced cell wall concentrations of p-coumaric acid and ferulic acid by 48 and 67%, respectively. Concentrations of other phenolics were also reduced. Apparent total tract digestibilities of vanillin, p-coumaric acid and ferulic acid were lower (P less than .05, .001 and .01, respectively) when nontreated hay was fed in trial 1, but were not different between hay types in trial 2. In trial 1, greater negative intestinal digestibilities of p-coumaric acid (P less than .001) and vanillin (P less than .05) occurred for steers fed HU and HCGM vs AH and AHCGM diets. Digestibilities of neutral detergent fiber (NDF) and acid detergent fiber (ADF) were greater (P less than .001) for steers fed ammoniated hay diets in both trials and greater (P less than .05) for HCGM vs HU in trial 1. More than 96% of the NDF and ADF digested by steers in trial 1 was digested in the stomach. Intakes of digestible NDF and ADF, but not indigestible NDF or ADF, were higher (P less than .001) for steers fed AH and AHCGM in trial 2. In situ dry matter disappearance rate of ammoniated hay was greater (P less than .05) than that of nontreated hay, but rate of cotton thread disappearance from bags suspended in the rumen of steers fed the various diets was similar among treatments. In both trials, feeding ammoniated hay resulted in higher (P less than .05) ruminal concentrations of acetate and higher (P less than 0.05) acetate:propionate ratios. Ruminal liquid dilution rates were lower (P less than .05) for steers fed AH and AHCGM in trial 1, but were not different in trial 2. Ruminal dry matter concentration and solids dilution rate were not affected by diet in either trial. The results are interpreted to indicate that increased intake of ammoniated hay is a result of increased rate and extent of fiber digestion. 相似文献
14.
Five steers (491 +/- 21 kg BW) were used in an incomplete 5 x 4 Latin square with four 24-d periods to determine the influence of supplemental non-protein N (NPN) source and supplementation frequency (SF) on nutrient intake and site of digestion in steers consuming low-quality grass straw (4% CP). Treatments (TRT) included an unsupplemented control and a urea- or biuret-containing supplement placed directly into the rumen daily (D) or every other day (2D) at 0700. The NPN treatments were formulated to provide 90% of the estimated degradable intake protein requirement. Daily TRT were supplemented CP at 0.04% of BW/d, whereas the 2D TRT were supplemented at 0.08% of BW every other day. Therefore, all supplemented TRT received the same quantity of supplemental CP over a 2-d period. Forage OM intake was not affected (P > 0.05) by NPN supplementation, NPN source, or SF; however, total OM and N intake were increased (P < 0.01) with CP supplementation. Duodenal flow of N was greater (P = 0.04) with CP supplementation compared with the control. In addition, duodenal bacterial N flow was increased with CP supplementation (P = 0.04) and for biuret compared with urea (P < 0.01). Bacterial efficiency (g bacterial N/kg OM truly digested in the rumen) was greater (P = 0.05) for biuret than for urea. Apparent total-tract N digestibility was increased with NPN supplementation (P < 0.01) but not affected by NPN source or SF. These results suggest that urea or biuret can be used effectively as a supplemental N source by steers consuming low-quality forage. 相似文献
15.
Salisbury MW Krehbiel CR Ross TT Schultz CL Melton LL 《Journal of animal science》2004,82(12):3567-3576
Two experiments were conducted to determine the effects of supplementing ruminally degradable intake protein (DIP) or ruminally undegradable intake protein (UIP) on N balance (Exp. 1; n = 6 wethers; initial BW = 48.7 +/- 4.6 kg) and site and extent of digestion (Exp. 2; n = 5 wethers; initial BW = 36.9 +/- 3.1 kg) in whiteface wethers consuming (as-fed basis) 69% blue grama and 31% love grass hay (mixture = 7.5% CP, 73.0% NDF, 36.0% ADF [DM basis]). Treatments were 1) no supplement (Control), 2) a supplement (219 g/d, as-fed basis) low in UIP (70 g/d of CP; 24.8 g/d of UIP), and 3) a supplement (219 g/d, as-fed basis) high in UIP (70 g/d of CP; 37.1 g/d of UIP). Both experiments were replicated 3 x 3 Latin square designs, with identical feeding and supplementation. Wethers had ad libitum access to the forage mixture and fresh water, and received supplement once daily. In Exp.1, forage intake (percentage of BW) was greatest (P = 0.04) for control, but total DMI (g/d) was greatest (P = 0.05) for lambs consuming supplement. Apparent total-tract OM digestibility was numerically greater (P = 0.11) for supplemented wethers than for controls, whereas total-tract ADF digestibility tended (P = 0.08) to be greater for control wethers. Lambs fed supplements consumed and retained more (P < or = 0.01) N (% of N intake) compared with controls, but no difference (P = 0.22) was observed between low and high UIP treatments. Similar to Exp. 1, forage intake (percentage of BW) tended (P = 0.06) to be greater for control than for supplemented wethers in Exp. 2. Ruminal NDF digestibility was 16.3% greater (P = 0.02) for supplemented wethers than for controls. Postruminal NDF and N digestibilities were greatest (P < or = 0.03) for controls, but apparent OM digestibility did not differ among treatments at all sites. Duodenal N flow was greatest (P = 0.05) for high UIP and least for control wethers. Nonmicrobial N flow was greater (P = 0.02) for high UIP compared with low UIP or controls. Control wethers had greater (P = 0.05) microbial efficiency. Ruminal ammonia concentration tended (P = 0.08) to be greatest for wethers fed low UIP and least for controls, with high-UIP wethers having intermediate ammonia concentrations. Results from these experiments suggest that in lambs fed low-quality forage there was no difference in apparent total-tract digestion or N balance (percentage of N intake) between lambs fed supplements that had the same CP but differed in the proportion of UIP and DIP; however, supplementing protein (regardless of UIP:DIP ratio) to wethers consuming low-quality forage increased N balance. 相似文献
16.
Wickersham TA Titgemeyer EC Cochran RC Wickersham EE Moore ES 《Journal of animal science》2008,86(11):3089-3099
We evaluated the effect of frequency and amount of rumen-degradable intake protein (DIP) on urea kinetics in steers consuming prairie hay. Five ruminally and duodenally fistulated steers (366 kg of BW) were used in a 5 x 5 Latin square and provided ad libitum access to low-quality prairie hay (4.7% CP). Casein was provided daily in amounts of 61 and 183 mg of N/kg of BW (61/d and 183/d) and every third day in amounts of 61, 183, and 549 mg of N/kg of BW per supplementation event (61/3d, 183/3d, and 549/3d). Periods were 18-d long with 9 d for adaptation and 9 d for collection. Steers were in metabolism crates for total collection of urine and feces. Jugular infusion of (15)N(15)N-urea followed by determination of urinary enrichment of (15)N(15)N-urea and (14)N(15)N-urea was used to determine urea kinetics. Treatment means were separated to evaluate the effects of increasing DIP supplementation and the effects of frequency at the low (61/d vs. 183/3d) and at the high (183/d vs. 549/3d) amounts of DIP provision. Forage OM and total digestible OM intakes were linearly (P < or = 0.05) increased by increasing DIP provision but were not affected by frequency of supplementation at either the low or high amounts. Production and gut entry of urea linearly (P < or = 0.006) increased with DIP provision and tended to be greater (P < or = 0.07) for 549/3d than 183/d but were not different between 61/d and 183/3d. Microbial N flow to the duodenum was linearly (P < 0.001) increased by increasing DIP provision. Additionally, 183/d resulted in greater (P = 0.05) microbial N flow than 549/3d. Incorporation of recycled urea-N into microbial N linearly (P = 0.04) increased with increasing DIP. Microbial incorporation of recycled urea-N was greater for 549/3d than 183/d, with 42 and 23% of microbial N coming from recycled urea-N, respectively. In contrast, there was no difference due to frequency in the incorporation of recycled urea-N by ruminal microbes at the low level of supplementation (i.e., 61/d vs. 183/3d). This study demonstrates that urea recycling plays a substantial role in the N supply to the rumen and to the animal, particularly in steers supplemented infrequently with high levels of protein. 相似文献
17.
Six heifers (two Hereford X Jersey, four Hereford X Longhorn; average BW 278 kg) cannulated at the rumen and duodenum and fed a grass hay (fescue/orchardgrass) diet were used in a replicated 3 X 3 Latin square. Treatments were either no infusion (C), 150 ml of duodenally infused soybean oil (DI), or 150 ml of ruminally infused soybean oil (RI)/heifer twice daily for a total daily infusion of 300 ml of soybean oil. Periods of the Latin square included 18 d for adaptation and 5 d for collection. Forage OM, ADF, NDF, and N intakes were not affected (P greater than .10) by soybean oil infusion. Ruminal (P = .11) and total tract (P less than .10) OM digestibilities were decreased by RI compared with C or DI, but ADF and NDF digestibilities were not affected by treatment. Duodenal N (P less than .05) and microbial N flows were increased (P less than .10) for C and RI compared with DI. Microbial efficiency (g of N/kg of OM truly fermented) was improved (P less than .10) by RI compared with DI but did not differ (P greater than .10) from C. Ruminal pH was lower (P less than .05) with RI than with either C or DI. Ruminal NH3 N, total VFA, and acetate were not affected (P greater than .10) by treatment. Propionate (mol/100 mol) was greater (P less than .05) with RI than with DI and C, but the proportion of butyrate did not differ among treatments. These data indicate minimal direct benefits for improving forage usage as a result of soybean oil infusion with a 100% grass diet; however, animals should realize benefits from additional dietary energy provided by infused lipid. 相似文献
18.
Influence of alfalfa maturity on feed intake and site of nutrient digestion in sheep 总被引:1,自引:0,他引:1
Four wethers fitted with ruminal, duodenal and ileal cannulas were used to study effects of maturity of alfalfa hay on intake, digestion and rate of passage of nutrients in various sites of the digestive tract. Pre-, early-, and mid-bloom hays were harvested from the same field; full-bloom hay was acquired from elsewhere due to wether conditions. Dry matter intake decreased (P less than .05) as intakes of NDF and ADF increased. This was attributed to decreased digestibility and increased retention time of undigested residues. Digestion of OM in the stomach (% of intake) was 44.2, 47.4, 38.8 and 35.1 for pre-, early-, mid- and full-bloom hay, respectively. Digestion of ADF in the stomach was lower for mid-bloom than for pre-and early-bloom hay (P less than .05). Degradation of alfalfa protein in the rumen was 94, 88, 81 and 78% for pre-, early-, mid- and full-bloom hay, respectively. Concentration of ruminal NH3 N, flow of N at the duodenum, fecal N and urinary N decreased of the hay and to N intake. Digestion of N in the small intestine (g/d) decreased as maturity advanced (P less than .05). Duodenal flow of total amino acids was greater (P less than .05) when animals consumed pre-bloom hay than when they consumed more mature hays. Relative feed value calculated from the detergent fiber analysis correlated with actual value determined biologically (r = +.81). Intake and site of nutrient digestion of alfalfa hay were influenced by the stage of maturity at harvest. 相似文献
19.
Farmer CG Cochran RC Simms DD Klevesahl EA Wickersham TA Johnson DE 《Journal of animal science》2001,79(9):2276-2285
Two experiments were conducted to quantify the impact on forage use and performance of varying supplementation frequency of cattle consuming forage diets across a range of frequencies. In both experiments, a common supplement was used that contained a relatively high concentration of CP (43%) and was fed at the following frequencies: 1) 2 d/wk; 2) 3 d/wk; 3) 5 d/wk; and 4) 7 d/wk. In Exp. 1, 120 Hereford x Angus cows (BW = 537 kg) grazing winter tallgrass-prairie range were supplemented at the various frequencies from December 7 until calving (average calving date = 3/7/99). All treatments provided the same quantity of supplement on a weekly basis (12.74 kg, as-fed) but divided the amount delivered on a given day equally among the number of supplementation events for that treatment. Less BW was lost from December 7 through calving (linear effect, P = 0.02) as frequency of supplementation increased, but the magnitude of difference in weight change was relatively small. Body condition responded similarly through early February (linear effect, P = 0.02), although treatment effects were not as distinct at calving (cubic effect, P = 0.11). In Exp. 2, 16 ruminally fistulated Hereford x Angus steers (BW = 257 kg) were blocked by weight and assigned to one of the four frequencies of supplementation. Steers were offered tallgrass prairie hay (73.5% NDF, 4.8% CP) ad libitum and were supplemented at a rate (relative to BW) similar to that of the cows in Exp. 1. Increasing frequency of supplementation increased (linear effect, P < or = 0.02) forage OM intake, OM and NDF digestion, and digestible OM intake. However, the most prominent differences in forage OM intake tended (cubic effect, P = 0.07) to occur with the two extreme frequencies of supplementation. In conclusion, forage use was improved with an increased frequency of supplementation, but the impact on performance is not likely to be large unless extreme differences in frequency occur. 相似文献
20.
A 5 x 5 Latin square design was used to determine the effects of restricted and ad libitum intake of diets containing wheat middlings on the site and extent of digestion compared to ad libitum intake of a corn-based diet and ad libitum intake of chopped alfalfa hay. Five ruminally and duodenally cannulated Angus steers (519 +/- 41.5 kg BW) were used to compare five dietary treatments. The five treatments were as follows: ad libitum access to a corn-based finishing diet (control), the control diet with 25 percentage units of the corn and soybean meal replaced with wheat middlings offered ad libitum (WM), the WM diet restricted to 75% of predicted ad libitum intake (RWM), the RWM diet with wheat middlings replaced with ammoniated wheat middlings (RNWM), and ad libitum access to a chopped alfalfa hay diet. Although RWM steers were fed to consume 75% of ad libitum intake, RWM steers consumed 15.5% less DM than WM. Steers fed ad libitum hay consumed 28.6, 31.7, and 37.2% less (P < 0.01) DM, OM, and nitrogen than RWM steers. No differences in apparent or true ruminal digestibility were observed among steers fed the control vs WM, WM vs RWM, RWM vs RNWM, or RWM vs hay diets. However, the steers fed the hay diet had 32.5, 33.4, and 36.9% lower (P < 0.01) apparent total tract digestibilities of DM, OM, and N than those fed the RWM diet. Average ruminal pH was lower (P < 0.01) for control steers than those fed the WM diet and for those fed RWM compared to the hay diet. The acetate:propionate ratio was higher for cattle fed hay vs the RWM diet. Microbial DM and OM flow to the small intestine was higher (P < 0.02) for steers fed the RWM diet than those fed the hay diet. In addition, bacterial N flow to the small intestine was higher (P < 0.01) for cattle receiving the RWM diet than the hay diet. Feeding diets containing 25 percentage units of wheat middlings at 75% ad libitum intake had no effect on ruminal digestibility. 相似文献