首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brassica napus is an important oil species with short history and narrow genetic background. Interspecific hybrids from crosses between B. oleracea and different B. rapa were obtained. We found the hybrids with white petal resembling B. oleracea, the flavonoid and phenolic content decreased in hybrids, agreeing with the expressional changes of flavonoid biosynthesis genes. Seed coat of hybrids resembled diploid parents, or partly resembled to each parent with a clear outline. The palisade layer in hybrids was thicker than parents, with similar pigment accumulation as B. oleracea but more than B. rapa. Differentially sized protein bodies (PBs) were found in hybrids. The radical and inner cotyledon of all hybrids were identified with larger but less PBs than parents. The average size of PBs in outer cotyledon of resynthesized B. napus was also larger than parents, but the number of PBs was not significantly reduced. The phenotypic and seed structural variations after polyploidization of B. napus would be interesting for genetic broadening and breeding of rapeseed.  相似文献   

2.
Summary Atrazine resistant Brassica napus × B. oleracea F1 hybrids were backcrossed to both parental species. The backcrosses to B. napus produced seeds in both directions but results were much better when the F1 hybrid was the pollen parent. Backcrosses to B. oleracea failed completely but BC1s were rescued by embryo culture both from a tetraploid hybrid (2n = 4x = 37; A1C1CC) and sesquidiploid hybrids (2n = 3x = 8; A1C1C). Progeny of crosses between the tetraploid hybrid and B. oleracea had between 25 and 28 chromosomes. That of crosses between the sesquidiploid hybrid and B. oleracea had between 21 and 27. A few plants that had chromosome counts outside the expected range may have originated from either diploid parthenogenesis, unreduced gametes or spontaneous chromosome doubling during in vitro culture. Pollen stainability of the BC1s ranged from 0% to 91.5%. All the BC1s to B. oleracea were resistant to atrazine.  相似文献   

3.
Six accessions belonging to four subspecies of Brassica rapa, including three accessions of B. rapa subsp. sylvestris, were crossed with B. oleracea subsp. alboglabra in order to develop a series of synthetic B. napus lines with a common C genome but contrasting A genomes. Different A genomes had significant effects on the efficiency of B. napus resynthesis and the sexual compatibility of the synthetic lines with oilseed rape cultivars. The synthetic lines were used to investigate the effect of A genome substitution on the resistance of B. napus to infection by Leptosphaeria maculans, and to explore the potential for the use of wild forms of B. rapa in oilseed rape breeding programmes. Synthetic lines derived from two wild accessions of B. rapa, and their F1 hybrids with oilseed rape cultivars, expressed high levels of resistance to L. maculans in glasshouse experiments. One of these lines also expressed high levels of resistance in field experiments in England and Australia when exposed to a genetically diverse pathogen population. All other synthetic lines and cultivars were highly susceptible in both glasshouse and field experiments. F1 hybrids between oilseed rape cultivars and synthetic lines derived from B. rapa subsp. chinensis were significantly more susceptible than either parent.  相似文献   

4.
Use of self‐incompatibility (SI) as a pollination control method for Brassica napus hybrid production requires the development of a sufficient number of S‐alleles that are expressed consistently in a range of B. napus lines. Self‐incompatibility (SI) alleles have been transferred from Brassica oleracea and Brassica rapa into B. napus var. oleifera. An understanding of expression of these alleles in B. napus is essential for their commercial use. Four SI B. napus doubled haploids containing the B. oleracea S‐alleles S2, S5, S13 and S24 were crossed to three B. napus cultivars to measure the B. napus genetic background effect on S‐allele expression. A line x tester analysis indicated that the largest source of variation in the expression rate of SI was the S‐allele itself. The B. napus genotypes tested contained modifier gene(s), some that enhanced SI expression and others that inhibited SI expression. The B. napus Canadian cultivar ‘Westar’ generally had a negative effect on SI expression while the European cultivar ‘Topas’ had a positive effect on the B. oleracea S‐allele expression. The B. oleracea S‐allele S24 was very similar in expression to the B. rapa allele W1. The application of these results for the use of B. oleracea S‐alleles for hybrid production in B. napus is discussed.  相似文献   

5.
Resistance responses of resynthesized Brassica napus lines to infection with Plasmodiophora brassicae were investigated. Lines that were derived from interspecific crosses between clubroot-resistant B. rapa and resistant B. oleracea exhibited very broad and effective resistance in both greenhouse and field tests. When clubroot resistance was introduced into resynthesized lines from the B. oleracea parent only, the plants were mainly susceptible. Interspecific hybrids from the most resistant parental genotypes, i.e. B. campestris ECD-04 and the B. oleracea cultivars ECD-15 or ‘Bohmerwaldkohf’, were used to initiate a B. napus resistance-breeding programme. These artificial rapeseed lines were resistant to isolates that were virulent on all B. napus differential lines and/or parental lines. Preliminary segregation analysis suggests that their resistance is due to at least two dominant and unlinked genes. In some cases progenies from selfed resynthesized plants exhibited resistance reactions that differed from those of the parental hybrid plant; this may have been the result of cytological instability.  相似文献   

6.
The primary aim of this study was to optimize in vitro culture protocols to establish an efficient reproducible culture system for different Brassica interspecific crosses, and to synthesize yellow-seeded Brassica napus (AACC) for breeding and genetical studies. Reciprocal crosses were carried out between three B. rapa L. ssp. oleifera varieties (AA) and five accessions of B. oleracea var. acephala (CC). All the parental lines were yellow-seeded except one accession of B. oleracea. Hybrids were obtained through either ovary culture from crosses B. rapa × B. oleracea, or embryo culture from crosses B. oleracea × B. rapa. A higher rate of hybrid production was recorded when ovaries were cultured at 4–7 days after pollination (DAP). Of different culture media, medium E (MS with half strength macronutrients) showed good response for ovaries from all the crosses, the highest rate of hybrid production reaching 45% in B. rapa (1151) × B. oleracea (T2). In embryo culture, the hybrid rate was significantly enhanced at 16–18 DAP, up to 48.1% in B. oleracea (T3) × B. rapa (JB2). The combinations of optimal DAP for excision and media components increased recovery of hybrids for ovary and embryo culture, and constituted an improved technique for B. rapa × B. oleracea crosses. In addition, yellow seeds were obtained from progenies of two crosses, indicating the feasibility of developing yellow-seeded B. napus through the hybridization between yellow-seeded diploids B. rapa and B. oleracea var. acephala.  相似文献   

7.
S. Abel  C. Möllers  H. C. Becker 《Euphytica》2005,146(1-2):157-163
Summary Allopolyploids are widely spread in the plant kingdom. Their success might be explained by positive interactions between homoeologous genes on their different genomes, similar to the positive interactions between different alleles of one gene causing heterosis in heterozygous diploid genotypes. In allopolyploids, such interactions can also occur in homozygous genotypes, and may therefore be called “fixed heterosis”. As to our knowledge, no experimental data are available to support this hypothesis. We propose an experimental approach to quantify “fixed heterosis” in resynthesised Brassica napus and the detection of loci contributing to “fixed heterosis” via comparative QTL mapping in B. napus and its parental species B. rapa and B. oleracea. In order to develop a genetically balanced material, interspecific crosses between 21 Brassica rapa and 16 Brassica oleracea doubled haploid or inbred lines were performed. In total 3485 vital embryos have been obtained from 9514 pollinated buds. The success of interspecific hybridisation was highly depending on the maternal genotype (B. rapa) and ranged from 0 to 1.18 embryos per pollinated bud. For the genetic characterisation of the B. rapa and B. oleracea lines, a dendrogram was constructed based on 273 RAPD markers. Thus a well-characterised material is now available, which is suitable to analyse the effects of “fixed heterosis” and the interactions between homoeologous genes in allopolyploid species.  相似文献   

8.
W. Qian  R. Liu  J. Meng 《Euphytica》2003,134(1):9-15
This study was conducted to estimate the genetic effects on biomass yield in the interspecific hybrids between Brassica napus and B. rapa, and to evaluate the relationship between parental genetic diversity and its effect on biomass yield of interspecific hybrids. Six cultivars and lines of oilseed B. napus and 20 cultivars of oilseed B. rapa from different regions of the world were chosen to produce interspecific hybrids using NC design II. Obvious genetic differences between B. rapa and B. napus were detected by RFLP. In addition, Chinese B. rapa and European B. rapa were shown genetically differences. Plant biomass yield from these interspecific hybrids were measured at the end of flowering period. Significant differences were detected among general combining ability (GCA) effects over two years and specific combining ability (SCA) effects differences were detected in 2000. The ratios of mean squares, (σ2 GCA(f) + σ2 GCA(m)) / (σ2 GCA(f) + σ2 GCA(m) + σ2 SCA), were 89% and 88% in 1999 and 2000, respectively. This indicates that both additive effects and non-additive effects contributed to the biomass yield of interspecific hybrids and the former played more important role. Some European B. rapa had significant negative GCA effects while many of Chinese B. rapa had significant positive GCA effects, indicating that Chinese B. rapa may be a valuable source for transferring favorable genes of biomass yield to B. napus. Significant positive correlation between parental genetic distance and biomass yield of interspecific hybrids implies that larger genetic distance results in higher biomass yield for the interspecific hybrids. A way to utilize interspecific heterosis for seed yield was discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The oilseed Brassica rapa flowers and matures earlier than B. oleracea, as well as their amphidiploid B. napus. Therefore, earliness of B. rapa has been investigated as a source of variation for earliness in B. napus breeding programs. Variation for days to flower exists in B. oleracea; however, its earliest flowering variant B. alboglabra flowers 2–3 weeks later than B. napus. We hypothesized that the C genome of B. alboglabra carries alleles for early flowering which are different from the C-genome alleles of B. napus; and these alleles can be used for the improvement of B. napus. To test this, we examined flowering time in pedigree and DH populations from two B. napus × B. alboglabra crosses. A B. napus line with about a week earlier flowering than the B. napus parent was achieved through reconstitution of its C genome following pedigree selection. Introgression of the B. alboglabra allele in the early flowering pedigree lines is also evident from the presence of B. alboglabra-specific SSR alleles in this line. However, application of doubled haploidy failed to generate any line that flowered earlier than the B. napus parent, which is probably due to the difficulty of obtaining large numbers of euploid B. napus DH lines from this interspecific cross. Thus, we demonstrate that a trait of the diploid species, which apparently looks undesirable, might in fact be highly valuable for the improvement of amphidiploids; and knowledge from this research can also be applied for other traits.  相似文献   

10.
Summary Meiosis in 14 interspecific F1 hybrids with three chromosomal levels (triploid, tetraploid, hexaploid; 2n=28, 37 and 55) between Brassica napus L. and 2x and 4x cabbage (B. oleracea var. capitata L.) was studied. The oleracea genome from B. napus maintained close homology with the c genome of cabbage while the campestris genome of B. napus showed partial homology with the c genome contained in the hybrids. Genotypic influence on chromosome pairing was indicated. Structural chromosome differences and spontaneous chromosome breakage and reunion were suggested as causes for the abnormalities which related to the unbalance of the genotypes. The divergence of the genomes of B. napus and B. oleracea and the need for the qualification of the term secondary association were discussed.Contribution No. J. 673, Research Station, Agriculture Canada, St. Jean, Québec.  相似文献   

11.
Summary Self-incompatibility was shown to be an effective method of pollination control in spring rapeseed (B. napus L. ssp. oleifera (Metzg.)) by comparing the yield of a Westar-Topas syn-1 produced by crossing two SI lines with the yield of the corresponding syn-1 produced by hand pollination. Although the trial showed high-parent heterosis in the syn-1s, there was insufficient replication to determine the level of heterosis.Abbreviations SI self-incompatible - SC self-compatible  相似文献   

12.
Synthesis and sterility of raphanobrassica   总被引:4,自引:0,他引:4  
Summary The synthesis of Raphanobrassica (2n=36, rrcc) from Raphanus sativus (2n=18, rr) and Brassica oleracea (2n=18, cc) is described a) by colchicine treatment of diploid hybrids; b) by crossing autotetraploid froms of the parent species.The variation within R. sativus and B. oleracea suggests that a range of morphologically distinct Raphanobrassica forms may be created, some of which may have agronomic potential and in particular, it is hoped, Plasmodiophora resistance.Inter-generic hybrids were readily obtained from crossing the parental species at both 2x and 4x chromosome levels, but only with R. sativus as female parent.Details are given of the morphology, fertility and chromosome behaviour of both diploid F1 R. sativus × B. oleracea hybrids and of the amphidiploid Raphanobrassica.Synthesized Raphanobrassica plants proved, in general, highly sterile. Some aneuploids resulted from 4x R. sativus × 4x B. oleracea crosses but most progeny were euploid and showed almost regular chromosome association. A number of stunted, deformed plants were obtained from both 2x and 4x crosses. Vigour, fertility and aneuploidy appeared unconnected in the amphidiploid.Previous work on Raphanobrassica is reviewed. It is concluded that the extremely low fertility encountered in the present study is more likely to be the result of genic imbalance than to cytological anomalies which appear to be of lesser significance.  相似文献   

13.
Summary F1 hybrids of triazine resistant Brassica napus and triazine susceptible B. oleracea were morphologically intermediate to the parent species. Of 49 hybrids examined, 44 had 28 chromosomes, two had 37, one had 38 and two had 56. The 38-chromosome plant was thought to be a matromorph, the others, A1C1C (28), A1C1CC (37) or A1A1C1C1CC (56) type hybrids. Pollen stainability averaged 9.0% in the sesquidiploid, 32.0% in the tetraploids and 89.5% in the hexaploids. All the interspecific hybrids were resistant to 1.0×10-4 mol L-1 atrazine. The sesquidiploid hybrids produced gametes with chromosome numbers ranging from 9 to 17 and the tetraploid hybrid gametes had chromosome numbers from 15 to 22. Most hybrids produced self-seed. The partial fertility of these hybrids may permit their backcrossing to one or both parents.  相似文献   

14.
W. Rygulla    W. Friedt    F. Seyis    W. Lühs    C. Eynck    A. von Tiedemann    R. J. Snowdon 《Plant Breeding》2007,126(6):596-602
Resynthesized (RS) forms of rapeseed (Brassica napus L.; genome AACC, 2n = 38) generated from interspecific hybridization between suitable genotypes of its diploid progenitors Brassica rapa L. (syn. campestris; genome AA, 2n = 20) and Brassica oleracea L. (CC, 2n = 18) represent a potentially useful resource to introduce resistance against the fungal pathogen Verticillium longisporum into the gene pool of oilseed rape. Numerous cabbage (B. oleracea) accessions are known with resistance to V. longisporum; however, B. oleracea generally has high levels of erucic acid and glucosinolates in the seed, which reduces the suitability of resulting RS rapeseed lines for oilseed rape breeding. In this study resistance against V. longisporum was identified in the cabbage accession Kashirka 202 (B. oleracea convar. capitata), a zero erucic acid mutant, and RS rapeseed lines were generated by crossing the resistant genotype with two spring turnip rape accessions (B. rapa ssp. olerifera) with zero erucic acid. One of the resulting zero erucic acid RS rapeseed lines was found to have a high level of resistance to V. longisporum compared with both parental accessions and with B. napus controls. A number of other zero erucic acid RS lines showed resistance levels comparable to the parental accessions. In the most resistant RS lines the resistance and zero erucic acid traits were combined with variable seed glucosinolate contents. Erucic acid‐free RS rapeseed with moderate seed glucosinolate content represents an ideal basic material for introgression of quantitative V. longisporum resistance derived from B. oleracea and B. rapa into elite oilseed rape breeding lines.  相似文献   

15.
Diploid Solanum tuberosum (tbr), 2n=2x=24,can be crossed with S. verrucosum (ver) only when the latter is used as a pistillate parent but not reciprocally. This conforms to the phenomenon of unilateral incompatibility (UI) where a self-compatible species, like ver (SC) cannot be used as a male parent to cross with a self-incompatible (SI) parent like tbr. Even if ver × tbr hybrids are made, the F1 hybrids possess cytoplasmic male sterility and thus hinder genetic analysis of crossing barriers. Exceptionally, however, some diploid genotypes of tbr (SI) can be used as pistillate parents to cross with ver, and such exceptional tbr clones are called `acceptors'. Repeated backcrossing of acceptors to ver have resulted in male fertile genotypes that possess tbr cytoplasm and ver nucleus. These genotypes were used for the genetic analysis of `acceptance' and UI in thse experiments. It was found that acceptance of ver-pollen by tbr-pistils is based on a dominant gene A that expresses only in the absence of an inhibitor I. In the F1 hybrids, only the S-allele of tbr was expressedbut not that of ver. Concomitant with this observation, it was shown that ver does not produce style-specific S-glycoproteins that are responsible for self-incompatible reaction in diploid potato. Although the the F1 populations were SC, they segregated into SC and SI genotypes giving skewed segregation ratios for this trait. Because of this as well as the disappearance and re-appearance of SC trait in the offspring generations, it was necessary to postulate a more complex interaction between A and I. Models are presented in order to explain acceptance, non-acceptance and the expression of UI. It is concluded that at least four different loci are involved in the expression of UI. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Cultivars in Brassica napus var. oleifera, a self‐pollinating, self‐compatible species, have traditionally been developed as open‐pollinated lines or populations. Significant yield gains in this species have been realized through the exploitation of heterosis. Commercial hybrid production has been possible as a result of the development of a number of pollination control systems. Self‐incompatibility was transferred from B. oleracea var. italica to B. napus var. oleifera through interspecific hybridization. The response to interspecific pollination, as measured by pod elongation and initial stages of ovule development, was genotype dependent, and two highly responsive B. napus genotypes were identified. Embryo rescue was used to produce the interspecific hybrids. Isoelectric focusing of stigma proteins was used to identify S‐alleles in the interspecific hybrids to facilitate backcrossing. Segregation of the S‐locus through a series of back‐crosses to B. napus was complicated by aneuploidy; however, the S‐locus was found to segregate as a single gene. Usefulness of B. oleracea as a source of S‐alleles for pollination control in B. napus is discussed.  相似文献   

17.
M. H. Rahman 《Plant Breeding》2002,121(4):357-359
The fatty acid composition of seed oil of four interspecific hybrids, resulting from crosses between zero erucic acid Brassica rapa (AA), and high erucic acid Brassica alboglabra/Brassica oleracea (CC) and Brassica carinata (BBCC), void of erucic acid genes in their A‐genomes was examined. The erucic acid content in resynthesized Brassica napus (AACC) lines derived from these crosses was only about half that of the high erucic acid CC genome parents, indicating equal contributions of the two genomes to oil (fatty acid) synthesis and accumulation. The differences in C18 fatty acid synthesis between the parents were also evident in the resulting resynthesized B. napus plants. Hexaploid Brassica plants of the genomic constitution AABBCC, in which the AA genome was incapable of erucic acid synthesis, had lower erucic acid contents than the B. carinata (BBCC) parent. This is plausible considering the fact that the zero erucic acid AA genome contributes to oil synthesis in AABBCC plants, thus reducing erucic acid content.  相似文献   

18.
Brassica napus is a most important oilseed grown worldwide with a limited genetic background, due to the short history of speciation, domestication and cultivation. To create novel germplasm for rapeseed breeding, we made interspecific crosses followed with chromosome doubling between B. rapa and B. oleracea to generate novel B. napus with favourable agronomic traits. The resynthesized (S0) hybrids were confirmed by SSR and cytogenetic analysis, and the fertility was increased from 32.7% in S0 generation to ~97.31% in S1 generation. The plant shapes of the progeny were dramatically improved compared to the diploid parents and B. napus cv. ‘Yangyou 6’, especially for the branch initiation height, branch number and pod number. The single‐plant yield was significantly improved in S1 progeny for the variations in branching sites and number. Significant improvement in plant shape and yield was observed on S2 generation compared to the local elite commercial open‐pollinated cultivar, which would be further fixed by intensive selection and pyramiding breeding. Such variation is of great value for breeding rapeseed with improved plant architecture and harvest index.  相似文献   

19.
Somatic hybrids between Sinapis alba (2n= 24) and Brassica oleracea (2n= 18) have been backcrossed with the B. oleracea parent. Whereas backcrosses with the diploid B. oleracea parent were unsuccessful, 344 BC1 seeds could be obtained from inter-valence crosses with tetraploid B. oleracea (2n= 4x= 36). The investigated 96 BC1 plants segregated for morphological traits and for fertility. They were backcrossed with diploid B. oleracea or self-pollinated, depending on their male fertility. The BC1F2 and BC2 progenies segregated well for the morphological traits. Disturbances were observed especially in the generative phase (flower development and pollen fertility). Both male fertile and male sterile BC1F2 and BC2 plants were obtained and backcrossed or self-pollinated with the B. oleracea parent. The presence of either one of the parental or the cybrid organelle genomes was detected. In the progenies, a stable maternal inheritance of the organelle genome patterns was observed. Isozyme analyses revealed polymorphism for the leucine aminopeptidase (LAP) which was used for the identification of S. alba genes in the progenies. Cytological investigations showed a clear differentiation between the BC1F2 and BC2 plants. Whereas the BC1F2 plants possess large numbers of chromosomes ranging from 34 to 40, the BC2 material was strongly reduced to chromosome numbers ranging from 20 to 22. Preliminary investigation of the meiosis suggests the possibility of introgressions of S. alba-DNA into the B. oleracea genome.  相似文献   

20.
Brassica napus var. oleifera varieties have traditionally been developed as open‐pollinated varieties. The successful introduction of several high‐yielding hybrids based on cytoplasmic male sterility or transgenic pollination control systems has generated interest in the development of new hybrid systems. Self‐incompatibility could be an additional useful pollination control system for B. napus if a sufficient number of S‐alleles could be developed in this species. The S‐alleles, S2, S5, S13, S24 and S39, were identified in five hybrids of B. oleracea var. italica and subsequently transferred to B. napus. Doubled haploid lines were produced for the self‐incompatible (SI) lines in B. napus and intercrossed to produce SI heterozygotes in order to study allele interaction. There was a greater incidence of interallelic dominance in the stigmas and pollen of B. napus than was reported for the S‐alleles in B. oleracea. Allele S24 exhibited the greatest degree of dominance over the other alleles tested, while allele S2 was generally recessive or codominant with other alleles. Self‐incompatible expression was very similar in the SI homozygotes and heterozygotes, thus no weakening of the SI trait in the heterozygote was observed. The implications of S‐allele interaction for the use of SI in B. napus are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号