首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
  1. Most of the world's nations adopted the 20 Aichi global biodiversity targets to be met by 2020, including the protection of at least 10% of their coastal and marine areas (Target 11) and the avoidance of extinction of threatened species (Target 12). However, reconciling these biodiversity targets with socio‐economic demands remains a great dilemma for implementing conservation policies.
  2. In this paper, Aichi Targets 11 and 12 were simultaneously addressed using Brazil's exclusive economic zone as an example. Priority areas for expanding the current system of marine protected areas within the country's eight marine ecoregions were identified with data on threatened vertebrates under different scenarios. Additionally, the potential effects of major socio‐economic activities (small? and large‐scale fishing, seabed mining, and oil and gas exploration) on the representation of conservation features in proposed marine protected areas were explored.
  3. Areas selected for expanding marine protected areas solely based on biodiversity data were different (spatial overlap from 62% to 93%) from areas prioritized when socio‐economic features were incorporated into the analysis. The addition of socio‐economic data in the prioritization process substantially decreased opportunity costs and potential conservation conflicts, at the cost of reducing significantly (up to 31%) the coverage of conservation features. Large? and small‐scale fisheries act in most of the exclusive economic zone and are the major constraints for protecting high‐priority areas.
  4. Nevertheless, there is some spatial mismatch between areas of special relevance for conservation and socio‐economic activities, suggesting an opportunity for reconciling the achievement of biodiversity targets and development goals within the intricate Brazilian seascape by 2020 and beyond.
  相似文献   

2.
  1. This study aimed to develop an integrated analytical framework to identify candidate sites for surface water protection that is applicable at broad scales and in data scarce regions, using Zambia as a case study.
  2. In the Zambian Water Resources Management Act of 2011, Water Resource Protection Areas are defined as areas where special measures are necessary for the protection of a catchment, sub-catchment, aquifer, or geographical area. Three specific selection criteria are listed for the definition of Water Resource Protection Areas: (i) areas of high importance in providing water to users in a catchment; (ii) aquatic areas of high ecological importance; and (iii) areas that are particularly sensitive to human impact.
  3. In this project, each sub-catchment and river reach of Zambia was characterized for their importance regarding these three criteria. ‘Water provisioning’ was assessed by analysing patterns of runoff generation and human water use; ‘aquatic ecological importance’ was determined by conducting a freshwater biodiversity and ecosystem assessment using a systematic conservation planning approach; and ‘sensitive areas’ were identified by quantifying erosion potential and sediment transport. The work was supported by an assessment of free-flowing rivers in Zambia, i.e., those rivers where aquatic ecosystem functions and services are largely unaffected by changes to fluvial connectivity through dams and other infrastructure.
  4. Highly ranked sub-catchments were found in the Liuwa, Barotse, and Bangweulu floodplains and wetlands, and in the headwater regions of the upper Zambezi, Kafue, Chambeshi/Luapula, and Tanganyika catchments. The Luangwa was identified as the highest ranked candidate river for protection within Zambia.
  5. The resulting maps, data, and methods are intended to support national-scale efforts to prioritize areas for surface water protection, identify catchments and rivers with high conservation value, optimize decision making for infrastructure development, and inform concerted strategies to maintain and restore freshwater ecosystem services in Zambia.
  相似文献   

3.
  1. Although the network of national parks in Zambia offers a degree of protection for freshwater diversity, the protection status of numerous systems outside of these parks requires further action. The biodiversity associated with its freshwater systems, both lotic and lentic, is unique, covering a climatic gradient from tropical to subtropical across the Zambezi and Congo basins. Recent Zambian legislation allows for the delineation of water resource protection areas (WRPAs), with one of the criteria being that they include aquatic areas of ecological importance (AEIs).
  2. In this study, a systematic conservation planning approach was used to identify aquatic AEIs objectively. Importantly, the approach included a rigorous and iterative stakeholder engagement and review process.
  3. The conservation planning software marxan was chosen because of its ability to integrate upstream–downstream connectivity. In total, 5,671 planning units (sub-catchments with an average area of approx. 14,000 ha) were populated with 77 biodiversity features: data were drawn from a wide range of sources, and included fishes, semi-aquatic mammals, molluscs, amphibians, and ecotonal physiographic features, such as waterfalls. Sub-catchments were preferentially chosen using a combination of area- and distance-weighted boundary costs.
  4. The final solution highlights critical clusters in each of the major freshwater ecoregions in Zambia, with all conservation targets being met. Results show that although the existing protected area network also coincides with identified aquatic AEIs, approximately 80% of all aquatic AEIs fall outside of formally protected areas.
  5. The outcomes of this process serve as one of three prioritization layers (the other two being water provision and sensitivity to human impacts) that are integrated in a larger study to select and prioritize WRPAs.
  相似文献   

4.
  1. The people of the Pacific have long relied on the ocean for sustenance, commerce and cultural identity, which resulted in a sophisticated understanding of the marine environment and its conservation.
  2. The global declines in ocean health require new and innovative approaches to conserving marine ecosystems. Marine Protected Areas (MPAs) have been shown to be a highly effective means of conserving biodiversity and managing fisheries, while also restoring and preserving overall ecosystem function.
  3. Traditional ecological knowledge held by many island peoples in the Pacific is critical to the development, design and implementation of contemporary MPAs.
  4. Chile's offshore islands are among the few oceanic archipelagos along the west coast of South America. These islands have cultural and ecological connections to the broader insular Pacific, yet our scientific understanding of them is extremely limited.
  5. Chile has created several large-scale MPAs around their offshore archipelagos. By protecting these unique ecosystems, Chile has established itself as a global leader in marine conservation.
  6. Effective management and a better understanding of social–ecological interactions are currently the biggest challenges facing MPAs in the Pacific Islands.
  相似文献   

5.
  1. Motivated by recent global initiatives for biodiversity conservation and restoration, this article reviews the gaps in our understanding of, and the challenges facing, freshwater macroinvertebrate biodiversity and conservation in tropical regions.
  2. This study revealed a lack of adequate taxonomic, phylogenetic, and ecological information for most macroinvertebrate groups, and consequently there are large‐scale knowledge gaps regarding the response of macroinvertebrate diversity to potential climate change and other human impacts in tropical regions.
  3. We propose ideas to reduce the impact of key drivers of declines in macroinvertebrate biodiversity, including habitat degradation and loss, hydrological alteration, overexploitation, invasive species, pollution, and the multiple impacts of climate change.
  4. The review also provides recommendations to enhance conservation planning in these systems (as well as providing clear management plans at local, regional, and national levels), integrated catchment management, the formulation of regulatory measures, the understanding of the determinants of macroinvertebrate diversity across multiple scales and taxonomic groups, and the collaboration between researchers and conservation professionals.
  5. It is suggested that the integrated use of macroinvertebrate biodiversity information in biomonitoring can improve ecosystem management. This goal can be facilitated in part by conservation psychology, marketing, and the use of the media and the Internet.
  相似文献   

6.
  1. The Amazon basin has been subjected to extreme climatic events and according to climate change projections this hydrosystem could face changes in the natural dynamic of flood cycles that support the feeding and reproduction of many fish species, threatening aquatic biodiversity.
  2. Protected areas (PAs) are the main tools used to safeguard the biodiversity in the long term; however, they are fixed areas that could be subject to climate change, questioning their future efficiency in protecting biodiversity.
  3. The Amazon basin currently benefits from a relatively high level of protection as 52% of its catchment area is under the form of true PAs or indigenous lands. However, the capacity of these PAs to protect freshwater biodiversity remains unclear as they have generally been assessed with little regard to freshwater ecosystems and their hydrological connectivity. Here, the aim was to evaluate the effectiveness of PAs in representing the Amazon fish fauna under current and future climatic conditions.
  4. A macroecological approach was used to estimate the minimum size of the geographical range needed by each species to achieve long-term persistence, by a combined function of range size and body size, two ecological traits known to influence species extinction risk.
  5. In future the Amazon basin could risk losing 2% of its freshwater fish fauna owing to unsuitable climatic conditions, with a further 34% adversely affected. The present Amazon network of PAs will cover the minimum required range for species persistence for more than 60% of the freshwater fish species analysed under the future climate scenario. However, more than 25% of the future susceptible species are currently concentrated in large tributaries and in the central-lower Amazon floodplain where few PAs occur, highlighting the lack of appropriate conservation actions for these specific water bodies.
  相似文献   

7.
  1. The delimitation of conservation units may be supported by information on compositional (taxonomic), functional, and phylogenetic diversity of a given locality or region. In this context, systematic conservation planning and key biodiversity areas are promising approaches for biodiversity protection.
  2. Factors such as species representativeness and exclusivity may be used to identify geographical distribution patterns and select relevant areas for conservation at a local scale.
  3. This study aims to identify areas with rare and restricted fish species in mountain streams in Southern Brazil, using a method that unites ecological and biogeographical approaches.
  4. Seven river basins and 152 mountain streams in Southern Brazil were sampled to obtain data on the occurrence and abundance of 115 fish species. The rarity status of each species was determined and endemicity analysis was used to find areas of restricted species (ARS) with three cell sizes.
  5. Using larger cells, continuous areas were identified and supported by a higher proportion of rare fish species. Using smaller cells, discontinuous areas were identified within each of the river basins, where rare and endemic fish species occur. Most of the smaller areas relevant for protecting fish fauna were located outside of conservation units.
  6. Fundamental areas were selected for the protection of fish species in mountain streams in Southern Brazil. Both the method proposed and the areas with rare and restricted fish species identified may be used to support systematic conservation planning and to delimit new priority areas for conservation.
  相似文献   

8.
  1. In 1949, Aldo Leopold formalized the concept of the ‘land ethic’, in what emerged as a foundational and transformational way of thinking about natural resource management, biodiversity conservation, and stewardship in terrestrial systems. Yet, the land ethic has inherent linkages to aquatic ecosystems; Leopold himself conducted research on rivers and lakes, and freshwater ecosystems figured widely in his writing.
  2. We reflect on the land ethic and other aspects of Leopold's scholarship to identify key messages that provide insight into the stewardship and management of freshwater ecosystems around the globe. We also frame what we call the ‘freshwater ethic’ around Leopold's legacy. Although Leopold could not have envisaged the stressors affecting modern aquatic ecosystems, his core principles remain salient. These apply not only to ecosystem protection, but also to the ethics of modern conservation economics, sustainability, and the protection of natural capital, in which lakes, rivers, and wetlands now figure prominently.
  3. We identify key ‘Aldo-inspired’ recommendations for protecting and restoring freshwater ecosystems in the Anthropocene that emanate directly from his writings (e.g. adopt an ecosystem approach, identify win–win–win scenarios, recognize the irreplaceability of wild waters, and strive for freshwater optimism).
  4. In an epoch where links between people and nature are becoming more explicit in environmental management, policy, and governance, we suggest that Aldo Leopold's work illustrates how inspirational, seminal thinkers have offered leadership in this domain. We contend that today there is still much that can be learned from Leopold, especially by the next generation of environmental practitioners, to ensure the effective stewardship of our aquatic ecosystems.
  5. We submit that the adoption of a freshwater ethic in parallel with Leopold's land ethic will enhance the stewardship of the world's increasingly threatened fresh waters by raising the profile of the plight of fresh waters and identifying enduring actions that, if embraced, will help conserve and restore biodiversity.
  相似文献   

9.
  1. Explorations of the Mediterranean deep sea using remotely operated vehicles have shown that the sea bed hosts rich habitats, supporting high biodiversity. However, there have been only a few studies dealing with the southern part of the basin, leading to limited protection and conservation efforts in this area.
  2. This study aimed to explore the sea bed off Linosa Island (Sicily Channel, southern Mediterranean Sea), which is considered a ‘sentinel area’ for alien species and global environmental changes owing to its geographic position, thus deserving special attention.
  3. Remotely operated vehicle surveys, carried out in 2016 and 2017, were analysed to provide the first ecological characterization of benthic assemblages at depths −19 – −384 m around Linosa Island.
  4. Communities were dominated by three priority habitats, amounting to 39% of the almost 5 km of the sea floor that was surveyed. These are represented in the euphotic zone by Posidonia oceanica meadows and, at greater depth, by newly discovered dense coral forests and extended rhodolith/maërl beds. Sixteen habitat-forming species included in the Red List of the International Union for Conservation of Nature (e.g. gorgonians Eunicella cavolini and Paramuricea clavata, and black corals Antipathella subpinnata and Leiopathes glaberrima) were recorded, as well as individuals of Sargassum sp. at −100 m depth.
  5. The volcanic island of Linosa represents a small, naturally preserved area, with very limited human pressure, hosting rich marine benthic biodiversity. Given the high species and habitat richness, we recommend its inclusion in the Special Protected Areas of Mediterranean Importance project (United Nations Environment Programme) and suggest a redefinition of the existing marine protected area extension.
  相似文献   

10.
  1. Marine protected area (MPA) planning often relies on scientific principles that help ensure that an area selected for conservation will effectively protect biodiversity. Capturing ecological processes in MPA network planning has received increased attention in recent years. High‐resolution seafloor maps, which show patterns in seafloor bio‐physical characteristics, can support our understanding of ecological processes.
  2. In part, owing to a global lack of high‐resolution seafloor maps, studies that aim to integrate seascape spatial pattern and conservation prioritization often focus on shallow biogenic habitats with less attention paid to deeper benthic seascapes (benthoscapes) mapped using acoustic techniques. Acoustic seafloor mapping strategies yield the spatial information required to extend conservation prioritization research into these environments, making incorporating seafloor ecological processes into conservation prioritization increasingly achievable.
  3. Here, a new method is proposed and tested that combines benthoscape mapping, landscape ecology metrics and a conservation decision support tool to prioritize areas with structural and potential connectivity value in MPA placement. Using a case study in eastern Canada, benthoscape composition and configuration were quantified using spatial pattern metrics and integrated into Marxan.
  4. Results illustrate how large patches of seafloor habitat in close proximity to neighbouring patches can be preferentially selected when benthoscape configuration is considered. The flexibility of the method for including relevant spatial pattern metrics or species‐specific movement data is discussed to illustrate how benthic habitat maps can improve existing conservation planning methods and complement existing and future work to support marine biodiversity conservation.
  相似文献   

11.
12.
  1. The amplitude, duration, frequency, and predictability of runoff and inundation of aquatic habitats are key hydrological characteristics linked to aquatic ecosystem functioning and biodiversity, but they are seldom integrated into analyses of Amazon floodplain ecology. Remote sensing approaches, measurements and modelling of floodplain hydrology provide a basis for this integration.
  2. Effective legislation to protect floodplains and other wetlands depends on operational definitions that require application of hydrological data.
  3. Extent and changes of flooded areas are linked to fish diversity and to presence and growth of flooded forests and floating plants.
  4. Dam construction reduces river system connectivity and modifies the flood pulse, with major negative implications for floodplain ecosystems adapted to and dependent on a natural flood regime.
  5. Trends and variability in climate plus deforestation are altering the Amazon's hydrological cycle, causing changes in discharge and flooded area with concomitant ecological impacts.
  相似文献   

13.
14.
  1. A spatial approach to coastal management, such as marine protected areas, is being increasingly used to address biodiversity and fishery declines resulting from habitat loss, degradation, and overfishing. This approach is especially applicable in regions and fisheries that are data poor, and which often lack regulations and adequate capacity for enforcement. In data-poor situations, species that have economic, cultural, and charismatic value can provide leverage for ecosystem protection.
  2. In this study, acoustic telemetry was used to confirm a pre-spawning aggregation site, acting as critical information for protection of essential habitat for bonefish. Additionally, data sharing with an acoustic telemetry study on smalltooth sawfish (Pristis pectinata) documented linkages between the pre-spawning aggregation site and bonefish home ranges ≥70 km distant, thus providing an estimate of the catchment area.
  3. These data provided post hoc support for a marine national park designated in 2002, and demonstrate that the park is of the appropriate spatial scale.
  相似文献   

15.
16.
17.
  1. The ocean crisis is urgent and central to human wellbeing and life on Earth; past and current activities are damaging the planet's main life support system for future generations. We are witnessing an increase in ocean heat, disturbance, acidification, bio‐invasions and nutrients, and reducing oxygen levels. Several of these act like ratchets: once detrimental or negative changes have occurred, they may lock in place and may not be reversible, especially at gross ecological and ocean process scales.
  2. Each change may represent a loss to humanity of resources, ecosystem function, oxygen production and species. The longer we pursue unsuitable actions, the more we close the path to recovery and better ocean health and greater benefits for humanity in the future.
  3. We stand at a critical juncture and have identified eight priority issues that need to be addressed in unison to help avert a potential ecological disaster in the global ocean. They form a purposely ambitious agenda for global governance and are aimed at informing decision‐makers at a high level. They should also be of interest to the general public.
  4. Of all the themes, the highest priority is to rigorously address global warming and limit surface temperature rise to 1.5°C by 2100, as warming is the pre‐eminent factor driving change in the ocean. The other themes are establishing a robust and comprehensive High Seas Treaty, enforcing existing standards for Marine Protected Areas and expanding their coverage, especially in terms of high levels of protection, adopting a precautionary pause on deep‐sea mining, ending overfishing and destructive fishing practices, radically reducing marine pollution, putting in place a financing mechanism for ocean management and protection, and lastly, scaling up science/data gathering and facilitating data sharing.
  5. By implementing all eight measures in unison, as a coordinated strategy, we can build resilience to climate change, help sustain fisheries productivity, particularly for low‐income countries dependent on fisheries, protect coasts (e.g. via soft‐engineering/habitat‐based approaches), promote mitigation (e.g. carbon storage) and enable improved adaptation to rapid global change.
  相似文献   

18.
  1. Protecting critical habitats of the Indo‐Pacific humpback dolphin, Sousa chinensis, is a hot topic of discussion for marine biodiversity conservation in China and many Southeast Asian countries. In practice, sound habitat protection action (HPA) planning often suffers from information gaps in macroscopic habitat configurations and changes in the habitat conditions of humpback dolphins.
  2. Recent publications in the journal Aquatic Conservation: Marine and Freshwater Ecosystems (AQC) have served to advance humpback dolphin conservation in Chinese waters by resolving such habitat configurations and indicating significant changes in distribution patterns and habitat characteristics under intense coastal anthropogenic activity.
  3. We highlight an integrative research framework to investigate habitat configuration and long‐term habitat changes when planning a holistic HPA programme for humpback dolphins. When constructing habitat configuration baselines, field surveys should be designed and conducted in a systematic manner to ensure survey efforts cover diverse environments equally, in either a spatially stratified or gridded pattern, to minimize potential spatial sampling biases. Long‐term habitat changes can be revealed by comparing satellite images from different decades. Changes in habitat preferences and habitat characteristics can be explored through questionnaire surveys on local ecological knowledge, associating historical occurrences with coastline features and projecting historical habitat configuration by species distribution modelling exercises.
  4. A lack of good communication and sharing of information between research and management sectors can still be an obstacle to the implementation of sound conservation practices, however, even though there is robust scientific evidence to fill knowledge gaps in distribution and habitat baselines. We have addressed the need to establish a mechanism to improve and streamline information sharing between research teams, management sectors, and stakeholder groups.
  相似文献   

19.
  1. The extent and intensity of impacts of multiple new dams in the Amazon basin on specific biological groups are potentially large, but still uncertain and need to be better understood.
  2. It is known that river disruption and regulation by dams may affect sediment supplies, river channel migration, floodplain dynamics, and, as a major adverse consequence, are likely to decrease or even suppress ecological connectivity among populations of aquatic organisms and organisms dependent upon seasonally flooded environments.
  3. This article complements our previous results by assessing the relationships between dams, our Dam Environmental Vulnerability Index (DEVI), and the biotic environments threatened by the effects of dams. Because of the cartographic representation of DEVI, it is a useful tool to compare the potential hydrophysical impacts of proposed dams in the Amazon basin with the spatial distribution of biological diversity. As the impact of Amazonian dams on the biota of both rivers and periodically flooded riparian environments is severe, DEVIs from different Amazonian tributary basins are contrasted with patterns of diversity and distribution of fish, flooded forest trees and bird species.
  4. There is a consistent relationship between higher DEVI values and the patterns of higher species richness and endemism in all three biological groups. An assessment of vulnerability at the scale of tributary basins, the assessment of biodiversity patterns related to DEVI, and the analysis of teleconnections at basin scale, demonstrate that recent construction of dams is affecting the biota of the Amazon basin.
  5. The evidence presented here predicts that, if currently planned dams are built without considering the balance between energy production and environmental conservation, their cumulative effects will increase drastically and represent a major threat to Amazonian biodiversity.
  相似文献   

20.
  1. Freshwater biodiversity is declining at an unprecedented rate. Freshwater conservationists and environmental managers have enough evidence to demonstrate that action must not be delayed but have insufficient evidence to identify those actions that will be most effective in reversing the current trend.
  2. Here, the focus is on identifying essential research topics that, if addressed, will contribute directly to restoring freshwater biodiversity through supporting ‘bending the curve’ actions (i.e. those actions leading to the recovery of freshwater biodiversity, not simply deceleration of the current downward trend).
  3. The global freshwater research and management community was asked to identify unanswered research questions that could address knowledge gaps and barriers associated with ‘bending the curve’ actions. The resulting list was refined into six themes and 25 questions.
  4. Although context-dependent and potentially limited in global reach, six overarching themes were identified: (i) learning from successes and failures; (ii) improving current practices; (iii) balancing resource needs; (iv) rethinking built environments; (v) reforming policy and investments; and (vi) enabling transformative change.
  5. Bold, efficient, science-based actions are necessary to reverse biodiversity loss. We believe that conservation actions will be most effective when supported by sound evidence, and that research and action must complement one another. These questions are intended to guide global freshwater researchers and conservation practitioners, identify key projects and signal research needs to funders and governments. Our questions can act as springboards for multidisciplinary and multisectoral collaborations that will improve the management and restoration of freshwater biodiversity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号