首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The enzyme pectin methylesterase (PME) is present in acerola fruit and was partially purified by gel filtration on Sephadex G-100. The results of gel filtration showed different PME isoforms. The total PME (precipitated by 70% salt saturation) and one of these isoforms (fraction from Sephadex G-100 elution) that showed a molecular mass of 15.5 +/- 1.0 kDa were studied. The optimum pH values of both forms were 9.0. The total and the partially purified PME showed that PME specific activity increases with temperature. The total acerola PME retained 13.5% of its specific activity after 90 min of incubation at 98 degrees C. The partially purified acerola (PME isoform) showed 125.5% of its specific activity after 90 min of incubation at 98 degrees C. The K(m) values of the total PME and the partially purified PME isoform were 0.081 and 0.12 mg/mL, respectively. The V(max) values of the total PME and the partially purified PME were 2.92 and 6.21 micromol/min/mL/mg of protein, respectively.  相似文献   

2.
A cysteine protease inhibitor (CPI) in chum salmon ( Oncorhynchus keta) plasma (CSP) was detected after performing inhibitory activity staining against papain under nonreducing condition. The CPI was purified from CSP by affinity chromatography with a yield and purification ratio of 0.94% and 30.36-fold, respectively. CSP CPI had a molecular mass of 70 kDa based on the results of SDS-PAGE and Sephacryl S-100 gel filtration. CSP CPI was a glycoprotein based on the periodic acid-Schiff (PAS) staining of the SDS-PAGE gel and classified as a kininogen. CSP CPI was stable in the pH range of 6.0-9.0 with maximal stability at pH 7.0. CSP CPI presented thermal stability at temperatures below 50 degrees C and exhibited maximal activity at temperatures of 20-40 degrees C. CSP CPI was determined to be a noncompetitive inhibitor against papain, with an inhibitor constant (Ki) of 105 nM.  相似文献   

3.
Food ingredients containing alpha-1,6-galactoside bonds elicit gastrointestinal disturbances in monogastric animals, including humans. Pretreatment of such ingredients with alpha-galactosidase (EC 3.2.1.22) has the potential to alleviate this condition. For this purpose, a thermostable alpha-galactosidase from Thermoanaerobacterium polysaccharolyticum was purified by a combination of anion exchange and size exclusion chromatographies. The enzyme has a monomeric molecular weight of approximately 80 kDa; however, it is active as a dimer. The optimum temperature for enzyme activity is 77.5 degrees C. Approximately 84 and 88% of enzyme activity remained after 36.5 h of incubation at 70 and 65 degrees C, respectively. Optimum activity was observed at pH 8.0, with a broad range of activity from pH 5.0 to 9.0. Different transition metals had weak to strong inhibitory effects on enzyme activity. The K(m) and V(max) of the enzyme are 0.29-0.345 mM and 200-232 micromol/min/mg of protein, respectively. Importantly, enzyme activity was only slightly inhibited by 75-100 mM galactose, an end product of hydrolysis. Enzyme activity was specific for the alpha-1,6-galactosyl bond, and activity was demonstrated on melibiose and soy molasses.  相似文献   

4.
Polyphenol oxidase (PPO) of garland chrysanthemum (Chrysanthemum coronarium L.) was purified approximately 32-fold with a recovery rate of 16% by ammonium sulfate fractionation, ion exchange chromatography, hydrophobic chromatography, and gel filtration. The purified enzyme appeared as a single band on PAGE and SDS-PAGE. The molecular weight of the enzyme was estimated to be about 47000 and 45000 by gel filtration and SDS-PAGE, respectively. The purified enzyme quickly oxidized chlorogenic acid and (-)-epicatechin. The K(m) value (Michaelis constant) of the enzyme was 2.0 mM for chlorogenic acid (pH 4.0, 30 degrees C) and 10.0 mM for (-)-epicatechin (pH 8.0, 40 degrees C). The optimum pH was 4.0 for chlorogenic acid oxidase (ChO) and 8.0 for (-)-epicatechin oxidase (EpO). In the pH range from 5 to 11, their activities were quite stable at 5 degrees C for 22 h. The optimum temperatures of ChO and EpO activities were 30 and 40 degrees C, respectively. Both activities were stable at up to 50 degrees C after heat treatment for 30 min. The purified enzyme was strongly inhibited by l-ascorbic acid and l-cysteine at 1 mM.  相似文献   

5.
The objective was to study the role of calpains in meat tenderness. Lambs were fasted for various periods of time to generate differences in meat tenderness and to determine in tandem the expression of calpain 1, calpain 2, calpain 3, and calpastatin. The assumption has been that increased calpain expression associated with an increase in tenderness indicates a role for calpain in the tenderization process and vice versa. Fasting lambs for 1 day caused a significant improvement in longissimus (LD) tenderness compared to the control. Correlations between the tenderness of the LD and the expression of the calpains and calpastatin were significant for calpains 1 and 3 but not for calpain 2 or calpastatin. Consequently, this study supports a role for calpains 1 and 3, but not for calpain 2, in the tenderization of the LD from fasted lambs during post-mortem aging.  相似文献   

6.
Polyphenol oxidase (PPO) was purified and characterized from Chinese cabbage by ammonium sulfate precipitation and DEAE-Toyopearl 650M column chromatography. Substrate staining of the crude protein extract showed the presence of three isozymic forms of this enzyme. The molecular weight of the purified enzyme was estimated to be approximately 65 kDa by gel filtration on Toyopearl HW-55F. On SDS-PAGE analysis, this enzyme was composed of a subunit molecular weight of 65 kDa. The optimum pH was 5.0, and this enzyme was stable at pH 6.0 but was unstable below pH 4.0 or above pH 7.0. The optimum temperature was 40 degrees C. Heat inactivation studies showed temperatures >40 degrees C resulted in loss of enzyme activity. PPO showed activity to catechol, pyrogallol, and dopamine (K(m) and V(max) values were 682.5 mM and 67.6 OD/min for catechol, 15.4 mM and 14.1 OD/min for pyrogallol, and 62.0 mM and 14.9 OD/min for dopamine, respectively). The most effective inhibitor was 2-mercaptoethanol, followed in decreasing order by ascorbic acid, glutathione, and L-cysteine. The enzyme activity of the preparation was maintained for 2 days at 4 degrees C but showed a sudden decreased after 3 days.  相似文献   

7.
Locust bean gum (LBG) was employed to screen mannanase-producing bacteria. The bacterium with highest mannanase ability was identified as Paenibacillus cookii. It revealed highest activity (6.67 U/mL) when cultivated in 0.1% LBG with 1.5% soytone and 0.5% tryptone after 4 days incubation at 27 °C. Its mannanase was purified to electrophoretical homogeneity after DEAE-Sepharose and Sephacryl S-100 separation. The purified mannanase, with an N-terminus of GLFGINAY, had pH and temperature optimum at 5.0 and 50 °C, respectively, and was stable at pH 5.0-7.0, ≤ 50 °C. It was strongly activated by β-mercaptoethanol, dithiothreitol, cysteine, and glutathione, but inhibited by Hg(2+), Cu(2+), Zn(2+), Fe(3+), PMSF, iodoacetic acid, and EDTA. According to substrate specificity study, the purified mannanase had high specificity to LBG and konjac.  相似文献   

8.
Two protease inhibitors of 67 and 18 kDa, respectively, were purified from glassfish, Liparis tanakai, eggs by affinity chromatography. The smaller protein was purified with a yield and purity of 0.25% and 49.69-fold, respectively, and was characterized for further study. The glassfish egg protease inhibitor exhibited stability between 50 and 65 degrees C in an alkaline environment (pH 8). It was shown to be a noncompetitive inhibitor against papain, with an inhibitor constant (Ki) of 4.44 nM. Potent glassfish protease inhibitor with N-Val-Gly Ser-Met-Thr-Gly-Gly-Phe-Thr-Asp-C amino acid residues was synthesized and its inhibitory activity was compared. Moreover, the 18-kDa protein inhibited cathepsin, a cysteine protease, more effectively than did egg white protease inhibitor, whereas the reverse was true for papain. Glassfish egg protease inhibitor is classified as a member of the family I cystatins.  相似文献   

9.
The hyphomycete Chalara paradoxa CH32 produced an extracellular beta-glucosidase during the trophophase. The enzyme was purified to homogeneity by ion-exchange and size-exclusion chromatography. The purified enzyme had an estimated molecular mass of 170 kDa by size-exclusion chromatography and 167 kDa by SDS-PAGE. The enzyme had maximum activity at pH 4.0-5.0 and 45 degrees C. The enzyme was inactivated at 60 degrees C. At room temperature, it was unstable at acidic pH, but it was stable to alkaline pH. The purified enzyme was inhibited markedly by Hg(2+) and Ag(2+) and also to some extent by the detergents SDS, Tween 80, and Triton X-100 at 0.1%. Enzyme activity increased by 3-fold in the presence of 20% ethanol and to a lesser extent by other organic solvents. Purified beta-glucosidase was active against cellobiose and p-nitrophenyl-beta-D-glucopyranoside but did not hydrolyze lactose, maltose, sucrose, cellulosic substrates, or galactopyranoside, mannopyranoside, or xyloside derivatives of p-nitrophenol. The V(max) of the enzyme for p-NPG (K(m) = 0.52 mM) and cellobiose (K(m) = 0.58 mM) were 294 and 288.7 units/mg, respectively. Hydrolysis of pNPG was inhibited competitively by glucose (K(i) = 11.02 mM). Release of reducing sugars from carboxymethylcellulose by a purified endoglucanase produced by the same organism increased markedly in the presence of beta-glucosidase.  相似文献   

10.
The Pediococcus pentosaceus ACCEL bacteriocin was purified to electrophoretical homogeneity by cell adsorption-desorption and Superose 12 fast performance liquid chromatography (FPLC). The purified bacteriocin, with a molecular mass of 17.5 kDa and an N-terminal sequence of -KYYGNGVTXGKHSXXVDXG-, belongs to class IIa and is designated pediocin ACCEL. It was inactivated by various proteases and stable at pH 2.0-6.0 and <100 degrees C. More than 80% activity was left even after 15 min of heating at 121 degrees C and pH 2.0-4.0. Gram-positive food-borne pathogens were inhibited by this bacteriocin, but Gram-negative ones were not. According to the storage stability study, the purified pediocin was stable at pH <6.0 and low temperature. No significant change in bactericidal activity was observed after freeze-drying and subsequent 1-month storage at room temperature.  相似文献   

11.
An acidic peroxidase (pI approximately 2.5) was purified from turnip roots (TAP), and its thermal properties were evaluated. TAP is a monomeric protein having a molecular weight (MW) of 49 kDa and a carbohydrate content accounting for 18% of the MW. The yield of pure TAP was relatively high ( approximately 2 mg/kg of fresh roots), with a specific activity of 1810 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) units/mg at pH 6. The activity increased 4-fold at the optimum pH (4.0) to 7250 ABTS units/mg, higher than that of most peroxidases. TAP was heat stable; heat treatment of 25 min at 60 degrees C resulted in 90% initial activity retention, whereas an activity of 20% was retained after 25 min of heating at 80 degrees C. TAP regained 85% of its original activity within 90 min of incubation at 25 degrees C, following heat treatment at 70 degrees C for 25 min. Thermal inactivation caused noticeable changes in the heme environment as evaluated by circular dichroism and visible spectrophotometry. TAP was rapidly denatured by heating in the presence of 1.0 mM ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid, but the Soret band and activity were fully recovered by adding an excess of Ca(2+). This is further evidence that Ca(2+) plays an important role in the stability of TAP. The high specific activity of TAP, together with its relatively high thermal stability, has high potential for applications in which a thermally stable enzyme is required.  相似文献   

12.
Trypsin from the pyloric ceca of Atlantic bonito (Sarda sarda) was purified and characterized with respect to its purity; molecular weight; sensitivity to temperature, pH, and inhibition; and N-terminal sequence. The purified trypsin had a molecular weight of 29 kDa as per sodium dodecyl sulfate polyacrylamide gel electrophoresis, and optimal activity was observed at pH 9 and 65 degrees C with BAPNA as a substrate. The enzyme was stable to heat treatment up to 50 degrees C and within the pH range of 7-12. It was stabilized by calcium ions, but its activity was strongly inhibited by soybean trypsin inhibitor, N-p-tosyl-L-lysine chloromethyl ketone, and phenyl methyl sulfonyl fluoride. The enzyme exhibited a progressive decrease in activity with increasing NaCl concentration (0-30%). The N-terminal 20 amino acid residues of Atlantic bonito trypsin were determined as IVGGYECQAHSQPWQPVLNS and were homologous with other trypsins.  相似文献   

13.
Phytocystatins are the plant thiol protease inhibitors involved in several reaction mechanisms of the plant system like regulation of proteolytic activity and storage of proteins. Biochemical and biophysical changes induced by fungicide SDD in phytocystatin purified from Phaseolus mungo have been investigated in terms of mass spectroscopy, Fourier transform infrared spectroscopy, and fluorescence spectroscopy, at pH 7.0, with varying fungicide concentrations (1-9 mM) and a time of incubation ranging from 2 to 8 h at 37 degrees C, with a fixed cystatin concentration (1.5 mM). Reactive oxygen species responsible for inhibitor damage were also investigated, and thiourea was found to scavenge the free radicals generated by SDD. FTIR analysis indicates a significant conformational transition from alpha-helix to beta-sheet structure; quenching of fluorescence is evident by fluorescence spectroscopy. The activity assay showed a decrease in inhibitory activity, as well as a fragmentation of the inhibitor was observed in electrophoresis. Results obtained implicate that exposure of phytocystatins to SDD involves physicochemical changes in cystatins leading to damage and a decrease in the activity of the inhibitor.  相似文献   

14.
To obtain basic information about enzymatic deterioration of buckwheat flour, triacylglycerol lipase (LIP; EC 3.1.1.3) was purified from buckwheat seed. The LIP consisted of two isozymes, LIP I and LIP II, and they were purified with purification folds of 60 and 143 with final specific activities of 0.108 and 0.727 mumol of fatty acid released per minute per milligram of protein at 30 degrees C using triolein as a substrate. Molecular weights were estimated to be 150 (LIP I) and 28.4 kDa (LIP I) by gel filtration and 171 (LIP I) and 26.5 kDa (LIP II) by SDS-PAGE. Optimal pHs of LIP activities were 3.0 (LIP I) and 6.0 (Lip II) using triolein as a substrate. Both LIP I and II reacted in the acidic pH range. Optimal temperatures were 30 (LIP I) and 40 degrees C (LIP II), and both LIP I and II were stable below 30 degrees C when p-nitrophenyl-laurate was used as a substrate. However, they were inactivated above 60 degrees C. On the other hand, when triolein was used as a substrate, optimal temperatures were 30 degrees C for both LIP I and II, and they retained 40% of their activity after a 4 h incubation of enzymes at 70 degrees C. LIP I and II had higher activity against triolein than monoolein or tri/monopalmitin. Most of the LIP activity was distributed in the embryo.  相似文献   

15.
To characterize the alginate lyase produced by rhizosphere Streptomyces, Streptomyces sp. A5 was isolated from banana rhizosphere, and its extracellular lyase was purified to an electrophoretically homogeneous state. The lyase has a molecular mass of 32 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimum temperature and pH were 37 degrees C and pH 7.5, respectively. Ninety-two percent of the activity was lost after incubation at 70 degrees C and pH 7.5 for 20 min. The enzyme was inhibited by 0.05 M SDS and 2 mM Hg2+, Cu2+, and Fe3+, but EDTA enhanced the enzyme activity. The Km value of the lyase was 0.13 mg mL-1 with the substrate sodium alginate. The lyase had substrate specificity for polyguluronate units in the alginate molecules. The alginate oligomers prepared by the lyase show growth-promoting activity on the roots of banana plantlets. These results indicated that the encapsulation method using alginate microbeads to inoculate beneficial streptomycete strains might be beneficial to the root growth of banana plantlets.  相似文献   

16.
Two proteinaceous invertase inhibitors, designated ITI-L and ITI-R, were purified to electrophoretic homogeneity. ITI-L was purified from acetone powder of sweet potato leaves through sequential steps entailing buffer extraction, acid treatment, DEAE-Sephacel ion-exchange chromatography, and Sephacryl S-100 gel filtration. ITI-R was purified from sweet potato tuberous roots by sequentially applying buffer extraction, Con A-Sepharose affinity chromatography, DEAE-Sephacel ion-exchange chromatography, Sephacryl S-200, and Superose 12 gel filtration. The optimal pHs for interaction between ITI-L and ITI-R and acid invertase from sweet potato leaves were 5.5 and 5.0, respectively. The molecular masses of ITI-L and ITI-R were 10 and 22 kDa, respectively, as estimated by both gel filtration and SDS-PAGE. Both inhibitors were thermostable (90% of the activity remained after incubation at 100 degrees C for 20 min), and Western blotting showed them to be immunologically related.  相似文献   

17.
A proteinaceous pectin methylesterase inhibitor (PMEI) was isolated from kiwi fruit (Actinidia chinensiscv. Hayward) and purified by affinity chromatography on a cyanogen bromide (CNBr) Sepharose 4B-orange PME column. The optimal pH of banana PME activity was 7.0, whereas that for carrot and strawberry PME activity was 9.0. The optimal pH for the binding between kiwi fruit PMEI and these PMEs was 7.0. The kiwi fruit PMEI has a different affinity for PME depending on the plant source. The inhibition kinetics of kiwi fruit PMEI to banana and strawberry PME followed a noncompetitive type, whereas that to carrot PME followed a competitive type. The kiwi fruit PMEI was mixed with banana, carrot, and strawberry PME to obtain PMEI-PME complexes, which were then subjected to thermal (40-80 degrees C, atmospheric pressure) or high-pressure (10 degrees C, 100-600 MPa) treatment. Experimental data showed that the PMEI-PME complexes were easily dissociated by both thermal and high-pressure treatments.  相似文献   

18.
Two direct methylation procedures often used for the analysis of total fatty acids in biological samples were evaluated for their application to samples containing fatty amides. Methylation of 5 mg of oleamide (cis-9-octadecenamide) in a one-step (methanolic HCl for 2 h at 70 degrees C) or a two-step (sodium methoxide for 10 min at 50 degrees C followed by methanolic HCl for 10 min at 80 degrees C) procedure gave 59 and 16% conversions of oleamide to oleic acid, respectively. Oleic acid recovery from oleamide was increased to 100% when the incubation in methanolic HCl was lengthened to 16 h and increased to 103% when the incubation in methoxide was modified to 24 h at 100 degrees C. However, conversion of oleamide to oleic acid in an animal feed sample was incomplete for the modified (24 h) two-step procedure but complete for the modified (16 h) one-step procedure. Unsaturated fatty amides in feed and digesta samples can be converted to fatty acid methyl esters by incubation in methanolic HCl if the time of exposure to the acid catalyst is extended from 2 to 16 h.  相似文献   

19.
Today proteases have become an integral part of the food and feed industry, and plant latex could be a potential source of novel proteases with unique substrate specificities and biochemical properties. A new protease named "wrightin" is purified from the latex of the plant Wrightia tinctoria (Family Apocynaceae) by cation-exchange chromatography. The enzyme is a monomer having a molecular mass of 57.9 kDa (MALDI-TOF), an isoelectric point of 6.0, and an extinction coefficient (epsilon1%280) of 36.4. Optimum activity is achieved at a pH of 7.5-10 and a temperature of 70 degrees C. Wrightin hydrolyzes denatured natural substrates such as casein, azoalbumin, and hemoglobin with high specific activity; for example, the Km value is 50 microM for casein as substrate. Wrightin showed weak amidolytic activity toward L-Ala-Ala-p-nitroanilide but completely failed to hydrolyze N-alpha-benzoyl- DL-arginine-p-nitroanilide (BAPNA), a preferred substrate for trypsin-like enzymes. Complete inhibition of enzyme activity by serine protease inhibitors such as PMSF and DFP indicates that the enzyme belongs to the serine protease class. The enzyme was not inhibited by SBTI and resists autodigestion. Wrightin is remarkably thermostable, retaining complete activity at 70 degrees C after 60 min of incubation and 74% of activity after 30 min of incubation at 80 degrees. Besides, the enzyme is very stable over a broad range of pH from 5.0 to 11.5 and remains active in the presence of various denaturants, surfactants, organic solvents, and metal ions. Thus, wrightin might be a potential candidate for various applications in the food and biotechnological industries, especially in operations requiring high temperatures.  相似文献   

20.
Polyphenol oxidase (EC 1.10.3.1, PPO) in the pulp of banana (Musa sapientum L.) was purified to 636-fold with a recovery of 3.0%, using dopamine as substrate. The purified enzyme exhibited a clear single band on polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS)-PAGE. The molecular weight of the enzyme was estimated to be about 41000 and 42000 by gel filtration and SDS-PAGE, respectively. The enzyme quickly oxidized dopamine, and its K(m) value for dopamine was 2.8 mM. The optimum pH was at 6.5, and the enzyme activity was stable in the range of pH 5-11 at 5 degrees C for 48 h. The enzyme had an optimum temperature of 30 degrees C and was stable even after a heat treatment at 70 degrees C for 30 min. The enzyme activity was completely inhibited by L-ascorbic acid, cysteine, sodium diethyldithiocarbamate, and potassium cyanide. Under a low buffer capacity, the enzyme was also strongly inhibited by citric acid and acetic acid at 10 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号