首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For sustainable sunflower production in semi-arid sub-tropical regions, it is essential to increase its water use efficiency. Field studies were conducted for three years on deep alluvial loamy sand (Typic Ustipsamment) and sandy loam (Typic Ustochrept) soils at Punjab Agricultural University, Ludhiana, India, to evaluate the interactive effects of three irrigation regimes (irrigation water to net open pan evaporation ratios, I1, I2, I3) on sunflower yield in relation to tillage (conventional tillage, CT, and deep-tillage, DT) and mulching (no mulch, M0, and residue mulch, M1).Both deep tillage and mulch significantly increased crop yield irrespective of soil type and year. Increase in mean achene yield across soils during three years with DT over CT varied between 10 and 16% and that with mulch over no mulch by 8 to 17%.Deep tillage and/or mulching helped the crop in efficient utilization of water by increasing leaf area index (LAI) and the depth and density of rooting. Irrigation and tillage interacted for their effects on yield on loamy sand, as the crop responded to higher level of irrigation with CT than with DT. On loamy sand, mean achene yield increased with increase in water supply up to IW/PE = 1.5 in a dry year and upto IW/PE = 1.2 in relatively wetter years. On sandy loam, mean yield response to irrigations was observed upto IW/PE = 1.0 in all the three years.Regression analysis of relative yield against water supply during the three years on both the soils, showed that for 80% relative yield the crop required 105 cm water in CTM0, 90 cm in CTM or DTM0 and only 80 cm in DTM. The study suggests that deep tillage or straw mulch may be used to achieve higher water use efficiency in sunflower on coarse textured soils in semi-arid, sub-tropical regions.  相似文献   

2.
Summary Rapid drying of surface layers of coarse-textured soils early in the growth season increases soil strength and restricts root growth. This constraint on root growth may be countered by deep tillage and/or early irrigation. We investigated tillage and irrigation effects on root growth, water use, dry matter and grain yield of wheat on loamy sand and sandy loam soils for three years. Treatments included all combinations of two tillage systems i) conventional tillage (CT) — stirring the soil to 10 cm depth, ii) deep tillage (DT) — subsoiling with a single-tine chisel down to 35–40 cm, 40 cm apart followed by CT; and four irrigation regimes, i) I0 — no post-seeding irrigation, ii) I1 — 50 mm irrigation 30 days after seeding (DAS), iii) I2 — 50 mm irrigation 30 DAS and subsequent irrigations of 75 mm each when net evaporation from USWB class A open pan (PAN-E) since previous irrigation accumulated to 82 mm, and iv) I3 — same as in I2 but irrigation applied when PAN-E accumulated to 62 mm. The crop of wheat (Triticum aestivum L. HD 2329) was fertilized with 20kg P, 10kg K and 5kg Zn ha–1 at seeding. The rate of nitrogen fertilization was 60 kg ha–1 in the unirrigated and 120 kg ha–1 in the irrigated treatments. Tillage decreased soil strength and so did the early post-seeding irrigation. Both deep tillage and early irrigation shortened the time needed for the root system to reach a specified depth. Subsequent wetting through rain/irrigation reduced the rate of root penetration down the profile and also negated deep tillage effects on rooting depth. However, tillage/irrigation increased root length density in the rooted profile even in a wet year. Better rooting resulted in greater profile water depletion, more favourable plant water status and higher dry matter and grain yields. In a dry year, the wheat in the DT plots used 46 mm more water, remained 3.3 °C cooler at grain-fill and yielded 68% more grain than in CT when unirrigated and grown in the loamy sand. Early irrigation also increased profile water depletion, more so in CT than DT. Averaged over three years, grain yield in DT was 12 and 9% higher than in CT on loamy sand and sandy loam, respectively. Benefits of DT decreased with increase in rainfall and irrigation. Irrigation significantly increased grain yield on both soils, but the response was greatly influenced by soil type, tillage system and year. The study shows that soil related constraints on root growth may be alleviated through deep tillage and/or early irrigation.  相似文献   

3.
Field studies were conducted for four years on alluvial soils of North India to determine the water use, water use efficiency and yield performance of a semi-dwarf high-yielding wheat variety (Triticum aestivum L.) in response to irrigation schedule and nitrogen fertilization. Irrigation scheduling was based on different ratios between irrigation water and cumulative pan evaporation (IW/CPE). Irrigations of 6-cm depth were applied on the basis of IW/CPE ratio of 0.45, 0.60, 0.75 and 0.90. Pan evaporation data were recorded daily using standard USWB-Class A Open pan (as prescribed by India Meterological Department) located at Research Farm, Selakui, Dehradun where the experiment was conducted. The CPE values were computed for each year individually. The crop was fertilized with nitrogen at the rate of 0, 60 and 120 kg/ha.The yield and yield attributes were highest and irrigation efficiency was maximum when irrigation was applied at an IW/CPE ratio of 0.75 in a normal-rainfall year and at 0.90 in a low-rainfall year. Water use efficiency decreased with increase in irrigation frequency. Nitrogen fertilization increased the yield of wheat linearly and was maximum at 120 kg nitrogen per hectare.  相似文献   

4.
The DSSAT-CSM-CERES-Wheat V4.0 model was calibrated for yield and irrigation scheduling of wheat with 2004–2005 data and validated with 13 independent data sets from experiments conducted during 2002–2006 at the Punjab Agricultural University (PAU) farm, Ludhiana, and in a farmer's field near PAU at Phillaur, Punjab, India. Subsequently, the validated model was used to estimate long-term mean and variability of potential yield (Yp), drainage, runoff, evapo-transpiration (ET), crop water productivity (CWP), and irrigation water productivity (IWP) of wheat cv. PBW343 using 36 years (1970–1971 to 2005–2006) of historical weather data from Ludhiana. Seven sowing dates in fortnightly intervals, ranging from early October to early January, and three irrigation scheduling methods [soil water deficit (SWD)-based, growth stage-based, and ET-based] were evaluated. For the SWD-based scheduling, irrigation management depth was set to 75 cm with irrigation scheduled when SWD reached 50% to replace 100% of the deficit. For growth stage-based scheduling, irrigation was applied either only once at one of the key growth stages [crown root initiation (CRI), booting, flowering, and grain filling], twice (two stages in various combinations), thrice (three stages in various combinations), or four times (all four stages). For ET-driven irrigation, irrigations were scheduled based on cumulative net ETo (ETo-rain) since the previous irrigation, for a range of net ETo (25, 75, 125, 150, and 175 mm). Five main irrigation schedules (SWD-based, ET-driven with irrigation applied after accumulation of either 75 or 125 mm of ETo, i.e., ET75 or ET125, and growth stage-based with irrigation applied at CRI plus booting, or at CRI plus booting plus flowering stage) were chosen for detailed analysis of yield, water balance, and CWP and IWP. Nitrogen was non-limiting in all the simulations.Mean Yp across 36 years ranged from 5.2 t ha−1 (10 October sowing) to 6.4 t ha−1 (10 November sowing), with yield variations due to seasonal weather greater than variations across sowing dates. Yields under different irrigation scheduling, CWP and IWP were highest for 10 November sowing. Yields and CWP were higher for SWD and ET75-based irrigations on both soils, but IWP was higher for ET75-based irrigation on sandy loam and for ET150-based irrigation on loam. Simulation results suggest that yields, CWP, and IWP of PBW343 would be highest for sowing between late October and mid-November in the Indian Punjab. It is recommended that sowing be done within this planting period and that irrigation be applied based on the atmospheric demand and soil water status and not on the growth stage. Despite the potential limitations recognised with simulation results, we can conclude that DSSAT-CSM-CERES-Wheat V4.0 is a useful decision support system to help farmers to optimally schedule and manage irrigation in wheat grown in coarse-textured soils under declining groundwater table situations of the Indian Punjab. Further, the validated model and the simulation results can also be extrapolated to other areas with similar climatic and soil environments in Asia where crop, soil, weather, and management data are available.  相似文献   

5.
Field studies were conducted during a 3-year period to determine wheat (Triticum aestivum L.) yield in response to irrigation scheduling and variable fertilization.Irrigation scheduling was done on the basis of cumulative pan evaporation. Irrigations were given at 25, 50 and 75% available water in the top 60 cm soil profile. The amount of irrigation water applied at each irrigation was equivalent to 75% of the cumulative open pan evaporation. The crop was fertilized at the rate of 0, 60, and 120 kg/ha nitrogen.The yield of wheat was significantly affected by irrigation water and nitrogen treatments. Maximum yield was obtained with irrigation at 50% available soil water and 120 kg/ha nitrogen addition (5092 kg/ha). Consumptive use of water was maximum when irrigation was applied at 75% available soil water. The irrigation at 50% available soil water, however, resulted in greatest yield per cm water use by the crop.  相似文献   

6.
Summary Irrigation at 35 and 70 mm of pan evaporation applied during the pre and/or post early podfilling stages increased pod yield of Spanish peanuts (100 day maturity) three fold compared to a dryland crop. There was no difference in pod yield in crops receiving 12 compared to 6 irrigations. Soil water sampling immediately after irrigations on selected treatments revealed that infiltration of irrigation water was probably restricted to less than ca. 20 cm, a response which resulted in poor soil water replenishment and low irrigation efficiency (Fig. 3). Even though roots extracted soil water below the compaction layer which was at 20 cm severe crop water deficits had developed by the end of irrigation cycles during later but not early stages of growth. The dryland crop, which received no rainfall during the season, presumably extracted significant amounts of soil water at depths to and below 1.2 m (Fig. 3). Despite producing ca. 2.9 t ha-1 of total dry matter yield, pod yield was extremely low (0.5 t ha-1) arising from low pod numbers and high percentage of empty pods.This research was funded by the Australian Centre for International Agricultural Research (ACIAR-Project 8419) in collaboration with the Agency for Agricultural Research and Development (AARD).  相似文献   

7.
Summary Response of dwarf wheat (Triticum aestivum L. em Thell) to three different levels of water stress at three growth stages — seeding to maximum tillering, maximum tillering to flowering and flowering to maturity, was studied under field conditions for two seasons. At each of these three stages, plants were subject to three ratios of irrigation water to cumulative pan evaporation (IW/CPE) –0.45, 0.60 and 0.75. During the remaining stages the plants were irrigated with an IW/CPE ratio of 0.9. Thus mild, moderate and severe stress treatments were compared with a no-stress control. At all stages moderate and severe water stress decreased plant height, leaf area, ear number, 1000-grain weight, grain yield and water-use efficiency. In stage 3 the effect of water stress on straw yield was not marked. Wheat was most sensitive to water stress during stage 1 when the reduction in grain yield was caused by a reduction in numbers of ears and grains per ear. In stage 2, grain yield reduction was due to fewer grains perear and a lower 1000-grain weight. On rewatering, mild stressed plants showed recovery of plant height, tiller number and in consequence, yield. Results indicate that under the conditions of this study the wheat crop should be irrigated at a IW/CPE ratio of 0.75 when water resources are limited. With an unlimited water supply the ratio may be increased to 1.2 in stage 2 to maximise the yield.  相似文献   

8.
Irrigation water is a limited resource, and therefore irrigation practices must be rationalized for high water-use efficiency. Little is known about the influence of stored water in deep soils on the water needs and the post-sowing irrigation requirements of crops. A 3-year field experiment was conducted to determine the effects of combinations of light and heavy pre-sowing irrigations with two post-sowing irrigation regimes on yield, root growth, water use and water-use efficiency of wheat on a deep alluvial sandy loam soil. Post-sowing treatments consisted of (i) five 75-mm irrigations at five growth stages, and (ii) irrigations based on pan evaporation, i.e. at IW/PAN-E ratio of 0.75 (75 mm of irrigation water were provided as soon as the open-pan evaporation minus rainfall since previous irrigation was 100 mm).The latter regime required 175 mm less water than that with irrigation at growth stages. Profile water utilization was inversely related to post-sowing irrigation water. Where pre-sowing irrigation was light, post-sowing irrigations based on pan evaporation yielded significantly less than those based on growth stages. With heavy pre-sowing irrigation, irrigation based on the pan evaporation yielded as much as five irrigations at growth stages. The former decreased the mean water application by 153 mm and increased the water-use efficiency by 26%. Irrigation based on pan evaporation stimulated greater utilization of stored water by increasing the rooting density in deeper layers.It is indicated that for higher water-use efficiency and yield, wheat should be sown after a heavy pre-sowing irrigation, and post-sowing irrigation should be based on 0.75 pan evaporation.  相似文献   

9.
Summary The effect of levelling uniformity measured in terms of mean deviation from the desired plane and designated as levelling index (L.1.), on some irrigation quality parameters, such as water application and distribution efficiencies, and economic factors, including the cost of levelling and crop yield, has been investigated in sodic soils irrigated by graded borders. Increases in L. I. which reflects decreases in levelling quality, resulted in higher system water application depth, the values being 4.2 cm and 9.5 cm at L.1. values of 0–1.5 cm and 6.0–7.5 cm, respectively. Higher application depths were associated with low water application efficiencies and the relationship was logarithmic in nature. Higher application depths in poorly levelled plots not only resulted in reduced irrigation frequencies, but also caused water inundation over the field surface because of the low infiltration rates in sodic soils. With wheat grain yield of 3,128 kg/ha at L. I.=0-1.5 cm as compared to only 2,246 kg/ha at L.1.=6–7.5 cm, the effect of levelling quality on crop yield appears to be significant. The reduction in crop yield may be attributed to low irrigation frequencies which were associated with higher system water application depth that caused waterlogging. The results show that crop yields were likely to decrease for a depth of infiltration of 40 cm or more, which is indicative of surface water inundation for longer duration. The economic analysis of income from crop production and levelling cost at different L.I. values showed that improving the levelling quality to a fairly high uniformity level was profitable in sodic soils of the Indo-Gangetic plain.  相似文献   

10.
Summary Lucerne was irrigated for three years on a slowly permeable, duplex soil, with saline water up to 2.4 dS m–1 without significant yield decline. Irrigation water of 4.5 dS m–1 significantly reduced yield. Lucerne yield was most closely related to the soil ECe of the 0–15 cm depth, rather than the total rootzone, and was described by; Relative yield=100–6.5 (ECe-2.1). While lucerne roots reached depths of at least 150 cm, approximately 80% of total root length was located in the 0–60 cm depth.Increasing salinity increased the plant concentrations of sodium and chloride, however, these changes were not closely related to changes in yield.Soil salinity increased with increasing salinity of the applied water. However, during the irrigation season water penetration and the accumulation of salt within the profile was predominantly restricted to the 0–60 cm depth. No portion of the applied irrigation water was available as a leaching fraction. Any leaching of salts to the watertable, particularly below 120 cm, was due to winter rainfall rather than the application of summer irrigation water.Ripping the soil to a depth of 75 cm increased water infiltration and resulted in increased crop yields, but did not significantly affect the crop relative yield-soil ECe relationship.From the results it is proposed that on the slowly permeable duplex soils, when watertable depth is controlled, management strategies for lucerne irrigated with saline water should be based on controlling the salinity of the shallow soil depths, to 60 cm.  相似文献   

11.
In sub-mountain tract of Punjab state of India, maize (Zea mays, L.) and wheat (Triticum aestivum L.) crops are grown as rainfed having low crop and water productivity. To enhance that, proper understanding of the factors (soil type, climate, management practices and their interactions) affecting it is a pre-requisite. The present study aims to assess the effects of tillage, date of sowing, and irrigation practices on the rainfed maize–wheat cropping system involving combined approach of field study and simulation. Field experiments comprising 18 treatments (three dates of sowing as main, three tillage systems as subplot and two irrigation regimes as the sub-subplot) were conducted for two years (2004–2006) and simulations were made for 15 years using CropSyst model. Field and simulated results showed that grain yields of maize and wheat crops were more in early July planted maize and early November planted wheat on silt loam soil. Different statistical parameters (root mean square error, coefficient of residual mass, model efficiency, coefficient of correlation and paired t-test) indicated that CropSyst model did fair job to simulate biomass production and grain yield for maize–wheat cropping system under varying soil texture, date of planting and irrigation regimes.  相似文献   

12.
The reported study aimed at developing an integrated management strategy for irrigation water and fertilizers in case of wheat crop in a sub-tropical sub-humid region. Field experiments were conducted on wheat crop (cultivar Sonalika) during the years 2002–2003, 2003–2004 and 2004–2005. Each experiment included four fertilizer treatments and three irrigation treatments during the wheat growth period. During the experiment, the irrigation treatments considered were I1 = 10% maximum allowable depletion (MAD) of available soil water (ASW); I2 = 40% MAD of ASW; I3 = 60% MAD of ASW. The fertilizer treatments considered in the experiments were F1 = control treatment with N:P2O5:K2O as 0:0:0 kg ha−1, F2 = fertilizer application of N:P2O5:K2O as 80:40:40 kg ha−1; F3 = fertilizer application of N:P2O5:K2O as 120:60:60 kg ha−1 and F4 = fertilizer application of N:P2O5:K2O as 160:80:80 kg ha−1. In this study CERES-wheat crop growth model of the DSSAT v4.0 was used to simulate the growth, development and yield of wheat crop using soil, daily weather and management inputs, to aid farmers and decision makers in developing strategies for effective management of inputs. The results of the investigation revealed that magnitudes of grain yield, straw yield and maximum LAI of wheat crop were higher in low volume high frequency irrigation (I1) than the high volume low frequency irrigation (I3). The grain yield, straw yield and maximum LAI increased with increase in fertilization rate for the wheat crop. The results also revealed that increase in level of fertilization increased water use efficiency (WUE) considerably. However, WUE of the I2 irrigation schedule was comparatively higher than the I1 and I3 irrigation schedules due to higher grain yield per unit use of water. Therefore, irrigation schedule with 40% maximum allowable depletion of available soil water (I2) could safely be maintained during the non-critical stages to save water without sacrificing the crop yield. Increase in level of fertilization increases the WUE but it will cause environmental problem beyond certain limit. The calibrated CERES-wheat model could predict the grain yield, straw yield and maximum LAI of wheat crop with considerable accuracy and therefore can be recommended for decision-making in similar regions.  相似文献   

13.
In order to assess the effect of soil water deficit (SWD) during fruit development and ripening, on yield and quality of processing tomato under deficit irrigation in the Mediterranean climate, an open-field experiment was carried out in two sites differing from soil and climatic characteristics, in Sicily, South Italy. Six irrigation treatments were studied: no irrigation following plant establishment (NI); 100% (F = full) or 50% (D = deficit) ETc restoration with long-season irrigation (L) or short-season irrigation up to 1st fruit set (S); and long-season irrigation with 100% ETc restoration up to beginning of flowering, then 50% ETc restoration (LFD). The greatest effect of increasing SWD was the rise in fruit firmness, total solids and soluble solids (SS). A negative trend in response to increasing SWD was observed for fruit yield and size. Tough yield and SS were negatively correlated, the final SS yield under the LD regime was close to that of LF, and 47% water was saved. However, SS seems to be more environmental sensitive than SWD, since it varied more between sites than within site. The variations between sites in fruit quality response to deficit irrigation demonstrate that not only SWD but also soil and climatic characteristics influence the quality traits of the crop.  相似文献   

14.
Summary Standard local practice in Northern India is to continue irrigation of winter wheat crop almost up to harvest, based on the farmer's belief that this treatment increases grain weight and yield. The effect of an early cut-off of irrigation on the water use was studied in a three-year experiment on a deep, sandy-loam soil.Wheat, sown during the second or third week of November, received its first irrigation four weeks later. Subsequently treatments included irrigations of 7.5 cm water depth applied after 10 cm of cumulative pan evaporation minus rainfall had elapsed since the previous irrigation up till mid-April; irrigations of 7.5 cm up till mid-February and thereafter irrigation equal to 75 and 100% soil-water deficit in the 0–180 cm profile around March 10 with no later irrigation; and a similar treatment with one additional irrigation after making up the water deficit.Least irrigation water was used from the treatment in which 75% water deficit was restored around March 10 and no further irrigation was applied. This treatment increased the average extraction of profile water by 4 cm compared to treatments in which irrigation was continued until mid-April. Profile water depletion was inversely related to the amount of irrigation. Grain weight and yields from the various treatments harvested in the last week of April were unaffected by the treatments.The authors are grateful to the ICAR for financing this research  相似文献   

15.
Summary Several irrigation management experiments were conducted at different locations on sandy soils in Haryana State to overcome excessive permeability, poor soil moisture retention and storage in the root zone. Subsurface compaction to 30–40 cm depth created by 6 passes of a 1,500 kg tractor-driven iron roller, 24 to 48 h after irrigation, was found to be beneficial in reducing irrigation requirement. In general, yield of different crops was not affected significantly by surface rolling, except that of mustard which increased significantly. Slight increase in subsurface compaction, about 0.1 g cm–3, increased the soil moisture retention and reduced the infiltration rate and saturated hydraulic conductivity. Hydraulic conductivity was a better parameter than bulk density for evaluating the effect of rolling. The depth of irrigation water applied in rolling treatment was about 58–74% that of the no-rolling control. Compaction thus reduced water input to these sandy soils without adversely affecting the crop yield.  相似文献   

16.
A field experiment was conducted to compute the water use and productivity of turmeric as a function of straw mulching and irrigation scheduling at Punjab Agricultural University, Ludhiana, during 2013 and 2014. The experiment was laid out in split plot design, keeping mulch levels (no mulch and straw mulch 6 t/ha) and irrigation methods (drip and check basin) in main plots and irrigation schedules at 0.6, 0.8, 1.0 and 1.2 irrigation water/cumulative pan evaporation (IW/CPE) in subplots. Turmeric yield was 125.2 % higher with mulching than no mulch with 50 % saving in irrigation water. Drip irrigation resulted in significantly higher turmeric yield and benefit/cost (B/C) than check basin. Irrigation scheduling at 1.2 IW/CPE recorded significantly higher turmeric yield than other schedules. Drip irrigation at 0.8 IW/CPE resulted in statistically at par yield with check basin irrigation at 1.2 IW/CPE, thus saving 40 % irrigation water with significantly higher B/C. However, turmeric yield was at par between drip irrigation at 1.2 and 1.0 IW/CPE schedule, while a significant reduction in yield was recorded in check basin at 1.0 IW/CPE compared to 1.2 IW/CPE. Turmeric should be irrigated with drip at 1.0 and with check basin at 1.2 IW/CPE to realize potential yield.  相似文献   

17.
Summary Field studies were conducted for a period of ten years (1974 to 1984) on Typic Ustochrept to determine the sustained effects of saline irrigation water electrical conductivity (EC iw ) 3.2 dS/m, sodium adsorption ratio (SAR) 21 (mmol/1)1/2 and residual sodium carbonate (RSC) 4me/1, on the build up of salinity in the soil profile and yield of crops grown under fixed rice-wheat and maize/millet-wheat rotations. Saline waters were continuously used with and without the addition of gypsum (at the rate needed to reduce RSC to zero) applied at each irrigation. In maize/millet-wheat rotation, two additional treatments viz. (i) irrigation with 50% extra water over and above the normal 6 cm irrigation, and (ii) irrigation with good water and saline water alternately, were also kept. The results showed that salinity increased rapidly in the profile during the initial years but after five years (1979–1984) the average soluble salt concentration in 0–90 cm soil profile did not appreciably vary and the mean EC e values under saline water treatment remained almost similar to EC iw , under both the crop rotations.Saline water irrigation increased pH and Na saturation of the soil, reduced water infiltration rate and decreased yields of maize, rice and wheat. The differences in the build up of salinity and ESP of the soil under the two cropping sequences seemed to be related with the differences in leaching that occurred under rice-wheat and maize/millet-wheat rotations. Application of gypsum increased the removal of Na from the profile, appreciably decreased the pH and Na saturation and improved water infiltration rate and raised crop yields. Application of non-saline and saline waters alternately was found to be a useful practice but irrigation with 50% extra water to meet the leaching requirement did not control salinity and hence lowered crop yields.  相似文献   

18.
[目的]确定大田黄瓜最适宜的灌溉频率和灌水量.[方法]试验于2018年在华北水利水电大学农业高效用水试验场进行,以20 cm标准蒸发皿的累积蒸发量(E20)作为灌水依据,灌溉处理分为2个灌溉间隔(I1:3 d;I2:6 d)和3种水面蒸发系数(K1:0.5;K2:0.7;K3:0.9),共6个处理,对黄瓜耗水特性、产量...  相似文献   

19.
Summary The effect of soil moisture regimes on the grain and straw yield, consumptive water use (Cu) and its relation with evaporation from free water surface (Eo), water use efficiency and soil moisture extraction pattern of lentil was studied in a field experiment conducted at the Indian Agricultural Research Institute, New Delhi during the fall-spring season of the crop years 1979–1980 and 1980–1981. The grain and straw yield, consumptive water use rate, Cu/Eo ratio and water use efficiency increased with an increase in irrigation frequency. Consumptive water use rate increased as the crop season advanced and reached its peak value during flowering and grain filling stage. The Cu/Eo ratio attained its minimum values 35 and 105 days after sowing at branching and grain filling stages. Depletion of soil moisture was most from the top 0–30 cm soil layer followed by 30–60 cm soil layer and was least from 90–120 cm soil layer. The pattern of soil moisture depletion was also influenced by soil moisture regime. During the vegetative and flowering stage the percent contribution from the top 0–30 cm soil layer decreased and that from the lower soil layers (30–60, 60–90, and 90–120 cm) increased with an increase in the soil moisture tension, however, the actual amount of moisture depleted from all the soil layers was always higher under low soil moisture tension regime than under high soil moisture tension regime. During the grain development stage the soil moisture treatment had no significant effect on the relative contribution from different soil layers under low and high soil moisture tension as the crop was irrigated at the same time under both these treatments. However, with no irrigation, the percent contribution from top soil layer continued to decrease, and from lower soil layers continued to increase, as the crop advanced from flowering stage to grain development stage.  相似文献   

20.
The growth and herbage and oil production of East Indian lemongrass (Cymbopogon flexuosus) in response to different levels of irrigation water (IW) [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3 and 1.5 times cumulative pan evaporation (CPE)] were evaluated on deep sandy soils at the research farm of the Central Institute of Medicinal and Aromatic Plants, Lucknow, from 1991 to 1993. In general, an increment in the level of irrigation increased the plant height up to 0.7 IW:CPE ratio. The response of irrigation levels on tiller production of lemongrass differed with the season of harvest. Maximum tillers/clump during the 2nd, 3rd, 6th and 7th harvests were in response to irrigation levels 0.9, 0.5, 0.7 and 0.7 IW:CPE ratio, respectively. Oil content had an inverse relationship with the levels of irrigation, specially during the 1st, 2nd, 5th and 6th harvests. Significantly higher herb and essential oil yields were recorded at 0.7 IW:CPE ratio, irrespective of season of harvest. The maximum total herb (22.79 t/ha in first year and 33.11 t/ha in second year) and oil (146.2 l/ha in the first year and 205.3 l/ha in the second year) yields were recorded at 0.7 IW:CPE ratio. The quality of oil with respect to the major chemical constituents (Citral-a, Citral-b and geraniol) was not changed. At the optimum level of irrigation (0.7 IW:CPE ratio) the water used by lemongrass was 118.2 cm for first year and 123.8 cm for the second year. Water-use efficiency was found to be higher (1.66 l oil/ha-cm) in the second year than the first year (1.23 l oil/ha-cm). For optimum yield potential of lemongrass on deep sandy soils of sub-tropical climate, the crop received 17 irrigations in the first year and 14 irrigations in the second year of harvests. Irrigations were made during the dry winter and summer months. Received: 15 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号