首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted to clarify the feasibility of newly developed vitrification techniques for porcine embryos using the micro volume air cooling (MVAC) method without direct contact with liquid nitrogen (LN2). Expanded blastocysts were vitrified in a solution containing 6 M ethylene glycol, 0.6 M trehalose and 2% (wt/vol) polyethylene glycol in 10% HEPES-buffered PZM-5. The blastocysts were collected from gilts and vitrified using the new device (MVAC) or a Cryotop (CT). Blastocysts were stored in LN2 for at least 1 month. After warming, cryoprotective agents were removed using a single step. Survival of the embryos was assessed by in vitro culture (Experiment 1) and by embryo transfer to recipients (Experiment 2). In Experiment 1, the embryos vitrified by the MVAC or CT and fresh embryos without vitrification (Control) were used. The survival rates of embryos in the MVAC, CT and Control groups were 88.9% (32/36), 91.7% (33/36) and 100% (34/34), respectively, after 48 h culture, and the hatching rates of embryos after 48 h incubation were 69.4% (25/36), 63.9% (23/36) and 94.1% (32/34), respectively. In Experiment 2, 64 vitrified embryos were transferred to 5 recipient gilts, and 8 healthy piglets were produced from 3 recipients in the MVAC group. Similarly, 66 vitrified embryos were transferred to 5 recipient gilts, and 9 healthy piglets were produced from 2 recipients in the CT group. These results indicated that porcine expanded blastocysts can be cryopreserved using the MVAC method without potential pathogen contamination from LN2.  相似文献   

2.
We previously developed a new vitrification method (equilibrium vitrification) by which two-cell mouse embryos can be vitrified in liquid nitrogen in a highly dehydrated/concentrated state using low concentrations of cryoprotectants. In the present study, we examined whether this method is effective for mouse embryos at multiple developmental stages. Four-cell embryos, eight-cell embryos, morulae, and blastocysts were vitrified with EDFS10/10a, 10% (v/v) ethylene glycol and 10% (v/v) DMSO in FSa solution. The FSa solution was PB1 medium containing 30% (w/v) Ficoll PM-70 plus 0.5 M sucrose. The state of dehydration/concentration was assessed by examining the survival of vitrified embryos after storage at –80°C. When four-cell embryos and eight-cell embryos were vitrified with EDFS10/10a in liquid nitrogen and then stored at –80°C, the survival rate was high, even after 28 days, with relatively high developmental ability. On the other hand, the survival of morulae and blastocysts vitrified in liquid nitrogen and stored at –80°C for four days was low. Therefore, morulae and blastocysts cannot be vitrified in a highly dehydrated/concentrated state using the same method as with two-cell embryos. However, when blastocysts were shrunken artificially before vitrification, survival was high after storage at –80°C for four days with high developmental ability. In conclusion, the equilibrium vitrification method using low concentrations of cryoprotectants, which is effective for two-cell mouse embryos, is also useful for embryos at multiple stages. This method enables the convenient transportation of vitrified embryos using dry ice.  相似文献   

3.
影响玻璃化冷冻兔胚胎效果的一些因素   总被引:4,自引:0,他引:4  
试验对影响玻璃化冷冻兔胚胎效果的一些因素进行探讨,以找出理想的玻璃化冷冻方法。在测试的5种玻璃化溶液中,含35%乙二醇(EG)和1.0mol/L蔗糖的溶液(VS1)对胚胎的毒性最小。用VS1冷冻桑椹胚和囊胚的理想程序是:在室温下使胚胎分别在20%EG和35%EG中平衡2、3分钟后,移入VS1中,0.5分钟内(囊胚也可在2分钟后)投入液氮中冷冻。桑椹胚的存活率为91.7%(33/36),囊胚的存活率为97.1%(33/34)~97.3%(36/37)。8~16细胞胚胎的理想冷冻程序为:在室温下使胚胎在20%EG、35%EG中平衡2、3分钟,移入4℃的37%EG+1.0mol/L蔗糖溶液中平衡2分或10分钟后冷冻,胚胎存活率分别为100%(37/37)、86.1%(31/36)。  相似文献   

4.
Two-cell stage and blastocyst stage mouse embryos were equilibrated in a medium containing 7.5% ethylene glycol (EG) and 7.5% dimethyl sulfoxide (DMSO) for 8–15 min. Vitrification was performed in a medium containing 0.5 M sucrose and either 15% EG + 15% DMSO, 17.5% EG + 17.5% DMSO, or 20% EG + 20% DMSO for 30 s. They were then placed either on a hemi-straw (HS) or a hollow fiber vitrification (HFV) device and vitrified by cooled air inside a 0.5-ml straw. In two-cell embryos, a 100% survival rate was obtained from all groups except the 20% HS group (P > .05). All vitrified two-cell groups showed similar rates of blastocyst development to that of fresh control group (P > .05), except 17.5% and 20% HFV groups, which were significantly lower than the other groups (P < .05). In the blastocyst embryos, the HFV groups were divided into two subgroups (non-collapsed; HFV-NC and collapsed; HFV-C blastocyst). Re-expansion rate in 15% HFV-NC, 17.5% HFV-NC, and 15% HFV-C groups was reduced (P < .05), whereas the rest were similar to control. In conclusion, we established a simplified, reliable, and closed system for HFV vitrification applying hemi-straw, which does not require skilled practitioners.  相似文献   

5.
An efficient cryopreservation protocol for porcine morulae was investigated with three types of vitrification having different cooling rates (Exp. 1). Survival of embryos vitrified after removal of cytoplasmic lipid droplets was also examined by means of the minimum volume cooling (MVC) method (Exp. 2). In Exp. 1, the morula stage embryos were vitrified with a 0.25 ml plastic straw (ST-method), gel loading tip (GLT-method) and the MVC-method, respectively, and stored in liquid nitrogen after which they were warmed in sucrose solutions with cryoprotectants being subsequently removed in a stepwise manner. In Exp. 2, morulae were centrifuged with 7.5 microg/ml cytocharasin B at 12000 x g for 20 min to polarize the cytoplasmic lipid droplets that were then removed from the embryos by micromanipulation (delipation). Both those delipated at the morula stage and the intact embryos at the morula to blastocyst stages were vitrified by the MVC-method. In vitro survival of the vitrified embryos was assessed in both experiments by culturing in NCSU-23 + 10% FCS for 48 h. In vitro developments of vitrified embryos after warming to blastocysts were 20% (6/30) for the ST-method, 39% (18/46) for the GLT-method, and 60% (26/43) for the MVC-method. Embryo survival was further improved by vitrification after delipation (95%, 35/37) compared to intact vitrified morulae (24/42, 57%, P<0.001) and blastocysts (23/31, 74%, P<0.05). Moreover, the number of cells in blastocysts (92 +/- 25) derived from the delipated-vitrified morulae was comparable to those derived from intact control non-vitrified embryos (103 +/- 31). Our results demonstrate that vitrified porcine morulae have the highest survival when using the MVC-method in conjunction with delipation.  相似文献   

6.
转基因兔胚胎玻璃化冷冻保存的研究   总被引:4,自引:0,他引:4  
在25℃条件下,将兔体外受精精子载体转基因兔桑椹胚置于含有40%乙二醇、18%Ficol、0.3mol蔗糖的mPBS溶液(EFS40)中平衡2分钟,然后直接投入液氮,成功地进行了玻璃化冷冻保存。解冻后桑椹胚发育至囊胚和孵化囊胚的比例分别为65.81%和39.24%,与未经冷冻的鲜胚发育比例(71.05%和43.42%)相比,没有明显的差异。78枚经玻璃化冷冻和解冻的桑椹胚移植给5只受体,其中2只妊娠,共产下8只活仔兔。  相似文献   

7.
The present study was conducted to examine post-thaw in vitro developmental competence of buffalo embryos cryopreserved by cytoskeletal stabilization and vitrification. In vitro produced embryos were incubated with a medium containing cytochalasin-b (cyto-b) in a CO2 incubator for 40 min for microfilament stabilization and were cryopreserved by a two-step vitrification method at 24℃ in the presence of cyto-b. Initially, the embryos were exposed to 10% ethylene glycol (EG) and 10% dimethylsulfoxide (DMSO) in a base medium for 4 min. After the initial exposure, the embryos were transferred to a 7 µl drop of 25% EG and 25% DMSO in base medium and 0.3 M sucrose for 45 sec. After warming, the embryos were cultured in vitro for 72 h. The post-thaw in vitro developmental competence of the cyto-b-treated embryos did not differ significantly from those vitrified without cyto-b treatment. The hatching rates of morulae vitrified without cyto-b treatment was significantly lower than the non-vitrified control. However, the hatching rate of cyto-b-treated vitrified morulae did not differ significantly from the non-vitrified control. This study demonstrates that freezing of buffalo embryos by cytoskeletal stabilization and vitrification is a reliable method for long-term preservation.  相似文献   

8.
Solid surface vitrification (SSV) was compared with in-straw vitrification for cryopreservation of biopsied mouse embryos. Eight-cell stage embryos were zona drilled and one blastomere was removed. Developed morulae or blastocysts were vitrified in microdrop (35% EG + 5% PVP + 0.4 M trehalose) or in straw (7.0 M EG + 0.5 M sucrose). Following recovery, embryos were cultivated in vitro or transferred into recipients. Cryopreservation had an effect not only on the survival of biopsied embryos but also on their subsequent development in vitro. Cryosurvival of biopsied morulae vitrified in straw was significantly inferior to SSV. The post-warm development of biopsied and non-biopsied morulae was delayed on Day 3.5 and 4.5 in both vitrification groups. A delay in development was observed on Day 5.5 among vitrified non-biopsied blastocysts. The percentage of pups born from biopsied morulae or blastocysts following cryopreservation did not differ from that of the control. No significant differences could be detected between methods within and between embryonic stages in terms of birth rate. The birth rate of biopsied embryos vitrified in straw was significantly lower compared to the non-biopsied embryos. The novel cryopreservation protocol of SSV proved to be effective for cryopreservation of morula- and blastocyst-stage biopsied embryos.  相似文献   

9.
The aim of this study was to determine the most efficient vitrification protocol for the cryopreservation of day 7 in vitro produced (IVP) porcine blastocysts. The post‐warm survival rate of blastocysts vitrified in control (17% dimethyl sulfoxide + 17% ethylene glycol [EG] + 0.4 mol/L sucrose) and commercial media did not differ, nor did the post‐warm survival rate of blastocysts vitrified in medium containing 1,2‐propandiol in place of EG. However, vitrifying embryos in EG alone decreased the cryosurvival rate (55.6% and 33.6%, respectively, p < .05). Furthermore, the post‐warm survival rates of blastocysts vitrified with either trehalose or sucrose as the non‐penetrating cryoprotectant did not differ. There was also no significant difference in post‐warm survival of blastocysts vitrified in control (38°C) media and room temperature (22°C) media with extended equilibration times, although when blastocysts were vitrified using control media at room temperature, the post‐warm survival rate increased (56.8%, 57.3%, 72.5%, respectively, p < .05). The findings show that most cryoprotectant combinations examined proved equally effective at supporting the post‐warm survival of IVP porcine blastocysts. The improved post‐warm survival rate of blastocysts vitrified using media held at room temperature suggests that the cryoprotectant toxicity exerted in 22°C media was reduced.  相似文献   

10.
This study examined the effects of different vitrification medium compositions and exposure times (2, 4 and 6min) on the post-thaw development of buffalo embryos produced in vitro (IVP). The compositions were (1) 40% ethylene glycol (EG); (2) 25% glycerol (G)+25% EG, and (3) 25% EG+25% dimethylsulfoxide (DMSO). The base medium was 25mM Hepes-buffered TCM-199+10% steer serum +50microg/mL gentamycin. The IVP embryos were cryopreserved by a two-step vitrification method at 24 degrees C. After warming, the embryos were cultured in vitro for 72h. The vitrification of morulae and blastocysts in 25% EG+25% DMSO with an exposure time of 2 and 4min, respectively, resulted in a better hatching rate than other combinations. The hatching rate of morulae vitrified in 25% EG+25% G, 25% EG+25% DMSO, and blastocysts vitrified in 40% EG, 25% EG+25% DMSO were negatively correlated with exposure time. However, the hatching rate of blastocysts vitrified in 25% EG+25% G was positively correlated with exposure time. The study demonstrated that the post-thaw in vitro development of IVP buffalo embryos was affected by the vitrification medium composition and exposure time.  相似文献   

11.
Our aim was to optimize the cryoprotectant treatment for the preservation of immature porcine cumulus-oocyte complexes (COCs) by solid surface vitrification. In each experiment, the vitrification solution consisted of 50 mg/ml polyvinyl pyrrolidone, 0.3 M of the actual sugar and in total 35% (v/v) of the actual permeating cryoprotectant (pCPA) combination. After warming, the COCs were subjected to in vitro maturation, fertilization and embryo culture. In Experiment 1, trehalose and sucrose were equally effective during vitrification and warming in terms of facilitating oocyte survival and subsequent embryo development. In Experiment 2, when equilibration was performed at 38.5 C in a total of 4% (v/v) pCPA for 15 min, the combination of ethylene glycol and propylene glycol (EG + PG = 1:1) was superior to EG and dimethyl sulfoxide (EG + DMSO = 1:1) in terms of oocyte survival after vitrification and the quality of resultant blastocysts. In Experiment 3, equilibration in 4% (v/v) pCPA for 15 min before vitrification was superior to that in 15% (v/v) CPA for 5 min for achievement of high survival rates irrespective of the pCPA combination used. In Experiment 4, when equilibration was performed in 4% EG + PG for 5 min, 15 min or 25 min, there was no difference in oocyte survival and subsequent embryo development after vitrification and warming; however, the developmental competence of cleaved embryos was tendentiously reduced when equilibration was performed for 25 min. In conclusion, trehalose and sucrose were equally effective in facilitating vitrification, and the optimum pCPA treatment was 5–15 min equilibration in 4% (v/v) of EG + PG followed by vitrification in 35% (v/v) EG + PG.  相似文献   

12.
用不同冷冻载体(玻璃管、塑料管和0.25 mL细管)及不同冷冻方法(程序化冷冻和玻璃化冷冻)对小鼠3.5 d~4 d桑椹胚和囊胚进行冷冻保存,并与不做任何冷冻保存处理直接培养进行对比。结果表明,使用玻璃管、塑料管和0.25 mL细管作为胚胎的承载材料进行玻璃化冷冻,效果差异不显著;采用程序化冷冻与OPS玻璃化冷冻法,对小鼠胚胎进行冷冻保存可以取得较好的结果。从而得出,用不同材质的冷冻载体进行玻璃化冷冻,可以获得与程序化冷冻相同的良好效果。  相似文献   

13.
This study was conducted to examine the utility of vitrification for bovine embryos with low‐quality grade, and simple cryoprotectants dilution method for practitioners. In Experiment 1, survival of frozen embryos was compared with that of vitrified embryos using minimum volume cooling (MVC). Then, vitrified embryos were used to confirm the optimum sucrose concentration in Experiment 2. The survival rates of embryos that had been vitrified following diluted cryoprotectants with the one‐step in‐straw method were compared with those of fresh control embryos in Experiment 3. Frozen‐thawed or vitrified‐warmed blastocysts were cultured with TCM‐199 supplemented with 100 μmol/L beta‐mercaptoethanol +5% fetal bovine serum at 38.5°C in an atmosphere of 5% CO2 in air, their survival after 24 hr were compared. The development to term of fair quality in vivo embryos after vitrification was examined in Experiment 4. Results show that survival rates of frozen‐thawed embryos were lower (< .05) than that of vitrified‐warmed ones. When vitrified embryos were warmed in 0.3 mol/L sucrose in straws, their survival rate was 100%. The total cell numbers of vitrified‐warmed embryos were comparable to those of fresh control embryos. The six calves from 13 vitrified embryos were delivered in Experiment 4. These results indicate that MVC vitrification following one‐step cryoprotectants dilution is utilized to preserve low‐quality bovine embryos.  相似文献   

14.
Our aim was to optimize a cryoprotectant treatment for vitrification of immature porcine cumulus-oocyte complexes (COCs). Immature COCs were vitrified either in 35% ethylene glycol (EG), 35% propylene glycol (PG) or a combination of 17.5% EG and 17.5% PG. After warming, the COCs were in vitro matured (IVM), and surviving oocytes were in vitro fertilized (IVF) and cultured. The mean survival rate of vitrified oocytes in 35% PG (73.9%) was higher (P<0.05) than that in 35% EG (27.8%). Oocyte maturation rates did not differ among vitrified and non-vitrified control groups. Blastocyst formation in the vitrified EG group (10.8%) was higher (P<0.05) than that in the vitrified PG group (2.0%) but was lower than that in the control group (25.0%). Treatment of oocytes with 35% of each cryoprotectant without vitrification revealed a higher toxicity of PG on subsequent blastocyst development compared with EG. The combination of EG and PG resulted in 42.6% survival after vitrification. The maturation and fertilization rates of the surviving oocytes were similar in the vitrified, control and toxicity control (TC; treated with EG+PG combination without cooling) groups. Blastocyst development in the vitrified group was lower (P<0.05) than that in the control and TC groups, which in turn had similar development rates (10.7%, 18.1% and 23.3%, respectively). In conclusion, 35% PG enabled a higher oocyte survival rate after vitrification compared with 35% EG. However, PG was greatly toxic to oocytes. The combination of 17.5% EG and 17.5% PG yielded reasonable survival rates without toxic effects on embryo development.  相似文献   

15.
We evaluated the effects of polyethylene glycol (PEG) and Supercool X‐1000 (SC) as supplements during the vitrification of immature cumulus‐enclosed porcine oocytes in a solution based on 17.5% ethylene glycol + 17.5% propylene glycol. After warming, the oocytes were subjected to in vitro maturation, fertilization and embryo culture. In Experiment 1, equilibration and vitrification solutions were supplemented with or without 2% (w/v) PEG (PEG+ and PEG‐, respectively). The survival rate, cleavage and blastocyst development were similar between PEG+ and PEG‐ groups; however, all values were lower than those in the non‐vitrified control. In Experiment 2, vitrification solution was supplemented with or without 1% (v/v) SC (SC+ and SC‐, respectively). The percentages of survival and blastocyst development were similar between SC+ and SC‐ groups but lower than those in the non‐vitrified control. The percentage of cleavage in the SC‐ group was significantly lower than the control and the SC+ groups, which were in turn similar to one another. In both experiments, the cell numbers in blastocysts were not significantly different among the non‐vitrified and vitrified groups. In conclusion, PEG did not improve oocyte survival and embryo development, whereas SC improved the ability of surviving oocytes to cleave but not to develop into blastocysts.  相似文献   

16.
本试验利用微滴、微穴和平板培养系统对徒手克隆(hand-made clone,HMC)重组胚进行体外培养;采用了40% EG(ethylene glycol,EG)、25% EG+25% DMSO(dimethylsulphoxide,DMSO) 和20% EG+20% DMSO+0.5 mol/L蔗糖作为玻璃化冷冻液对HMC囊胚进行了超低温冷冻;并且比较了HMC与传统核移植的胚胎生产效率及囊胚冷冻存活率。结果表明,微穴系统的卵裂率要显著高于平板系统(P<0.05),极显著高于微滴系统(P<0.01);且微穴系统的囊胚率(40.0%)极显著高于平板(19.8%)和微滴系统(8.3%)(P<0.01)。采用20% EG+20% DMSO+0.5 mol/L蔗糖作为冷冻保护剂时HMC囊胚存活率极显著高于40% EG(P<0.01);HMC重组胚的融合率和囊胚率均高于传统核移植法(P<0.05;P<0.01),而HMC囊胚的冷冻存活率与传统核移植生产的囊胚没有显著差异。以上结果说明水牛HMC可以替代传统核移植法生产克隆胚胎,微穴体系最适合水牛HMC胚胎的体外培养,且采用20% EG+20% DMSO+0.5 mol/L蔗糖对HMC囊胚进行玻璃化冷冻可以取得良好的冷冻效果。  相似文献   

17.
小鼠桑椹胚简易玻璃化冷冻技术再探讨   总被引:12,自引:0,他引:12  
本试验继小鼠扩张囊胚玻璃化冷冻保存成功后,在室温(25℃)下利用不同浓度的EFS玻璃化溶液,对小鼠的桑椹胚简易玻璃化冷冻技术进行再探讨。结果是胚胎在10%EG溶液中预先处理5分钟,再移入事先配置好含有EFS30的0.25ml塑料细管中1分钟平衡后直接投入液氮中冷冻,解冻后获得的发育率最高(94%)。冻胚移植后妊娠率和产仔率分别为56%(9/16)及42%(49/116)。与对照组相比差异不显著(P>0.05)  相似文献   

18.
This study assessed the effects of cryoprotectant concentration during equilibration on the efficiency of bovine blastocyst vitrification and the expression of selected developmentally important genes. In vitro produced bovine blastocysts were equilibrated in either 7.5% ethylene glycol (EG) + 7.5% DMSO (Va group) or in 2% EG + 2% DMSO (Vb group) then vitrified on Cryotop® sheets in 16.5% EG + 16.5% DMSO + 0.5M sucrose. After warming, embryos were cultured for 48 hr. Re‐expansion, hatching, and the numbers of total and membrane damaged cells were compared among vitrified groups and a control. There was no significant difference between the vitrified groups in survival, cell numbers and the extent of membrane damage. Vitrification increased the number of membrane‐damaged cells in both groups, however, in a greater extent in the Vb group. Vitrification increased (p < .05) the expression of the HSP70 gene in Va but not in Vb embryos. The expression of IGF2R, SNRPN, HDAC1, DNMT3B, BAX, OCT4, and IFN‐t genes were the same in control and vitrified groups. In conclusion, the concentration of cryoprotectants during equilibration did not affect survival rates; however, normal cell numbers could be maintained only by equilibration in 15% cryoprotectants which was associated with increased HSP70 expression.  相似文献   

19.
Generating techniques to enhance the success of blastomere separation is important for bovine economy, because it increases the number of transferable embryos. This study aimed to identify the optimum cryoprotectants for the vitrification of bovine embryos and the separation of blastomeres at different stages. In experiment 1, expanded blastocysts were vitrified in two different vitrification solutions, either (1) ethylene glycol (EG) + propylene glycol (PG) or (2) EG. The survival rate of blastocysts in the EG + PG was higher than that of the EG. In experiment 2, intact two‐cell and eight‐cell stage embryos were vitrified in the same solutions used in experiment 1. The EG + PG produced more dead embryos than the EG (P < 0.05). In the EG, the rate of blastocyst formation was similar for the vitrified two‐ and eight‐cell embryos and the non‐vitrified ywo‐cell embryos. In experiment 3, separated blastomeres of two‐ and eight‐cell embryos were vitrified in EG. There was no difference in the rate of blastocyst formation and total number of cells between the two vitrified groups. In summary, at the blastocyst stage, EG + PG was superior, based on both survival rates and cell numbers; however, at the 2–8 cell stage, the use of EG alone was better than the other groups.  相似文献   

20.
In the present study, mouse blastocysts were employed to investigate the feasibility and efficiency of stepwise in-straw dilution and direct transfer using the open pulled straw (OPS) method. In experiment I, the effects of various vitrification solutions (VS) on embryo survival were examined. After thawing, the expanded blastocyst rates (97.59 and 95.05%) and hatching rates (80.48 and 78.95%) achieved in the EDFS30 [15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll, and sucrose] and EFS40 [40% EG, Ficoll, and sucrose] groups were no different from those (96.15% and 83.33%) of the control group. However, the rates in the EFS30 [30% EG, Ficoll, and sucrose] (87.80 and 55.43%) and EDFS40 [20% EG, 20% DMSO, Ficoll, and sucrose] (95.69 and 70.97%) groups were significantly lower than those (96.15 and 83.33%) of the control group (P<0.05). In the experiment II, the effects of the volume of VS in the OPS on the survival of embryos after in-straw thawing were investigated. When the length of the VS in the column was less than 1 cm, the in vitro viability of embryos thawed by stepwise in-straw dilution was no different among the experimental and control groups. The embryos could be successfully thawed by immersing the OPS in 0.5 M sucrose for 3 min and then 0.25 M sucrose for 2 min. In experiment III, the effect of immersion time of the OPS in diluent (PBS) on the viability of vitrified embryos was investigated. After in-straw thawing, OPSs were immersed immediately in 1 ml PBS for 0 to 30 min. When the immersion time of the OPSs in PBS was less than 12 min, in vitro development of the in-straw thawed embryos was no different from that of the controls. In experiment IV, in-straw thawed blastocysts were directly transferred to pseudopregnant mice to examine their in vivo developmental viability. The pregnancy (91.67%) and birth rates (42.42%) of embryos in-straw thawed and directly transferred were no different from those of the unvitrified controls (90.90 and 40%) and embryos thawed by the conventional method (84.61 and 46.94%). These results demonstrate that mouse embryos vitrified with OPS could be successfully thawed by stepwise in-straw dilution and transferred directly to a recipient and that this method might be a model for field manipulation of vitrified embryos in farm animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号