首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heritabilities and genetic and phenotypic correlations were estimated from feedlot and carcass data collected from Brahman calves (n = 504) in central Florida from 1996 to 2000. Data were analyzed using animal models in MTDFREML. Models included contemporary group (n = 44; groups of calves of the same sex, fed in the same pen, slaughtered on the same day) as a fixed effect and calf age in days at slaughter as a continuous variable. Estimated feedlot trait heritabilities were 0.64, 0.67, 0.47, and 0.26 for ADG, hip height at slaughter, slaughter weight, and shrink. The USDA yield grade estimated heritability was 0.71; heritabilities for component traits of yield grade, including hot carcass weight, adjusted 12th rib backfat thickness, loin muscle area, and percentage kidney, pelvic, and heart fat were 0.55, 0.63, 0.44, and 0.46, respectively. Heritability estimates for dressing percentage, marbling score, USDA quality grade, cutability, retail yield, and carcass hump height were 0.77, 0.44, 0.47, 0.71, 0.5, and 0.54, respectively. Estimated genetic correlations of adjusted 12th rib backfat thickness with ADG, slaughter weight, marbling score, percentage kidney, pelvic, and heart fat, and yield grade (0.49, 0.46, 0.56, 0.63, and 0.93, respectively) were generally larger than most literature estimates. Estimated genetic correlations of marbling score with ADG, percentage shrink, loin muscle area, percentage kidney, pelvic, and heart fat, USDA yield grade, cutability, retail yield, and carcass hump height were 0.28, 0.49, 0.44, 0.27, 0.45, -0.43, 0.27, and 0.43, respectively. Results indicate that sufficient genetic variation exists within the Brahman breed for design and implementation of effective selection programs for important carcass quality and yield traits.  相似文献   

2.
Heifer and steer progeny of 2-yr-old first-cross (F1) heifers and 3- to 6-yr-old F1 cows, from Hereford dams and five sire breeds, were evaluated for postweaning feedlot growth and carcass composition. Breeds of sire of dam were Angus (A), Red Poll (RP), Tarentaise (T), Simmental (Sm), and Pinzgauer (P). Calves from 2-yr-old heifers were sired by Shorthorn, and calves from 3- to 6-yr-old dams were sired by Charolais. Breed of sire of dam was significant (P less than .05 to P less than .01) for total gain and final weight for female progeny from 2-yr-old dams. At all weights, Sm, P, and T ranked above A and RP. Progeny of A, P, Sm, and T F1 2-yr-old dams were not significantly different but were higher (P less than .05) than RP heifers in total feedlot gain. Breed of sire of dam was significant (P less than .05) for carcass weight and longissimus muscle area; T ranked highest and RP lowest. Breed was not significant for any growth traits of steer progeny of 2-yr-old dams. Breed was significant for marbling score; A ranked highest and exceeded (P less than .01) both RP and Sm steers. Breed was significant (P less than .05) for most growth traits in the heifer progeny of the 3- to 6-yr-old dams bred to Charolais sires. Heifer calves of the Sm group were heavier (P less than .05) than all other groups for most weights and total gain. For total gain, P and T were intermediate and A and RP lowest. For heifer carcass traits from 3- to 6-yr-old dams, breed was significant (P less than .05 to P less than .01) for carcass weight, longissimus muscle area, percentage of cutability, and estimated kidney, heart, and pelvic fat. Heifers from Sm-sired dams were heavier (P less than .05) than those from all other groups but ranked second to heifers from P for percentage of cutability. Marbling scores of RP heifer carcasses ranked highest of all groups. Breed was not significant (P greater than .05) for any of the weights or gains in steer progeny of 3- to 6-yr-old dams; however, the Sm and P groups ranked above A and RP for all feedlot test weights.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Feedlot traits, carcass traits and distribution of commercial cuts of crossbred intact male progeny (n = 556) from young and mature Hereford, Red Poll, Hereford X Red Poll, Red Poll X Hereford, Angus X Hereford, Angus X Charolais, Brahman X Hereford and Brahman X Angus dams were evaluated. First-calf heifers were bred to Red Angus bulls; Santa Gertrudis sires were used for each cow's second and third breeding seasons. Calves from these young dams were slaughtered at 13 mo. Calves of mature dams were all sired by Limousin bulls and slaughtered at 12 mo. Dam breed was a major source of variation in most bull traits. Progeny of Brahman-cross dams were inferior (P less than .01) in daily gain, final weight, carcass weight and in edible cuts/day of age compared with progeny from Bos taurus dams. Intact male progeny of Angus X Charolais dams ranked highest in longissimus area, cutability, and edible cuts/day of age. The range of dam breed means in percentage of steak, roast, bone-in cuts (chuck short ribs and back ribs), short plate and thin cuts, and lean trim was just over 1%. Greater variation among dam breeds existed in fat measurements. Analyses in which Hereford-Red Poll diallel data for young dams and mature dams were combined showed positive maternal heterosis for dressing percentage (P less than .05), carcass weight (P less than .05), carcass weight/day of age (P less than .05), estimated carcass fat (P less than .05), fat thickness (P less than .01) and marbling score (P less than .01). Reciprocal effects were inconsequential. Results illustrate the importance of dam breed-type effects in formulating breeding strategies for commercial beef herds.  相似文献   

4.
A primary genomic screen for quantitative trait loci (QTL) affecting carcass and growth traits was performed by genotyping 238 microsatellite markers on 185 out of 300 total progeny from a Bos indicus x Bos taurus sire mated to Bos taurus cows. The following traits were analyzed for QTL effects: birth weight (BWT), weaning weight (WW), yearling weight (YW), hot carcass weight (HCW), dressing percentage (DP), fat thickness (FT), marbling score (MAR), longissimus muscle area (LMA), rib bone (RibB), rib fat (RibF), and rib muscle (RibM), and the predicted whole carcass traits, retail product yield (RPYD), fat trim yield (FATYD), bone yield (BOYD), retail product weight (RPWT), fat weight (FATWT), and bone weight (BOWT). Data were analyzed by generating an F-statistic profile computed at 1-cM intervals for each chromosome by the regression of phenotype on the conditional probability of receiving the Brahman allele from the sire. There was compelling evidence for a QTL allele of Brahman origin affecting an increase in RibB and a decrease in DP on chromosome 5 (BTA5). Putative QTL at or just below the threshold for genome-wide significance were as follows: an increase in RPYD and component traits on BTA2 and BTA13, an increase in LMA on BTA14, and an increase in BWT on BTA1. Results provided represent a portion of our efforts to identify and characterize QTL affecting carcass and growth traits.  相似文献   

5.
Data collected from steer and bull progeny, fed to a constant final feedlot weight over 11 yr, were used to estimate heterosis in post-weaning feedlot growth and carcass traits in two-way and three-way rotational crossing systems and a breed composite from crossing Hereford, Angus and Charolais breeds. Steer and bull progeny from matings of beef x Brown Swiss-cross sires and dams also were compared with the straight beef breeds and beef crosses. Growth traits evaluated were initial weight on test, 112-d weight, total feedlot average daily gain and total days from initial to final weight. Carcass traits included hot carcass weight, dressing percentage, rib eye area, 12th-rib fat thickness, kidney, pelvic and heart fat, yield grade and marbling score. Heterosis estimates for calves of all crossing systems were significant for initial and 112-d weight and for saving of days in the feedlot, but not for average daily feedlot gain. Heterosis estimates were small and nonsignificant for most carcass traits except for fat traits in specific crosses. Males from Hereford and Angus sires mated to Angus x Hereford dams had higher (P less than .10) backfat than did the parental average. Male progeny from Charolais ranked higher (P less than .10 to P less than .01) than calves from Hereford and Angus sires for most growth traits. Progeny from Charolais sires were more desirable (P less than .10 to P less than .01) for traits related to cutability, but they had less (P less than .05 to P less than .01) marbling than calves of Angus sires.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Adjustment factors to allow comparison of EPD from several breed associations for birth, weaning, and yearling weights have been available for more than 10 yr. This paper describes steps to calculate adjustment factors for EPD for 4 carcass traits: marbling score, fat thickness, ribeye area, and retail product percentage. The required information is the same as for the weight traits: 1) breed of sire solutions based on measurements on progeny at the US Meat Animal Research Center (USMARC) that have sires with breed association EPD, 2) mean EPD of sires weighted by number of progeny at USMARC (USMARC progeny not included in breed association EPD), and 3) mean EPD of nonparents from breed associations (defined as animals born 2 yr prior to calculation of EPD). Records at USM-ARC are adjusted to 100% heterozygosity because the purpose of the adjustment factors is to allow prediction of performance of progeny of sires mated to other breeds of dam. A critical step is to adjust breed of sire solutions, which are based on an earlier sample of sires, to the equivalent of a sample from a more recent nonparent group using the difference between mean EPD from information sources 2) and 3). The difference is multiplied by the coefficient of regression of USMARC progeny on EPD of their sires. With weight traits, these coefficients are not greatly different from unity. With the carcass traits, 2 sets of coefficients can be used depending on whether the EPD are based on carcass or ultrasound measurements. The regression coefficients also reflect differences in conditions for USMARC progeny (all steers) and factors associated with breed association EPD. Only for marbling score and ribeye area were any estimates of the regression coefficients near unity. For other traits, the coefficients ranged from 1.65 to 2.82. The solutions for breed of sire, differences in mean EPD, and regression coefficients are then used to calculate adjustment factors for EPD of 11 breeds including the arbitrary base breed, Angus.  相似文献   

7.
Feedlot and carcass characteristics of 276 steers from five closed lines of Hereford cattle and reciprocal crosses among these lines were studied. The traits studied were initial weight, final weight, 224-d gain, days on test, hot carcass weight, marbling score, longissimus muscle area, fat thickness, yield grade, dressing percentage and shear force. Year of record was a significant source of variation for most traits. Age of dam was a significant source of variation for growth traits but not carcass traits. Line of sire affected initial weight, final weight, 224-d gain, days on test, marbling score and dressing percentage. Significant heterosis was observed only for hot carcass weight. Heterosis estimates were 1.9% for initial weight, 2.2% for final weight, 2.5% for 224-d gain, -2.1% for days on test, .6% for hot carcass weight, -.6% for marbling score, 0 for carcass grade, .6% for longissimus muscle area, 2.3% for backfat thickness, .9% for yield grade, -.9% for dressing percent and -10.9% for shear force. Initial age on test affected only hot carcass weight. Hot carcass weight, dressing percentage, marbling score, longissimus muscle area and fat thickness were affected by slaughter weight. Slaughter age affected dressing percent and marbling score.  相似文献   

8.
Estimates of heritabilities and genetic correlations were obtained for weaning weight records of 23,681 crossbred steers and heifers and carcass records from 4,094 crossbred steers using animal models. Carcass traits included hot carcass weight; retail product percentage; fat percentage; bone percentage; ribeye area; adjusted fat thickness; marbling score, Warner-Bratzler shear force and kidney, pelvic and heart fat percentage. Weaning weight was modeled with fixed effects of age of dam, sex, breed combination, and birth year, with calendar birth day as a covariate and random direct and maternal genetic and maternal permanent environmental effects. The models for carcass traits included fixed effects of age of dam, line, and birth year, with covariates for weaning and slaughter ages and random direct and maternal effects. Direct and maternal heritabilities for weaning weight were 0.4 +/- 0.02 and 0.19 +/- 0.02, respectively. The estimate of direct-maternal genetic correlation for weaning weight was negative (-0.18 +/- 0.08). Heritabilities for carcass traits of steers were moderate to high (0.34 to 0.60). Estimates of genetic correlations between direct genetic effects for weaning weight and carcass traits were small except with hot carcass weight (0.70), ribeye area (0.29), and adjusted fat thickness (0.26). The largest estimates of genetic correlations between maternal genetic effects for weaning weight and direct genetic effects for carcass traits were found for hot carcass weight (0.61), retail product percentage (-0.33), fat percentage (0.33), ribeye area (0.29), marbling score (0.28) and adjusted fat thickness (0.25), indicating that maternal effects for weaning weight may be correlated with genotype for propensity to fatten in steers.  相似文献   

9.
Evaluations of steer and heifer progeny from a diallel mating design of Simmental, Limousin, Polled Hereford and Brahman beef cattle over 5 yr are presented. Traits evaluated included final weight, hot carcass weight, ribeye area, 12th rib fat thickness, marbling score, yield grade, dressing percentage and percentage of kidney, pelvic and heart fat. Progeny of Simmental sires were heavier at slaughter than those with Brahman sires (P less than .05), but no differences were found for carcass weight. Dressing percentage was higher for Limousin crosses compared with progeny of other sire breeds (P less than .05). Similar results were found for dam breeds, except that progeny of Limousin dams had heavier carcasses with a higher dressing percentage (P less than .05) than Brahman crosses. Crosses of Limousin and Simmental had larger ribeye areas (P less than .05) compared with calves of the other breeds. Progeny of Polled Hereford dams had higher marbling scores and were fatter than progeny of dams of other breeds (P less than .05). Heterosis estimates were significant for all Brahman crosses for final weight, carcass weight and ribeye area, but these contrasts were negligible for other traits. Estimates of general combining ability were positive and significant for Simmental for final weight, carcass weight, ribeye area and marbling score and were significant and negative for Limousin for final weight, fat thickness and yield grade. Maternal values were generally small.  相似文献   

10.
The objective of the present study was to detect quantitative trait loci for economically important traits in a family from a Bos indicus x Bos taurus sire. A Brahman x Hereford sire was used to develop a half-sib family (n = 547). The sire was mated to Bos taurus cows. Traits analyzed were birth (kg) and weaning weights (kg); hot carcass weight (kg); marbling score; longissimus area (cm2); USDA yield grade; estimated kidney, pelvic, and heart fat (%); fat thickness (cm); fat yield (%); and retail product yield (%). Meat tenderness was measured as Warner-Bratzler shear force (kg) at 3 and 14 d postmortem. Two hundred and thirty-eight markers were genotyped in 185 offspring. One hundred and thirty markers were used to genotype the remaining 362 offspring. A total of 312 markers were used in the final analysis. Seventy-four markers were common to both groups. Significant QTL (expected number of false-positives < 0.05) were observed for birth weight and longissimus area on chromosome 5, for longissimus area on chromosome 6, for retail product yield on chromosome 9, for birth weight on chromosome 21, and for marbling score on chromosome 23. Evidence suggesting (expected number of false-positives < 1) the presence of QTL was detected for several traits. Putative QTL for birth weight were detected on chromosomes 1, 2, and 3, and for weaning weight on chromosome 29. For hot carcass weight, QTL were detected on chromosomes 10, 18, and 29. Four QTL for yield grade were identified on chromosomes 2, 11, 14, and 19. Three QTL for fat thickness were detected on chromosomes 2, 3, 7, and 14. For marbling score, QTL were identified on chromosomes 3, 10, 14, and 27. Four QTL were identified for retail product yield on chromosomes 12, 18, 19, and 29. A QTL for estimated kidney, pelvic, and heart fat was detected on chromosome 15, and a QTL for meat tenderness measured as Warner-Bratzler shear force at 3 d postmortem was identified on chromosome 20. Two QTL were detected for meat tenderness measured as Warner-Bratzler shear force at 14 d postmortem on chromosomes 20 and 29. These results present a complete scan in all available progeny in this family. Regions underlying QTL need to be assessed in other populations.  相似文献   

11.
The objective of this study was to identify quantitative trait loci for economically important traits in two families segregating an inactive copy of the myostatin gene. Two half-sib families were developed from a Belgian Blue x MARC III (n = 246) and a Piedmontese x Angus (n = 209) sire. Traits analyzed were birth, weaning, and yearling weight (kg); preweaning average daily gain (kg/d); postweaning average daily gain (kg/d); hot carcass weight (kg); fat depth (cm); marbling score; longissimus muscle area (cm2); estimated kidney, pelvic, and heart fat (%); USDA yield grade; retail product yield (%); fat yield (%); and wholesale rib-fat yield (%). Meat tenderness was measured as Warner-Bratzler shear force at 3 and 14 d postmortem. The effect of the myostatin gene was removed using phase information from six microsatellite markers flanking the locus. Interactions of the myostatin gene with other loci throughout the genome were also evaluated: The objective was to use markers in each family, scanning the genome approximately every 25 to 30 centimorgans (cM) on 18 autosomal chromosomes, excluding 11 autosomal chromosomes previously analyzed. A total of 89 markers, informative in both families, were used to identify genomic regions potentially associated with each trait. In the family of Belgian Blue inheritance, a significant QTL (expected number of false-positives = 0.025) was identified for marbling score on chromosome 3. Suggestive QTL for the same family (expected number of false-positives = 0.5) were identified for retail product yield on chromosome 3, for hot carcass weight and postweaning average daily gain on chromosome 4, for fat depth and marbling score on chromosome 8, for 14-d Warner-Bratzler shear force on chromosome 9, and for marbling score on chromosome 10. Evidence suggesting the presence of an interaction for 3-d Warner-Bratzler shear force between the myostatin gene and a QTL on chromosome 4 was detected. In the family of Piedmontese and Angus inheritance, evidence indicates the presence of an interaction for fat depth between the myostatin gene and chromosome 8, in a similar position where the evidence suggests the presence of a QTL for fat depth in the family with Belgian Blue inheritance. Regions identified underlying QTL need to be assessed in other populations. Although the myostatin gene has a considerable effect, other loci with more subtle effects are involved in the expression of the phenotype.  相似文献   

12.
Genetic parameters for carcass traits of 1774 field progeny (1281 steers and 493 heifers), and their genetic relationships with feed efficiency traits of their sire population (740 bulls) were estimated with REML. Feed efficiency traits included feed conversion ratio (FCR) and residual feed intake (RFI). RFI was calculated by the residual of phenotypic (RFIphe) and genetic (RFIgen) regression from the multivariate analysis of feed intake on metabolic weight and daily gain. Progeny traits were carcass weight (CWT), rib eye area (REA), rib thickness (RBT), subcutaneous fat, yield estimate (YEM), marbling score (MSR), meat quality grade, meat color, fat color, meat firmness and meat texture. The estimated heritability for CWT (0.70) was high and heritabilities for all the other traits were moderate (ranged from 0.32 to 0.47), except for meat and fat color and meat texture which were low (ranged from 0.02 to 0.25). The high genetic correlation (0.62) between YEM and MSR suggests that simultaneous improvement of high carcass yield and beef marbling is possible. Estimated genetic correlations of RFI (RFIphe and RFIgen) of sires with CWT (− 0.60 and − 0.53) and MSR (− 0.62 and − 0.50) of their progeny were favorably negative indicating that the selection against RFI of sires may have contributed to produce heavier carcass and increase in beef marbling. The correlated responses in CWT, REA and RBT of progeny were higher to selection against RFI than those to selection against FCR of sires. This study provides evidence that selection against RFI is preferred over selection against FCR in sire population for getting better correlated responses in carcass traits of their progeny.  相似文献   

13.
Bovine respiratory disease (BRD) is the most costly feedlot disease in the United States. Selection for disease resistance is one of several possible interventions to prevent or reduce the economic loss associated with animal disease and to improve animal welfare. Undesirable genetic relationships, however, may exist between production and disease resistance traits. The objectives of this study were to estimate the phenotypic, environmental, and genetic correlations of BRD with growth, carcass, and LM palatability traits. Health records on 18,112 feedlot cattle over a 15-yr period and slaughter data on 1,627 steers over a 4-yr period were analyzed with bivariate animal models. Traits included ADG, adjusted carcass fat thickness at the 12th rib, marbling score, LM area, weight of retail cuts, weight of fat trim, bone weight, Warner-Bratzler shear force, tenderness score, and juiciness score. The estimated heritability of BRD incidence was 0.08 +/- 0.01. Phenotypic, environmental, and genetic correlations of the observed traits with BRD ranged from -0.35 to 0.40, -0.36 to 0.55, and -0.42 to 0.20, respectively. Most correlations were low or negligible. The percentage of carcass bone had moderate genetic, phenotypic, and environmental correlations with BRD (-0.42, -0.35, and -0.36, respectively). Hot carcass weight and weight of retail cuts had moderate, undesirable phenotypic correlations with BRD (0.37 and 0.40, respectively). Correlations of BRD with LM palatability and ADG were not detected. Low or near zero estimates of genetic correlations infer that selection to reduce BRD in feedlot cattle would have negligible correlated responses on growth, carcass, and meat palatability traits or that selection for those traits will have little effect on BRD susceptibility or resistance.  相似文献   

14.
Data (n = 1,746) collected from 1985 through 1995 on Korean Native Cattle by the National Livestock Research Institute of Korea were used to estimate genetic parameters for marbling score, dressing percentage, and longissimus muscle area, with backfat thickness, slaughter age, or slaughter weight as covariates. Estimates were obtained with REML. Model 1 included animal genetic and residual random effects. Model 2 was extended to include an uncorrelated random effect of the dam. Model 3 was based on Model 1 but also included sire x region x year-season interaction effects. Model 4 combined Models 2 and 3. All models included fixed effects for region x year-season and age of dam x sex combinations. From single-trait analyses, estimates of heritability with covariates to adjust for backfat thickness, slaughter age, and slaughter weight from Model 4 were, respectively, .10, .08, and .01 for marbling score; .09, .12, and .16 for dressing percentage; and .18, .17, and .24 for longissimus muscle area. From three-trait analyses, estimates of genetic correlations between marbling score and dressing percentage, marbling score and longissimus muscle area, and dressing percentage and longissimus muscle area were, respectively, -.99, .20, and -.11 with backfat thickness as covariate; -.88, .47, and .01 with slaughter age as covariate; and -.03, .39, and .91 with slaughter weight as covariate. Results of this study suggest that choice of covariate (backfat thickness, slaughter age, or slaughter weight) for the model seems to be important for carcass traits for Korean Native Cattle. Including sire x region x year-season interaction effects in the model for marbling score and dressing percentage may be important because whether sire x region x year-season interaction effects were in the model affected estimates of other variance components for the three carcass traits. Whether the maternal effect was in the model had little effect on estimates of other parameters. With backfat thickness and slaughter age end points, selection for increasing marbling score would be expected to result in decreasing dressing percentage for Korean Native Cattle. With slaughter weight as a covariate for end point, increased longissimus muscle area would be associated with increased dressing percentage, and increased marbling score would be related to increased longissimus muscle area. The differences in estimates associated with choice of end point, however, need further study.  相似文献   

15.
Carcass and growth measurements of finished crossbred steers (n = 843) and yearling ultrasound and growth measurements of purebred bulls (n = 5,654) of 11 breeds were analyzed to estimate genetic parameters. Multiple-trait restricted maximum likelihood (REML) was used to estimate heritabilities and genetic correlations between finished steer carcass measurements and yearling bull ultrasound measurements. Separate analyses were conducted to examine the effect of adjustment to three different end points: age, backfat thickness, and weight at measurement. Age-constant heritability estimates from finished steer measurements of hot carcass weight, carcass longissimus muscle area, carcass marbling score, carcass backfat, and average daily feedlot gain were 0.47, 0.45, 0.35, 0.41, and 0.30, respectively. Age-constant heritability estimates from yearling bull measurements of ultrasound longissimus muscle area, ultrasound percentage of intramuscular fat, ultrasound backfat, and average daily postweaning gain were 0.48, 0.23, 0.52, and 0.46, respectively. Similar estimates were found for backfat and weight-constant traits. Age-constant genetic correlation estimates between steer carcass longissimus muscle area and bull ultrasound longissimus muscle area, steer carcass backfat and bull ultrasound backfat, steer carcass marbling and bull ultrasound intramuscular fat, and steer average daily gain and bull average daily gain were 0.66, 0.88, 0.80, and 0.72, respectively. The strong, positive genetic correlation estimates between bull ultrasound measurements and corresponding steer carcass measurements suggest that genetic improvement for steer carcass traits can be achieved by using yearling bull ultrasound measurements as selection criteria.  相似文献   

16.
An experiment involving crosses among selection and control lines was conducted to partition direct and maternal additive genetic response to 20 yr of selection for 1) weaning weight, 2) yearling weight, and 3) index of yearling weight and muscle score. Selection response was evaluated for efficiency of gain, growth from birth through market weight, and carcass characteristics. Heritability and genetic correlations among traits were estimated using animal model analyses. Over a time-constant interval, selected lines were heavier, gained more weight, consumed more ME, and had more gain/ME than the control. Over a weight-constant interval, selected lines required fewer days, consumed less ME, had more efficient gains, and required less energy for maintenance than control. Direct and maternal responses were estimated from reciprocal crosses among unselected sires and dams of control and selection lines. Most of the genetic response to selection in all three lines was associated with direct genetic effects, and the highest proportion was from postweaning gain. Indirect responses of carcass characteristics to selection over the 20 yr were increased weight of carcasses that had more lean meat, produced with less feed per unit of gain. At a constant carcass weight, selected lines had 1.32 to 1.85% more retail product and 1.62 to 2.24% less fat trim and 10/100 to 25/100 degrees less marbling than control. At a constant age, heritability of direct and maternal effects and correlations between them were as follows: market weight, 0.36, 0.14, and 0.10; carcass weight, 0.26, 0.15, and 0.03; longissimus muscle area, 0.33, 0.00, and 0.00; marbling, 0.36, 0.07, and -0.35; fat thickness, 0.41, 0.05, and -0.18; percentage of kidney, pelvic, and heart fat, 0.12, 0.08, and -0.76; percentage of retail product, 0.46, 0.05, and -0.29; retail product weight, 0.44, 0.08, -0.14; and muscle score, 0.37, 0.14, and -0.54. Selection criteria in all lines improved efficiency of postweaning gain and increased the amount of salable lean meat on an age- or weight-constant basis, but carcasses had slightly lower marbling scores.  相似文献   

17.
This study was conducted to compare carcass EPD predicted using yearling live animal data and/or progeny carcass data, and to quantify the association between the carcass phenotype of progeny and the sire EPD. The live data model (L) included scan weight, ultrasound fat thickness, longissimus muscle area, and percentage of intramuscular fat from yearling (369 d of age) Simmental bulls and heifers. The carcass data model (C) included hot carcass weight, fat thickness, longissimus muscle area, and marbling score from Simmental-sired steers and cull heifers (453 d of age). The combined data model (F) included live animal and carcass data as separate but correlated traits. All data and pedigree information on 39,566 animals were obtained from the American Simmental Association, and all EPD were predicted using animal model procedures. The genetic model included fixed effects of contemporary group and a linear covariate for age at measurement, and a random animal genetic effect. The EPD from L had smaller variance and range than those from either C or F. Further, EPD from F had highest average accuracy. Correlations indicated that evaluations from C and F were most similar, and L would significantly (P < 0.05) re-rank sires compared with models including carcass data. Progeny (n = 824) with carcass data collected subsequent to evaluation were used to quantify the association between progeny phenotype and sire EPD using a model including contemporary group, and linear regressions for age at slaughter and the appropriate sire EPD. The regression coefficient was generally improved for sire EPD from L when genetic regression was used to scale EPD to the appropriate carcass trait basis. The EPD from C and F had similar linear associations with progeny phenotype, although EPD from F may be considered optimal because of increased accuracy. These data suggest that carcass EPD based on a combination of live and carcass data predict differences in progeny phenotype at or near theoretical expectation.  相似文献   

18.
Postweaning growth, feed efficiency, and carcass traits were analyzed on 1,422 animals obtained by mating F1 cows to F1 (Belgian Blue x British breeds) or Charolais sires. Cows were obtained from mating Hereford, Angus, and MARC IIIHereford, 1/4 Angus, 1/4 Pinzgauer, and 1/4 Red Poll) dams to Hereford or Angus (British breeds), Tuli, Boran, Brahman, or Belgian Blue sires. Breed groups were fed in replicated pens and slaughtered serially in each of 2 yr. Postweaning average daily gain; live weight; hot carcass weight; fat depth; longissimus area; estimated kidney, pelvic, and heart fat (percentage); percentage Choice; marbling score; USDA yield grade; retail product yield (percentage); retail product weight; fat yield (percentage); fat weight; bone yield (percentage); and bone weight were analyzed in this population. Quadratic regressions of pen mean weight on days fed and of cumulative ME consumption on days fed were used to estimate gain, ME consumption and efficiency (Mcal of ME/kg of gain) over time (0 to 200 d on feed), and weight (300 to 550 kg) intervals. Maternal grandsire breed was significant (P < 0.01) for all traits. Maternal granddam breed (Hereford, Angus, or MARC III)was significant (P < 0.05) only for fat depth, USDA yield grade, retail product yield, fat yield, fat weight, and bone yield. Sire breed was significant (P < 0.05) for live weight, hot carcass weight, longissimus area, and bone weight. Sex class was a significant (P < 0.001) source of variation for all traits except for percentage Choice, marbling score, retail product yield, and fat yield. Interactions between maternal grandsire and sire breed were nonexistent. Sire and grandsire breed effects can be optimized by selection and use of appropriate crossbreeding systems.  相似文献   

19.
The objectives of this study were to estimate effects of sire breed (Dorset, Finnsheep, Romanov, Texel, and Montadale), and dam breed (Composite III and Northwestern whiteface) on survival, growth, carcass, and composition traits of F1 lambs. Effects of mating season (August, October, and December) were estimated for survival and growth traits. Data were collected on 4,320 F1 lambs sired by 102 purebred rams over 3 yr. Birth weight was recorded on all lambs, and subsequent BW were adjusted to 56 (weaning), 70, and 140 d of age (n = 3,713, 3,654, and 3,579 observations, respectively). Survival of dam-reared progeny (n = 4,065) to weaning was recorded. Each year, wethers from October matings were slaughtered in three groups at 25, 29, and 33 wk of age to obtain carcass data (n = 546). In addition to standard carcass traits, resistive impedance measurements were recorded on the warm carcass to predict lean mass. Dam breed (P = 0.37) did not influence lamb survival to weaning, but sire breed (P < 0.05) was important. Romanov-sired lambs excelled in survival rate to weaning (94.1%), followed by Finn-sheep (93.0%), Texel (90.7%), Dorset (90.0%), and Montadale (89.1%) sired progeny. Lower (P < 0.01) postweaning growth rate was observed for Texel (267 g/d) and Finnsheep (272 g/d) sired progeny than for Dorset (285 g/d), Montadale (282 g/d), and Romanov (278 g/d) sired progeny. Sire breed and dam breed were generally significant for most carcass traits. Breed differences in distribution of carcass fat and carcass shape were detected; however, carcass composition was similar for all sire breeds when compared at a constant carcass weight. When evaluated at a constant 12th-rib fat depth, carcasses of lambs from Finnsheep, Romanov, and Texel sires produced 1 to 1.5 kg less (P < 0.001) predicted lean mass per lamb than carcasses of lambs from Dorset and Montadale sires. These experimental results provide information about the direct breed effects for survival, growth, and carcass traits of these breeds and their potential use in crossbreeding systems.  相似文献   

20.
Carcass data from 6,795 Simmental-sired animals born from 1992 to 2001 were used to determine whether adjustment to a constant age, back-fat, HCW, or marbling score would result in differences in heritability of the carcass traits and, correspondingly, if EPD calculated using those variance components and adjustments would result in sire reranking. The endpoints were age (EPA), backfat (EPF), HCW (EPC), or marbling (EPM). The traits analyzed were 12th-rib backfat (FAT), HCW, marbling (MRB), LM area (LMA), and percentage retail cuts (PRC). The data were analyzed using an animal model, where contemporary group was included as a fixed effect and was composed of slaughter date, sex, and herd. Random effects included in the model were direct genetic and residual. Estimates of heritability ranged from 0.12 to 0.14, 0.32 to 0.34, and 0.26 to 0.27 for FAT, HCW, and LMA, respectively, for the corresponding endpoints. Heritability for MRB was estimated to be 0.27 at all endpoints. For PRC, estimates of heritability were more variable, with estimates of 0.23 +/- 0.05, 0.32 +/- 0.05, 0.21 +/- 0.05, and 0.20 +/- 0.04 for EPA, EPF, EPC, and EPM, respectively. However, because the EPF and EPC adjustments adjust for a component trait of PRC (FAT and HCW, respectively), they may be altering the trait to one different from PRC. Spearman rank correlations between EPD within a trait using EPA compared with the other endpoints were >0.90 (P < 0.01) for FAT, HCW, MRB, and LMA. For PRC, Spearman rank correlations with EPA EPD were 0.73 (P < 0.01), 0.93 (P < 0.01), and 0.95 (P < 0.01) for EPF, EPC, and EPM, respectively. For most traits and endpoints, there was little reranking among sires when alternative endpoints were used. However, adjusting PRC to EPF appears to result in a greater heritability and substantial re-ranking of sires, potentially due to the adjustment changing the trait to one other than PRC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号