首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study investigated the densities, average width of annual rings, and partial compression stresses at 5 % strain perpendicular to the grain of air-dried wood specimens, which were continuous in the radial direction from the pith and were obtained from Japanese larch (Larix kaempferi) trees with different diameters at breast height in the same stand, to evaluate the radial variations in partial compression properties perpendicular to the grain. The air-dried densities of the wood increased with the distance from the pith. The average width of annual rings of the wood tended to decrease with increasing distance from the pith and those of medium- and large-diameter trees seemed to increase near the pith. The partial compression stresses at 5 % strain in the tangential loading direction tended to increase with the distance from the pith and with air-dried wood density. However, in the radial loading direction, this tendency was not observed. The partial compression stresses at 5 % strain in the radial loading direction tended to be low in wood with a small average width of annual rings. These results indicate that the factors affecting the radial variations in the partial compression stress at 5 % strain differ depending on the loading directions.  相似文献   

2.
This article reports the effects of heat treatment on compression strength parallel to the grain, the surface roughness [average roughness (Ra)], and the air-dry den-sity of wood from the river red gum tree (Eucalyptus camaldulensis Dehn.) planted in Turkey. Eucalyptus wood was heat-treated at temperatures varying from 120° to 180°C for durations of 2–10 h. Samples cut from the heat-treated wood were tested for air-dry density, compression strength parallel to grain, and surface roughness properties. Roughness measurements by the stylus method were made in the direction perpendicular to the fiber. Based on the findings in this study, the results showed that density, compression strength, and surface roughness values decreased with increasing treatment temperature and treatment times. Eucalyptus wood could be utilized by using proper heat treatment techniques without any losses in strength values in areas where working, stability, and surface smoothness, such as in window frames, are important factors.  相似文献   

3.
A dead tree of Pinus armandii Franch. var. amamiana (Koidz.) Hatusima (abbreviated to PAAm) was obtained from a natural habitat on Tanega-shima Island and various properties of its wood were investigated. Grain angle was measured and soft X-ray analysis was undertaken to obtain the density in each annual ring. Unit shrinkage and dynamic properties were measured by shrinkage, bending, and compression tests. Variations of wood properties in the radial direction, relationships of wood properties to density, and annual ring width were examined. Roughly speaking, variations in the radial direction of the grain angle, twist angle by drying, Young’s modulus and strength in static bending, absorbed energy in impact bending, compressive Young’s modulus, compressive strength, and compressive proportional limit corresponded to the variation of annual ring width. As a result, it was determined that if PAAm is afforested artificially for the purposes of lumber production and conservation, the annual rings of logs should not be too widely spaced. Wood properties of PAAm were similar to those of Japanese black pine (Pinus thunbergii Parl.), which is another representative pine on Tanegashima Island. This study was presented in part at the 56th Annual Meeting of the Japan Wood Research Society, Hiroshima, August 2007  相似文献   

4.
The variation in strength properties with density was compared between semi-isostatically densified and non-densified wood. Strength properties were compared with published data from earlier studies using other methods for densification. Small clear specimens of eight species were analysed for compression strength in axial, radial and tangential direction, three-point bending and Brinell hardness. After densification, all tested strength properties increased with density, but especially strength perpendicular to grain became lower than expected from the density of non-densified wood. Strength of densified wood relative to what could be expected for non-densified wood of similar density was denoted as ‘strength potential index’. For axial compression strength and bending strength, strength potential index of individual wood species varied between 0.7 and 1.0, i.e. densified wood is slightly weaker than what could be expected from its density. Strength potential index was lower for properties much determined by strength perpendicular to grain. In radial direction, densified wood was rubbery with low modulus of elasticity and nearly no proportional limit or modulus of rupture. Generally, wood was apparently weakened in proportion to the degree of compression in respective direction. Strength potential index also increased with increasing original density of the species.  相似文献   

5.
对江汉平原人工林落羽杉物理力学性能进行了研究,结果表明:落羽杉的气干密度为0.413 g/cm3,气干密度等级为轻;综合强度为74 MPa,强度等级为Ⅰ级;径向横纹抗压强度略大于弦向横纹抗压强度;端面硬度最高,弦面硬度与径面硬度差别不大。落羽杉南北面近树皮处木材的密度、抗弯强度、弹性模量、顺纹抗压强度均大于近髓心处,南北方向对落羽杉的密度、顺纹抗压强度在5%水平上差异均不显著,而对其抗弯强度、弹性模量在1%水平上差异显著。  相似文献   

6.
Summary One of the applications of acoustic emission (AE) technology in the forest products field is likely to be in monitoring and/or controlling the drying of wood. This report describes experiments designed to monitor the acoustic emission patterns from the lower surfaces of small red oak test beams which were undergoing failure in tension perpendicular to the grain. Similar patterns are likely to develop in wood which surface checks during drying.When the wood was green, the emission patterns from beams under test were well defined and could be used to predict the onset of cracking before the surfaces under tension were visibly cracked. These patterns were quite similar to the acoustic response of brittle, glassy polymers under stress. Additional experiments on partially dried test beams showed that the clearly predictable emission patterns disappeared and the general level of acoustic emissions increased. This increase in emissions may correspond to shrinkage, at the cell level, of the partially dried beams.This research was conducted as part of the first authors Ph.D. program at VPI&SU under CSRS project 3333121. The author gratefully acknowledges the support of the U.S.D.A. Eastern Hardwoods Utilization Program  相似文献   

7.
Study aim was to investigate discoloration and associated fungi in 50‐ to 70‐year‐old stems of Betula pendula damaged by logging. Investigated wounds (on 70 stems) were inflicted 4–18 years previously, and all of them had discoloration with mean radial spread (±SD) 2.9 ± 2.9 cm and longitudinal spread 50.3 ± 24.0 cm. Both wound area and length had a strong impact on a total length of discoloration (r = 0.665 and r = 0.745, respectively; p < 0.001), but had no influence on its spread beyond wound margins (r = ?0.035 and r = ?0.079). There was no correlation between the age of an injury and spread of the discoloration neither in vertical (r = ?0.110) nor in radial (r = ?0.280) direction. Average wound closure rate was 1.2 ± 0.5 cm year ?1. The difference between discoloration length in stems with open and occluded injuries was insignificant (t‐test, p = 0.769). The principal fungi isolated from the wounds were ascomycetes (Epicoccum, Cadophora, Neonectria, Alternaria spp.) that were able to cause discoloration of wood with little effect on its mechanical properties and capable only for limited spread inside a stem of a living tree. In conclusion, results of the present study demonstrate that the amount of discoloured wood beyond logging wounds in B. pendula is mainly restricted to the damaged portion of a stem and that the associated loss of wood production remains low during about 10 years since the damage.  相似文献   

8.
温度对人工林落叶松材物理力学性能的影响   总被引:3,自引:0,他引:3  
探讨在不同的干燥温度状态下,木材抗弯强度,抗弯弹性模量、横纹抗压强度的变化规律。试验结果显示,在中、低温区域,随着温度的升高,抗弯弹性模量、横纹抗压强镁呈降低趋势;在高温区域,随着温度的升高,抗弯强度被明显削弱,而纹抗压强度则得到增强。  相似文献   

9.
Abstract

Wood is susceptible to decay by rot fungi if it is exposed to high-moisture contents during long periods of time and it is therefore important to limit the duration of such periods. Critical points in outdoor wood structures are, for example, end grain surfaces in joints where water can get trapped after a rain. It is therefore of interest to study both absorption and redistribution of moisture in wood. This paper presents moisture content profiles during end grain water absorption and redistribution in Norway spruce (Picea abies (L.) Karst.) measured by computed tomography with the specimens in individual climate boxes. Heartwood and sapwood of two provenances (slow-grown and fast-grown wood) were included. No major differences were seen between the water uptake of the slow-grown and the fast-grown wood since the densities were similar despite of the large difference in growth ring width. However, for the sapwood specimens, the moisture content was higher further into the specimens than for the heartwood specimens in agreement with previous studies. For the slow-grown wood, the redistribution was also generally more rapid for the sapwood specimens than for the heartwood specimens.  相似文献   

10.
研究了木材纵横向切削过程中的声发射特性。结果表明,切削方向与纤维方向之间的夹角,对切削过程中的声发射活动影响显著;当夹角为0&#176;时声发射最强,90&#176;时声发射最小;声发射强度随木材表面粗糙度的减小而逐渐增大。通过获得的试验数据,可进一步完善切削理论,指导木制品生产,监控产品质量。  相似文献   

11.
The attenuation coefficients of 100-GHz millimeter waves polarized linearly were measured for cross-cut, quarter-sawn, and flat-sawn boards of hinoki (Chamaecyparis obtusa) that were 0.2–2.0 cm thick. This was done to examine the applicability of free-wave propagation theory for applying electromagnetic waves to wood. It was found that the transmittance of a millimeter wave through the specimen boards was lower when the fiber direction of a board was parallel to the direction of the electric field of the incident wave than when the fiber direction was perpendicular to the electric field, and there was little difference in the transmittance between the tangential and radial directions for the former case. These findings can be quantitatively explained by using propagation theory and the dielectric properties of wood.  相似文献   

12.
Abstract

The present work reports on the main physical and mechanical properties of Pinus leucodermis mature wood, one of the least studied coniferous species in south-east Europe. Pinus leucodermis heartwood specimens were found to have average density values of 0.73 g cm?3 at equilibrium moisture content of 11.5% and average density of 0.64 g cm?3 under oven-dry conditions. The overall tangential shrinkage was 3.4% and the radial shrinkage was 1.9%. The modulus of rupture was on average 77 N mm?2, while the static modulus of elasticity averaged 7087 N mm?2. The hardness of P. leucodermis heartwood using the modified Janka test was 33.4 N mm?2 in the transverse direction and 48.0 N mm?2 in the longitudinal direction, while its compression strength parallel to grain was approximately 41.6 N mm?2.  相似文献   

13.
To determine shear strength we conducted uniaxial-tension tests of off-axis specimens and examined the proper off-axis angles. Sitka spruce (Picea sitchensis Carr.) and katsura (Cercidiphyllum japonicum Sieb. and Zucc.) were used for the studies. Uniaxial tension tests of the specimens with various off-axis angles were conducted, and the shear stress at failure was obtained. Independent of the tension tests, torsion tests were conducted, and the shear strengths were obtained. Comparing the data of the uniaxial tension and torsion tests, we examined the validity of estimating shear strength by the off-axis tension test. The shear strengths obtained from the tension tests coincided well with those measured by the torsion tests when the specimen had an off-axis angle of 15°–30°. In this off-axis angle range, the tensile stress perpendicular to the grain might have a serious influence on the shear strength, and we thought that the shear strength predicted by uniaxial tension tests should be treated as an approximate value despite the simplicity of the tension test. Other test methods should be adopted to obtain the precise shear strength of wood.  相似文献   

14.
The effects of grain angle, thickness of face veneer, and shelling ratio on dynamic modulus of elasticity (E) of veneer-overlaid particleboard composite (VOP) were examined by using nondestructive test. In this study, the possibility that E of VOP can be predicted by means of some empirical formula was also discussed. This study has shown that grain angle, thickness of face veneer, and shelling ratio have substantial effects on E of VOP. The E at 0° of grain angle of face veneer was the largest, decreasing rapidly with increase in the grain angle. The lowest value of E occurred at 90° of grain angle of face veneer. The relationship between grain angle of face veneer and E of VOP can be expressed in the form of Jenkin’s and Hankinson’s equations. The orthotropic properties of wood and VOP defined as the ratio E 0/ E 90 were 25.7 for wood and 4.7 for VOP. When the grain direction of face veneer was parallel to the length of the specimens, the E of VOP increased with increasing shelling ratio. VOP increased E from 125 to 179% over that of the particleboard and veneer thickness from 2.1 upto 3.6 mm. However, when the grain direction of face veneer was perpendicular to the length of the specimens, the E of VOP decreased with increasing shelling ratio. VOP decreased E from 23 to 41% over that of the particleboard and veneer thickness from 2.1 upto 3.6 mm. The relationship between E of VOP and face veneer thickness can be expressed in the form of a second-order parabolic equation. Rule of Mixture (ROM) can be used to predict E of VOP from the E of wood element and particleboard element.  相似文献   

15.
While wood has numerous attributes that make it an excellent material for many uses, its properties can also vary widely according to wood species and even within the same species. Wood used in structural applications is categorized into classes. For many wood products, these classes or grades are based upon visual assessments that account for grain characteristics along with natural defects such as knots or splits. These approaches are simple, but also limit the potential for identifying products based upon actual material properties. One alternative is to use acoustic tests to estimate modulus of elasticity and then correlate these values to actual material properties. The potential for using acoustic tests to estimate wood properties was assessed with a prototype acoustic device (Metriguard Model 242) on western juniper (Juniperus occidentalis) posts that were then tested using a destructive bending test. These tests could allow the identification of decayed areas within a post if they were directly in the tested area, but predicted modulus of elasticity was poorly correlated with actual modulus of rupture (r2?=?0.23). The correlation was improved by only considering those samples where the acoustic test was made through the same area where the test load was applied, but the relationship was still weak (r2?=?0.33). Acoustic testing did appear to be able to identify unacceptably weak samples with minimal rejection of acceptable samples, suggesting that acoustic testing might be a useful sorting tool to improve the reliability of timbers.  相似文献   

16.
This study investigated the interaction effects of a crossing beam on the moment-carrying capacity of a Korean traditional dovetail joint. In particular, the length of the crossing-beam shoulder (B s ) and the wood species were varied as important factors. Clearly, the B s acts as a fastener that improves the performance of timber joints by preventing splitting failure parallel to the grain. All the specimens experienced tension failure by tension force in the direction perpendicular to the grain; therefore, the tension strength perpendicular to the grain could be considered an important property, and standard values could be determined to develop a formula for predicting the structural behavior of the joints or the structural design codes of the joints. The results of the tests indicated that the moment resistance of the joints increased as the length of the crossing B s and the density of the wood species increased. Joint stiffness results also indicated that the joints became stiffer when the crossing beam had shoulders, but the results were not affected by the length of the B s . In addition, the joint stiffness was proportional to the density of the wood species.  相似文献   

17.
Abstract

Several key wood properties of four Australian hardwood species: Corymbia citriodora, Eucalyptus pilularis, Eucalyptus marginata and Eucalyptus obliqua, were characterized using state-of-the-art equipment at AgroParisTech, ENGREF, France. The wood properties were measured for input into microscopic (cellular level) and macroscopic (board level) vacuum-drying models currently under development. Morphological characterization was completed using a combination of environmental scanning electron microscopy and image analysis software. A clear difference in fibre porosity, size, wall thickness and orientation was evident between species. Viscoelastic properties were measured in the tangential and radial directions using dynamic mechanical analysis instrumentation. The glass transition temperature was markedly different for each species owing to anatomical and chemical variations. The radial direction showed higher stiffness, internal friction and glass transition temperature than the tangential direction. A highly sensitive microbalance and laser technology were used to measure loss of moisture content in conjunction with directional shrinkage on microsamples. Collapse shrinkage was clearly evident with this method for E. obliqua, but not with other species, consistent with industrial seasoning experience. To characterize the wood–water relations of E. obliqua, free of collapse, thinner sample sections (in the radial–tangential plane) are recommended.  相似文献   

18.
Radial variations of wood properties (basic density, fiber length, vessel element length, and compression strength) in plantation-grown Casuarina equisetifolia in Bangladesh were investigated for effective utilization of the wood. Samples disks at breast height were randomly collected from trees in a 10-year-old plantation in Cox’s Bazar Forest Division, Bangladesh. The basic density showed a near-constant value up to 30 mm from the pith and then rapidly increased up to 60 mm from the pith. The fiber length and vessel element length gradually increased from the pith to bark. When radial variation of wood properties was determined according to relative distance from the pith, similar radial patterns were observed among the sample trees, indicating that the wood properties in C. equisetifolia may be related to the growth rate. The compression strength parallel to the grain (CS) increased from the pith to bark. A significant positive correlation was found between the air-dried density and the CS. The results obtained indicated that wood around the pith has a relatively low density, and wood outside the pith area has a relatively high density, suggesting that it could be used as structural lumber. Part of this report was presented at the 58th Annual Meeting of Japan Wood Research Society, Tsukuba, March 2008  相似文献   

19.
The paper deals with the experimental characterisation of damage evolution within the radial (R)–tangential (T) growth plane of softwood loaded in tension perpendicular to the grain. The reported investigations comprise in-situ monitoring of crack propagation by means of Confocal Laser Scanning Microscopy (CLSM) and evaluations of crack patterns of broken specimens. Three types of notched specimens, representing different crack propagation systems, were tested; for all configurations, both, loading and crack propagation direction were located within the RT plane of wood. The CLSM pictures of broken specimens show distinct differences among the regarded configurations with respect to crack paths. Two different damage mechanisms were identified being rupture of earlywood cell walls in the case of crack propagation in tangential direction and debonding of wood fibers, i.e. rupture of the interface zone between adjacent tracheids, in case of crack progression in radial direction. In the case of an intermediate crack system with an angle of 45° between initial notch direction and radial direction the crack evolution was monitored in-situ during the tension test, whereby the combined action of both basic fracture mechanisms was observed.  相似文献   

20.
We examined the applicability of the Iosipescu shear test for measuring the shear properties of wood. Quarter-sawn board of sitka spruce (Picea sitchensis Carr.) and shioji (Japanese ash,Fraxinus spaethiana Lingelsh. were used for the specimens. Iosipescu shear tests were conducted with two types of specimen whose longitudinal and radial directions coincided with the loading direction. The shear modulus, yield shear stress, and shear strength were obtained and were compared with those obtained by the torsion tests of rectangular bars. The results are summarized as follows: (1) The Iosipescu shear test is effective in measuring the shear modulus and the yield shear stress. (2) To measure the shear strength properly by the Iosipescu shear test, the configuration of specimen and the supporting condition should be examined in more in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号