首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 500 毫秒
1.
丙炔氟草胺在大豆和土壤中的残留及消解动态   总被引:1,自引:0,他引:1  
通过在山东德州、黑龙江哈尔滨和辽宁海城2年3地的田间试验,采用QuEChERS-高效液相色谱-串联质谱 (QuEChERS-HPLC-MS/MS) 法,研究了丙炔氟草胺在大豆和土壤中的残留及消解动态。结果表明: 在0.000 3、0.01和0.1 mg/kg添加水平下,丙炔氟草胺在大豆植株、青大豆、大豆籽粒和土壤中的日内平均添加回收率为89%~112%,日内相对标准偏差(RSD) (n = 5) 为1.3%~5.3%;日间平均添加回收率为85%~110%,日间RSD (n = 15) 为0.40%~4.8%。丙炔氟草胺在大豆植株、青大豆、大豆籽粒和土壤中的定量限 (LOQ) 均为0.000 3 mg/kg,能够满足农药残留限量标准的要求。丙炔氟草胺在大豆植株和土壤中的消解动态均符合一级反应动力学方程,在大豆植株和土壤中的消解半衰期分别为 5.8~11.8 d和 15.8~24.8 d。采用480 g/L丙炔氟草胺悬浮剂按推荐高剂量 (有效成分60 g/hm2) 及其1.5倍推存剂量 (有效成分90 g/hm2) 于播后苗前施药1次,收获期采样时,丙炔氟草胺在大豆植株、青大豆、大豆籽粒和土壤中的最终残留量均低于中国国家标准中规定的丙炔氟草胺在大豆上的最大残留限量 (0.02 mg/kg)。  相似文献   

2.
建立了一种同步检测稻田中硝磺草酮和2甲4氯残留的固相萃取-高效液相色谱-串联质谱(SPE-LC-MS/MS)分析方法。样品经乙酸乙酯提取后,用PSA吸附、C18固相萃取小柱净化,C18色谱柱分离,0.1%甲酸水-0.1%甲酸甲醇溶液为流动相,梯度洗脱分离,在电喷雾ESI离子源正、负离子模式下,采用质谱多反应监测(MRM)模式定性分析。结果表明:硝磺草酮和2甲4氯的检出限(LOD)分别为0.005和0.025 ng,定量限(LOQ)分别为0.01和0.05 mg/L。在0.001~2 mg/L和0.005~5 mg/L范围内,硝磺草酮和2甲4氯的质量浓度与对应的峰面积间呈良好的线性关系,其相关系数均大于0.999 7。在0.01~2 mg/L添加水平下,硝磺草酮在田水、土壤、植株、稻壳和糙米中的平均回收率为75%~103%,相对标准偏差(RSD)为0.1%~8.2%;在0.05~10 mg/L添加水平下,2甲4氯在田水、土壤、植株、稻壳和糙米中的平均回收率为90%~113%,RSD为0.5%~7.4%。说明该方法高效、快捷、精确度高,能够满足硝磺草酮和2甲4氯钠在稻田中的残留量检测分析要求。  相似文献   

3.
建立了超高效液相色谱-亲水色谱柱测定吡蚜酮在棉花和土壤中残留量的分析方法。样本在弱碱条件下采用分散固相萃取(QuEChERS)法进行前处理。结果表明:吡蚜酮在棉叶和棉籽中添加水平为0.05~0.50 mg/kg时,其平均回收率分别为76.9%~91.1%和76.4%~93.7%,相对标准偏差(RSD)为7.2%~8.2%和6.2%~9.8%;在土壤中添加水平为0.02~0.5 mg/kg时,平均回收率为83.8%~94.6%,RSD为5.3%~8.0%。在山东和河南两地按推荐剂量(有效成分30 g/hm2)和1.5倍推荐剂量(有效成分45 g/hm2)施用10%吡蚜酮·高效氯氟氰菊酯悬浮剂后4 d,吡蚜酮在土壤和棉叶中的残留量分别低于0.02和0.05 mg/kg;至收获时,其在土壤和棉籽中的最终残留量低于0.02和0.05 mg/kg。  相似文献   

4.
建立了对氯苯氧乙酸钠在荔枝和土壤中的残留分析方法,并在广州和南宁进行了8%对氯苯氧乙酸钠可溶性粉剂在荔枝上残留的田间试验,研究了对氯苯氧乙酸钠在荔枝和土壤中的消解动态和最终残留量。样品用碱溶液提取,盐酸调节pH值至2.5后乙酸乙酯萃取,采用高效液相色谱二极管阵列紫外检测器(HPLC-PDA)检测。结果表明:在0.01、0.1和1 mg/kg 3个添加水平下,对氯苯氧乙酸钠在荔枝和土壤中的平均回收率为81%~85%,相对标准偏差(RSD)为1.9%~4.6%,检出限(LOD)为0.005 mg/kg,定量限(LOQ)为0.01 mg/kg。田间试验结果表明:8%对氯苯氧乙酸钠可溶性粉剂在荔枝和土壤中的半衰期分别为3.2~5.9 d和15.2~20.6 d,属易降解农药。最终残留量测定结果显示:8%对氯苯氧乙酸钠可溶性粉剂按有效成分20和30 mg/L分别施药2次,广州和南宁两地收获期荔枝中对氯苯氧乙酸钠的残留量均<0.01 mg/kg。  相似文献   

5.
建立了超高效液相色谱-串联质谱测定糙米、谷壳、稻秆、土壤和稻田水中环戊草酮残留的分析方法,结合田间试验研究了环戊草酮在稻田中的残留及消解动态。结果表明:在0.01~1 mg/L范围内,环戊草酮的质量浓度与相应的峰面积间呈良好的线性关系。在0.02、0.05和0.5 mg/kg添加水平下,环戊草酮在糙米、谷壳、稻秆、土壤和稻田水样品中的平均回收率在75%~95%之间,相对标准偏差在1.5%~9.5%之间,检出限 (LOD) 为0.01 ng,在糙米、谷壳、稻秆、土壤和稻田水中的最低检出浓度 (LOQ) 为0.02 mg/kg。浙江、山东和湖南3地2年的田间试验表明:环戊草酮在稻秆和土壤中的半衰期分别为4.2~9.0 d和7.0~11.6 d,其消解规律符合一级反应动力学方程。分别以有效成分含量375(低剂量) 和562.5 g/hm2(高剂量)2个剂量施用90 g/L环戊草酮悬浮剂1次,于收获成熟期采样检测发现,环戊草酮在糙米中的最终残留量均小于0.02 mg/kg,该研究结果可为制定环戊草酮在糙米中的最大残留限量值 (MRL) 提供数据支撑。  相似文献   

6.
螺虫乙酯及其代谢物和氯虫苯甲酰胺在龙眼上的残留动态   总被引:1,自引:0,他引:1  
建立了龙眼中螺虫乙酯及其代谢物和氯虫苯甲酰胺残留量的高效液相色谱-串联质谱 (HPLC-MS/MS) 检测方法。于2018年进行了1年6地螺虫乙酯及其代谢物和氯虫苯甲酰胺在龙眼上的规范残留田间试验,研究了螺虫乙酯及其代谢物和氯虫苯甲酰胺在龙眼上的残留行为。样品用乙腈提取,以N-丙基乙二胺 (PSA) 净化,HPLC-MS/MS检测,外标法定量。结果表明:在0.01~1 mg/kg 3个添加水平下,螺虫乙酯及其代谢物、氯虫苯甲酰胺在龙眼全果和果肉中的平均回收率分别为83%~103%和87%~92%;相对标准偏差分别为2.3%~8.7%和3.3%~6.3%;定量限均为0.01 mg/kg。田间试验结果显示:22.4%螺虫乙酯悬浮剂以有效成分60 mg/kg、5%氯虫苯甲酰胺悬浮剂以有效成分50 mg/kg施用2次,间隔7~10 d,于末次施药后14 d取样测定,螺虫乙酯和氯虫苯甲酰胺在龙眼全果中的残留量分别为0.30~1.14和0.06~0.29 mg/kg,在果肉中的残留量分别为 <0.05和 <0.01 mg/kg。研究结果可为指导这两种农药的田间安全合理使用及制定其在龙眼上的最大残留限量提供参考。  相似文献   

7.
为评价嘧菌酯在枇杷中的消解动态和最终残留,2016年开展了250g/L嘧菌酯悬浮剂在枇杷上的残留田间试验,以期为嘧菌酯在枇杷上的合理使用和制定最终残留限量提供参考。建立了液相色谱串联质谱法(LC-MS/MS)测定枇杷中嘧菌酯的残留量的分析方法。当嘧菌酯在枇杷中的添加浓度为0.05、1.0、2.Omg/kg时,平均回收率为112.4%~117.1%,相对标准偏差(RSD)为5.6%~6.4%,符合农药残留试验要求。消解动态试验结果显示,嘧菌酯在枇杷中的消解动态规律符合一级动力学方程,半衰期为7.9~12.2d,属易降解农药。最终残留试验表明250g/L嘧菌酯悬浮剂按有效成分416.7和625.05 mg/kg,施药3次和4次,,末次施药后7、14、21d,枇杷中嘧菌酯最终残留量分别为0.147~2.051mg/kg、0.145~1.379mg/kg、0.015~1.004mg/kg。建议在枇杷上使用250g/L嘧菌酯悬浮剂时,有效成分用药量321.5~416.7mg/kg,最多施药3次,安全间隔期21d。  相似文献   

8.
通过一年两季(春季和冬季)的田间试验,采用C18固相萃取-高效液相色谱分析方法,研究了苦参碱在小白菜及土壤中的残留和消解动态。方法验证试验表明:在0.02~0.5mg/kg添加水平下,苦参碱在小白菜和土壤中的平均回收率为71%~87%,相对标准偏差为5.7%~14%,在小白菜与土壤中的定量限(LOQ)均为0.02mg/kg。消解动态试验结果表明:苦参碱在小白菜及土壤中的消解过程均符合一级动力学方程,消解半衰期分别为1.0d(春季,小白菜)、1.5d(冬季,小白菜)、1.4d(春季,土壤)和1.6d(冬季,土壤)。最终残留结果显示:距最后一次施药7d后,高浓度(有效成分6.71g/hm2)和低浓度(有效成分4.47g/hm2)苦参碱在春季和冬季小白菜中的最终残留量在0.061~0.074mg/kg之间;在土壤中的最终残留量在未检出~0.075mg/kg之间。可见,苦参碱在小白菜及土壤中易消解,为保障小白菜食用安全,建议可将0.1mg/kg作为其最大残留限量,安全间隔期不小于3d。  相似文献   

9.
建立了土壤中硝磺草酮及其代谢物4-甲砜基-2-硝基苯甲酸(MNBA)和2-氨基-4-甲砜基苯甲酸(AMBA)残留的超高效液相色谱-串联质谱(UPLC-MS/MS)分析方法。样品用0.1%氨水-乙腈溶液提取后,经Cleanert PAX固相萃取柱净化,以乙腈和0.3%甲酸水为流动相,Acquity HSS T3色谱柱梯度洗脱,电喷雾负离子多反应监测模式UPLC-MS/MS检测。结果表明:在0.3~50μg/kg添加水平下,硝磺草酮、MNBA和AMBA的平均添加回收率在73%~97%之间,相对标准偏差在2.4%~12.9%之间,该方法的检出限分别为0.1、0.3和0.2μg/kg,定量限分别为0.3、1.0和0.6μg/kg。应用该方法对室内模拟试验的红土样品进行了分析,结果表明,硝磺草酮在红土中的消解半衰期为4.0d,土壤中降解产物AMBA残留量高于MNBA。  相似文献   

10.
建立了高效液相色谱法(HPLC)测定甘蔗及土壤中环嗪酮残留量的方法。甘蔗样品以氯仿提取,经中性氧化铝柱层析净化,HPLC法测定;土壤样品以乙酸乙酯-甲醇(体积比9∶ 1)混合溶剂提取,HPLC法测定;甘蔗和土壤中环嗪酮的最低检测浓度(LOQ)分别为0.02 mg/kg 和0.04 mg/kg;在0.04~0.4 mg/kg添加水平内,土壤中环嗪酮的回收率为79.4% ~86.1%;在0.02~0.5 mg/kg添加水平内,甘蔗中环嗪酮的回收率为84.1% ~95.7%;相对标准偏差均低于6.1%。  相似文献   

11.
建立了噻唑磷在甘蔗和土壤中的残留分析方法,并在广东和广西2地进行了10%噻唑磷颗粒剂在甘蔗上残留的田间试验,研究了噻唑磷在甘蔗和土壤中的消解动态和最终残留量,并对甘蔗中噻唑磷可能产生的膳食摄入风险进行了评估。甘蔗样本用乙腈提取,氨基固相萃取小柱净化,采用气相色谱-火焰光度检测器 (GC-FPD) 检测。结果表明:在0.01、0.1和1 mg/kg添加水平下,噻唑磷在甘蔗中的平均回收率为83%~84%,相对标准偏差 (RSD) 为2.6%~3.4%;在土壤中的平均回收率为84%~86%,RSD为4.1%~6.7%。噻唑磷检出限 (LOD) 和定量限 (LOQ) 均为0.01 mg/kg。田间试验结果表明:10%噻唑磷颗粒剂在广东和广西甘蔗中的消解不符合一级反应动力学方程,没有显著的消解规律,呈现的特点是浓度由小到大再变小的趋势,施药后14~21 d甘蔗中噻唑磷的残留量达到最大值0.027 mg/kg;噻唑磷在土壤中消解符合一级反应动力学方程,半衰期为8.6~9.6 d,属易降解农药;噻唑磷在甘蔗和土壤中的最终残留量均小于0.01 mg/kg。膳食摄入风险评估结果表明:甘蔗中噻唑磷对人群的急性膳食摄入风险值为225%,急性膳食摄入风险较大,还需进一步结合噻唑磷在人体内的代谢行为等数据进行综合评估;慢性膳食摄入风险值为57%,表明按照推荐剂量施用10%噻唑磷颗粒剂,慢性膳食摄入风险较低,对消费者健康是安全的。  相似文献   

12.
为了确保杀虫单在甘蔗上的安全科学使用,本研究分别于2015和2016年度在海南和广西开展了9%杀虫单颗粒剂在甘蔗和土壤中的残留消解试验和最终残留试验。残留消解试验结果表明,杀虫单在甘蔗植株中的半衰期为17.3~30.1 d,在土壤中的半衰期为1.7 d;最终残留试验结果表明,杀虫单在甘蔗蔗梢、蔗茎和土壤中的最终残留皆低于LOQ(0.02 mg/kg)。综上,在甘蔗苗期按照3 375 g/hm^2沟施9%杀虫单颗粒剂1次,甘蔗蔗梢和蔗茎中杀虫单的最终残留低于我国的限量标准,对人类的暴露风险较低;而且土壤中杀虫单残留对非靶标生物蚯蚓的环境风险也较低。  相似文献   

13.
建立了高效液相色谱-串联质谱(HPLC-MS/MS)测定人参中仲丁灵残留的分析方法,并研究其在人参中的最终残留量与消解规律。样品经乙腈提取,NH2固相萃取柱净化,液相色谱-串联质谱仪检测,外标法定量。结果表明:在0.002~0.5 mg/L内,仲丁灵的质量浓度与对应的峰面积间线性关系良好,鲜人参和干人参在0.01、0.05和0.5 mg/kg,人参植株和人参土壤在0.01、0.05、0.5和10 mg/kg添加水平下,仲丁灵的回收率为93%~108%,相对标准偏差为0.60%~6.2%。仲丁灵在人参植株和土壤中的半衰期为10.81~18.91 d,在鲜人参、干人参、人参植株和人参土壤中的最终残留量分别为相似文献   

14.
丙硫咪唑在烟草中的残留及消解动态   总被引:1,自引:1,他引:0  
为明确丙硫咪唑在烟草中的残留消解规律,制定科学合理的农药残留限量标准,采用QuEChERS与高效液相色谱-串联三重四极杆质谱 (HPLC-MS/MS) 联用技术检测了烟草中丙硫咪唑的残留量,并进行了实际样品检测。结果表明:在0.001~1 mg/L范围内,丙硫咪唑的质量浓度与对应的峰面积间线性关系良好,R2 > 0.998。在0.02、0.2和2 mg/kg 3个添加水平下,丙硫咪唑在鲜烟叶中的回收率为94%~97%,相对标准偏差 (RSD) 为1.2%~2.7%;在0.01、0.1和2 mg/kg 3个添加水平下,丙硫咪唑在干烟叶中的回收率为85%~104%,RSD为2.0%~8.1%。丙硫咪唑在干烟叶和鲜烟叶中的最低检测浓度 (LOQ) 分别为0.01和0.02 mg/kg。消解动态试验结果表明,丙硫咪唑在鲜烟叶中的消解半衰期为5.4~16.1 d。以有效成分90和135 g/hm2的剂量分别施用15%丙硫唑?戊唑醇悬浮剂3次,于末次施药后7 、14和21 d时,干烟叶中丙硫咪唑的残留量分别为0.14~3.04、0.33~2.20和0.17~1.85 mg/kg。推荐其残留限量为 2 mg/kg,按照农药合理准则规范使用农药,于末次施药后21 d,丙硫咪唑在干烟叶中的残留量小于2 mg/kg,残留风险水平较低。  相似文献   

15.
针对水果蔬菜中乙烯利的残留,建立了三甲基硅重氮甲烷衍生化-气相色谱的分析方法。样品用 V (甲醇) : V (盐酸) = 9:1的溶液提取,无水乙醚萃取,三甲基硅重氮甲烷衍生化15 min,采用气相色谱-质谱法定性,气相色谱仪-火焰光度检测器 (GC-FPD) 检测,外标法定量。结果显示:在0.01~2 mg/L范围内,乙烯利的质量浓度与其对应的峰面积间线性关系良好,相关系数大于0.999 6;此方法检出限为0.01 mg/kg,定量限为0.03 mg/kg;在辣椒、番茄、香蕉、苹果和梨的空白果蔬样品中分别添加0.01、0.1和1 mg/kg 3 个水平下,回收率为93%~102%,相对标准偏差为4.2%~7.3%。该方法准确度和灵敏度高,抗干扰能力强,能准确并快速测定出水果、蔬菜中乙烯利的残留量。  相似文献   

16.
建立了采用气相色谱-电子捕获检测器(GC-ECD)测定柑桔和土壤中苯丁锡残留量的分析方法。样品经乙腈提取,浓盐酸衍生化,中性氧化铝柱净化。结果表明:在0.5~5.0 mg/kg添加水平范围内,苯丁锡的平均添加回收率为92% ~98%,相对标准偏差(RSD)为5.8% ~8.7%(n=5)。方法的最小检出量(MDL)为1×10-10g,苯丁锡在桔肉、桔皮、全果和土壤4种基质中的定量限(LOQ)均为0.5 mg/kg。该方法杂质干扰少,准确性及灵敏度满足农药残留检测要求,对检测硬件要求低,适用于柑桔和土壤中苯丁锡残留的分析。消解动态试验结果表明,苯丁锡在柑桔和土壤中的消解半衰期分别为9~14 d和9~11 d,属易降解农药。  相似文献   

17.
嘧草醚在水稻及其环境中的残留   总被引:1,自引:0,他引:1  
采用改良的QuEChERS-高效液相色谱-质谱 (HPLC-MS) 技术,建立了嘧草醚在水稻及其环境中残留量的检测方法。样品经V (乙腈) : V (甲酸) = 199 : 1的混合溶液提取,由十八烷基键合硅胶 (C18) 或C18 + 丙基乙二胺 (PSA) 吸附剂净化。以V (乙腈) : V (0.1%甲酸水溶液) = 70 : 30的混合溶液为流动相,经ZORBAX Eclipse XDB-C18色谱柱分离,采用电喷雾正离子 (ESI+) 模式扫描,HPLC-MS检测,外标法定量。结果表明:在0.01~1 mg/L范围内嘧草醚的峰面积与其质量浓度间线性关系良好,在乙腈、稻田水、土壤、稻株、糙米和稻壳中的相关系数均大于0.99。嘧草醚在稻田水中的检出限 (LOD) 为0.0015 mg/L,定量限 (LOQ) 为0.005 mg/L,在土壤、糙米、稻壳和稻株中的LOD分别为0.003、0.015、0.015 和0.003 mg/kg,LOQ分别为0.01、0.05、0.05 和0.01 mg/kg。在0.005、0.01和0.1 mg/L (或mg/kg) 添加水平下,嘧草醚在稻田水、土壤和糙米中的平均回收率分别为95~109%、92%~106%和89%~107%,相对标准偏差 (RSD) 分别为3.0%~5.0%、1.1%~2.9%和3.1%~3.7%;在稻壳和稻株中的平均回收率分别为95%~102%和93%~107%,RSD分别为1.1%~3.8%和3.5%~9.9%。该方法灵敏度、精密度和准确度均符合农药残留分析要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号