首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
建立了超高效液相色谱-二极管阵列检测器检测二氰蒽醌和吡唑醚菌酯在苹果中残留量的分析方法,并对2种农药在苹果中的消解动态及最终残留量进行了研究。结果表明:在0.1~5 mg/kg添加水平下,二氰蒽醌和吡唑醚菌酯在苹果中的平均回收率为72%~98%,相对标准偏差为2.0%~9.7%;2种农药在苹果中的定量限均为0.1 mg/kg。二氰蒽醌和吡唑醚菌酯在苹果中的消解半衰期分别为3.0~6.5 d和13.5~23.6 d。采用16%唑醚·氰蒽醌水分散粒剂对水施药有效成分质量浓度为0.43和0.64 g/L,分别施药3~4次,距最后一次施药21 d时,苹果中二氰蒽醌残留量为 < 0.1~0.80 mg/kg,吡唑醚菌酯残留量为 < 0.10~0.34 mg/kg,均低于中国国家标准中规定的苹果中二氰蒽醌和吡唑醚菌酯最大残留限量值5.0 mg/kg和0.5 mg/kg。建议采用16%唑醚·氰蒽醌水分散粒剂在苹果上的最大施药剂量为有效成分质量浓度0.43 g/L,施药间隔期7 d,最多施药3次,安全间隔期为21 d。  相似文献   

2.
通过1年6地的荔枝田间试验,采用QuEChERS-UPLC-MS/MS方法,研究了吡唑醚菌酯和氰霜唑及其代谢物4-氯-5-(4-甲苯基)-1H-咪唑-2腈(CCIM)在荔枝中的残留量及消解动态,并进行了膳食风险评估。结果表明,当吡唑醚菌酯添加水平在0.01~1.0 mg/kg时,方法平均回收率分别在73%~101%之间,相对标准偏差<4.5%;当氰霜唑及代谢物CCIM添加水平在0.01~0.5 mg/kg添加水平下,方法平均回收率分别在79%~103%和81%~90%之间,相对标准偏差<12.8%。吡唑醚菌酯、氰霜唑和CCIM在荔枝全果和果肉中的定量限均为0.01 mg/kg。吡唑醚菌酯在广东、广西和海南3地荔枝中的半衰期分别为6.9 d, 5.2 d和8.0 d;氰霜唑在广东和广西2地荔枝中的半衰期分别为5.0 d和6.7 d。于安全间隔期(21 d)时采收的荔枝样品中,吡唑醚菌酯和氰霜唑的最终残留量均低于我国相应的MRL值(0.1 mg/kg和0.02 mg/kg)。经膳食风险评估可知,吡唑醚菌酯和氰霜唑的摄入风险概率均<100%,不会对一般人群健康产生不可接受的...  相似文献   

3.
为评价25%吡唑醚菌酯悬浮剂在蓝莓上施用后可能产生的膳食暴露风险,通过规范的田间残留试验,检测蓝莓中吡唑醚菌酯的残留量,结合GEMS/FOOD中关于中国的各年龄段居民浆果类农产品膳食消费量及体重调查数据、每日允许摄入量(allowable daily intake, ADI),评估了吡唑醚菌酯对中国各消费人群的长期膳食摄入风险。结果表明:在0.01~1.0mg/kg添加水平范围内,吡唑醚菌酯的平均回收率在92%~100%之间,相对标准偏差(RSD)在2.9%~9.4%之间;吡唑醚菌酯在蓝莓中的检测方法定量限(LOQ)为0.01mg/kg。露地栽培模式下,吡唑醚菌酯在蓝莓上的消解速率符合一级动力学方程,消解半衰期为4.7d。吡唑醚菌酯按有效成分150mL/hm2施药2次,每次间隔7d,药后3、5、7、10d时蓝莓中吡唑醚菌酯的残留量为0.11~0.29mg/kg。长期膳食风险评估表明,蓝莓中吡唑醚菌酯残留对各消费人群的长期膳食摄入风险的贡献率<0.1%,说明通过蓝莓摄入吡唑醚菌酯残留对人体产生的长期膳食摄入风险较小。  相似文献   

4.
戊唑醇及吡唑醚菌酯在玉米上的残留行为及风险评估   总被引:1,自引:0,他引:1  
建立了玉米及其秸秆中戊唑醇和吡唑醚菌酯残留的分析方法。样品经乙腈提取,N-丙基乙二胺(PSA)和C18净化,利用超高效液相色谱-串联三重四极杆质谱仪(UPLC-MS/MS)检测。结果表明:在0.0025~0.1 mg/L范围内,戊唑醇及吡唑醚菌酯的峰面积与其质量浓度间呈良好的线性关系,R^2均大于0.99。鲜食玉米及成熟玉米籽粒在0.01、0.1和1 mg/kg,青玉米秸秆在0.01、0.1和2 mg/kg,成熟玉米秸秆在0.02、0.2和6 mg/kg添加水平下,戊唑醇在玉米及其秸秆中的添加回收率在75%~101%之间,相对标准偏差(RSD)在1.3%~6.0%之间;吡唑醚菌酯在玉米及其秸秆中的添加回收率在76%~101%之间,RSD在2.1%~8.4%之间。30%戊唑醇·吡唑醚菌酯悬浮剂以有效成分180 g/hm^2剂量施药3次,分别于末次施药后21和28 d采集的鲜食玉米及成熟玉米籽粒中,戊唑醇和吡唑醚菌酯残留量均低于定量限(0.01 mg/kg),也低于CAC、EU和EPA的最大残留限量值(MRL)。膳食风险评估结果表明:一般人群戊唑醇的国家估算每日摄入量为0.1545 mg,占日允许摄入量的8.2%;一般人群吡唑醚菌酯的国家估算每日摄入量为0.45 mg,占日允许摄入量的24.0%。因此,建议在玉米上使用30%戊唑醇·吡唑醚菌酯悬浮剂时,最高施药剂量为有效成分180 g/hm^2,最多施药3次,施药间隔为7 d,安全间隔期为21 d。  相似文献   

5.
为评估桃中吡唑醚菌酯和戊唑醇残留的膳食风险,开展了8个典型地域的规范残留试验,研究了收获期2种农药残留物在桃中的最终残留。利用高效液相色谱-三重四极杆串联质谱仪 (HPLC-MS/MS),通过改进,建立了吡唑醚菌酯和戊唑醇在桃中残留的分析方法。结果表明:在0.01~4.0 mg/L质量浓度范围内,吡唑醚菌酯和戊唑醇的进样浓度与峰面积之间具有良好线性关系(R2≥0.9906)。添加水平为0.01~4.0 mg/kg时,桃中吡唑醚菌酯的回收率范围为88%~92%,相对标准偏差 (RSD) 为5.6%~18.7%,戊唑醇的回收率范围为96%~106%,RSD为0.8%~13.2%。吡唑醚菌酯和戊唑醇在桃全果中的半衰期分别为7.9~13.9 d和5.4~8.9 d;在桃全果中的残留中值 (STMR) 分别为0.037和0.053 mg/kg,最高残留值 (HR) 分别为0.16和0.24 mg/kg。距末次施药后28 d,桃中吡唑醚菌酯和戊唑醇残留量对风险商 (RQ) 的贡献率 (RQc) 分别为0.02%和0.03%,说明通过桃摄入的吡唑醚菌酯和戊唑醇对我国一般人群产生的长期膳食暴露风险较低。对于短期膳食暴露风险,吡唑醚菌酯和戊唑醇的国家估算短期摄入量 (NESTI) 分别占急性参考剂量 (ARfD) 的0.4%和2%,对于1~6岁儿童分别占2%和4%,短期膳食暴露风险亦处于可接受水平。基于本次规范残留试验结果,总体上可认为,严格按照良好农业操作规范和标签推荐的方式施用,吡唑醚菌酯和戊唑醇在桃树上使用的长期和短期膳食暴露风险均是可接受的。  相似文献   

6.
吡唑醚菌酯在杨梅和土壤中的残留及消解动态   总被引:1,自引:0,他引:1  
为明确吡唑醚菌酯在杨梅和土壤中的残留消解规律和最终残留量,于2017年在浙江、重庆、湖南和云南4地进行了吡唑醚菌酯在杨梅及土壤中的田间残留及消解动态试验。建立了超高效液相色谱-串联质谱检测吡唑醚菌酯在杨梅和土壤中残留的分析方法。样品经乙腈水溶液提取,N-丙基乙二胺 (PSA) 和C18净化,利用超高效液相色谱-串联质谱仪 (UPLC-MS/MS) 进行检测。结果表明:在0.0005~0.5 mg/L范围内,吡唑醚菌酯的质量浓度与其峰面积间呈良好的线性关系,相关系数均大于0.99。在0.01、0.5和5.0 mg/kg添加水平下,吡唑醚菌酯在杨梅中的回收率为92%~97%,相对标准偏差 (RSD) 为1.0%~2.7%;在土壤中的回收率为86%~96%,RSD为1.5%~4.1%。吡唑醚菌酯在杨梅和土壤中的定量限 (LOQ) 均为0.01 mg/kg。田间试验结果表明:吡唑醚菌酯在杨梅和土壤中的消解动态均符合一级反应动力学方程,在杨梅中的半衰期为6.6~11.8 d,在土壤中的半衰期为5.0~11.1 d。采用60%唑醚 ? 代森联水分散粒剂分别按有效成分800 mg/kg和1200 mg/kg施药3、4 次,分别于距离最后一次施药21、25和28 d采样检测发现,吡唑醚菌酯在杨梅中的最高残留量为1.4 mg/kg,均低于中国规定的其在杨梅上的最大残留限量(3.0 mg/kg)。建议采用60%唑醚 ? 代森联水分散粒剂有效成分最高使用剂量为800 mg/kg,施药间隔期7 d,最多施药3 次,采收安全间隔期为21 d。  相似文献   

7.
为明确在草莓采果期使用百菌清、腈菌唑和吡唑醚菌酯可能产生的膳食安全风险,进行了残留试验及不同人群的膳食暴露和风险评估。在保护地条件下用75%百菌清WP 400倍液 、 40%腈菌唑SC 4 000倍液(66.7 g/hm2)和25%吡唑醚菌酯EC 1 000 倍液(166.7 g/hm2)处理草莓,果实上的原始沉积量分别为39.2、3.4和3.8 mg/kg;半衰期分别为3.76、3.39和4.06 d。采用风险商方法进行评估,喷施百菌清后7 d内的草莓对2~4岁儿童以及1 d内对18~30岁女性的风险都是不可接受的(风险商为1.2~4.6);而喷施腈菌唑和吡唑醚菌酯后0~7 d内的草莓对2~4岁、18~30岁和60~70岁人群的风险都很低(风险商分别为0.003~0.07和0.02~0.36)。因此,建议草莓中腈菌唑和吡唑醚菌酯的最高残留限量值设定为2 mg/kg,安全间隔期均定为3 d;而百菌清则不宜在草莓采果期使用。  相似文献   

8.
吡唑醚菌酯·二氰蒽醌对香蕉采后炭疽病的防治效果评价   总被引:1,自引:0,他引:1  
为筛选防治香蕉采后炭疽病的新型防腐保鲜药剂,2015年和2016年连续两年进行了复配药剂32%吡唑醚菌酯·二氰蒽醌水分散粒剂防治香蕉炭疽病的采后保鲜试验,对该药剂防治香蕉炭疽病的效果及安全性进行了评价。试验结果表明:32%吡唑醚菌酯·二氰蒽醌水分散粒剂有效成分用量640 mg/kg对香蕉炭疽病具有较好的防治效果,2015年药剂处理后12 d的防治效果为81.80%,2016年药剂处理后6 d的防治效果为83.36%,显著优于对照药剂22.7%二氰蒽醌悬浮剂500 mg/kg处理,与对照药剂250 g/L吡唑醚菌酯乳油500 mg/kg的处理防效相当。32%吡唑醚菌酯·二氰蒽醌水分散粒剂对香蕉果实安全,蕉果催熟后,果实颜色金黄,风味正常,值得推广应用于香蕉果实的采后保鲜贮运。  相似文献   

9.
为明确氟唑菌酰胺和吡唑醚菌酯在芒果上的残留行为,于2012和2013年在中国广东省和广西自治区进行了氟唑菌酰胺和吡唑醚菌酯在芒果上的田间残留及消解动态试验,建立了芒果中氟唑菌酰胺及吡唑醚菌酯残留量的高效液相色谱检测方法。样品用丙酮提取,乙酸乙酯液-液分配萃取,弗罗里硅土柱层析净化,高效液相色谱-二级管阵列紫外检测器检测,外标法定量。结果表明:氟唑菌酰胺和吡唑醚菌酯在芒果上的消解半衰期分别为7.2~9.1和8.0~11.0 d;采用42.4%吡唑醚菌酯·氟唑菌酯胺悬浮剂(SC),分别按有效成分200和300 mg/L的剂量于幼果期开始施药,施药3~4次,施药间隔期为10~15 d,距最后一次施药后7和14 d采样测定,芒果中氟唑菌酰胺和吡唑醚菌酯的残留量分别为0.004~0.053和0.004~0.072 mg/kg。其中,吡唑醚菌酯残留量符合中国制定的最大残留限量(MRL)标准(0.05 mg/kg),根据试验结果,建议中国可将氟唑菌酰胺在芒果上的MRL值暂定为0.2 mg/kg。  相似文献   

10.
为明确醚菌酯和腐霉利在温室条件下在草莓中的残留行为及其可能产生的膳食摄入风险,于2012—2013年在北京的日光温室进行了醚菌酯和腐霉利喷施草莓的3次田间农药残留试验,建立了一种快速、简便的气相色谱-质谱联用检测草莓果实中农药残留量的方法,并对不同人群的膳食暴露及风险进行了评估。草莓样品经乙腈提取,PSA(乙二胺-N-丙基硅烷)净化,采用气相色谱分离,四极杆质谱检测,外标法定量。结果表明:醚菌酯和腐霉利在温室草莓中的消解均符合一级动力学方程,醚菌酯为c=0.804 7e-0.114t,R2=0.935 6,半衰期为6.1 d;腐霉利为c=3.283 9e-0.098t,R2=0.927 9,半衰期为7.1 d。当醚菌酯有效成分用量为97.5和195 g/hm2,腐霉利有效成分用量为375和750 g/hm2时,喷药2次和3次,施药间隔期7 d,于末次喷药后1、2、3和5 d采收草莓,其残留量分别在0.09~1.52和0.12~5.81 mg/kg之间。两种药剂的最终残留量均不超过我国规定的最大残留限量(MRL)标准。膳食暴露慢性和急性风险评估结果表明:施药后1~5 d采收的草莓中,醚菌酯和腐霉利对2~6岁、7~14岁、18~30岁和60~70岁的男、女共8类不同人群的膳食摄入风险均在可接受范围之内。  相似文献   

11.
呋虫胺在水稻中的残留消解及膳食风险评估   总被引:4,自引:2,他引:2  
为评价呋虫胺在水稻中的残留消解行为和产生的膳食摄入风险,分别于2012和2013年在安徽、重庆和广西进行了规范残留试验,建立了高效液相色谱-紫外检测器(HPLC-UV)检测呋虫胺在水稻糙米、稻壳和植株中残留的分析方法,并对我国不同人群的膳食暴露风险进行了评估。样品经乙腈提取、Florisil柱层析净化,高效液相色谱-紫外检测器检测,外标法定量。结果表明:呋虫胺在糙米、稻壳和植株中的定量限(LOQ)均为0.05 mg/kg。在0.05~2 mg/kg添加水平下,呋虫胺的平均回收率在70%~100%之间,相对标准偏差(RSD)在0.5%~6.5%之间。呋虫胺在水稻植株中的消解符合一级动力学方程,半衰期为2.3~4.8 d,距末次施药后7 d糙米中的最大残留量为0.53 mg/kg,低于日本和国际食品法典委员会(CAC)规定的最大残留限量2和8 mg/kg。膳食摄入风险评价结果显示:我国各类人群的呋虫胺国家估计每日摄入量(NEDI)为0.438~1.087 μg/(kg bw·d),风险商值(RQ)为0.002~0.005,表明呋虫胺在糙米中的长期膳食摄入风险较低。  相似文献   

12.
2016年于湖南、山东等六地进行了马拉硫磷在莴笋中的规范性残留试验,建立了气相色谱-火焰光度检测器(GC-FPD)测定马拉硫磷在莴笋样品中的残留分析方法,并对我国各类人群的膳食摄入风险进行了评估。样品采用乙腈提取,丙酮置换净化、GC-FPD检测,结果表明:当马拉硫磷在莴笋全株、茎和叶中的添加浓度为0.02~8.0mg/kg时,其回收率在83%~108%之间,相对标准偏差(RSD)在1%~6%之间;马拉硫磷的最小检出量(LOD)为1.0×10~(-11)g,定量限(LOQ)均为0.02mg/kg。湖南和山东莴笋全株中马拉硫磷的消解动态试验结果显示,马拉硫磷的半衰期为1.75~2.27d,属于易降解农药;六地的最终残留试验结果表明,最后一次施用马拉硫磷5、7、10d后,莴笋茎中的最终残留量≤0.509mg/kg,莴笋叶中的最终残留量≤5.670mg/kg。莴笋的膳食风险评估结果显示,我国各类人群对马拉硫磷在莴笋茎和莴笋叶中的国家估计每日摄入量(NEDI)分别为0.115~0.445μg/(kg·d)和1.042~5.583μg/(kg·d),风险商值(RQ)分别为0.000 4~0.001 5和0.003 5~0.018 6,证明马拉硫磷在莴笋中的长期膳食摄入风险较低。推荐我国马拉硫磷在莴笋茎和莴笋叶上的最大残留限量值(MRL)分别为1 mg/kg和10mg/kg。  相似文献   

13.
研究建立了吡唑醚菌酯在烟叶和土壤中残留及消解动态的高效液相色谱分析方法。样品用乙腈提取,经固相萃取柱SPE-C18和SPE-PSA净化,高效液相色谱-二极管阵列检测器(HPLC-DAD)检测,外标法定量。结果表明:在0.01~2 mg/kg添加水平下,吡唑醚菌酯在烟叶和土壤中的平均回收率分别为97.5%~101.9%和93.4%~101.2%,相对标准偏差(RSD)分别为4.8%~6.8%和1.5%~10.5%。吡唑醚菌酯在烟叶和土壤中的定量限(LOQ)均为0.01 mg/kg。采用所建立的方法,测定了山东、湖南2年2地烟叶和土壤中吡唑醚菌酯的残留及消解动态。结果表明:吡唑醚菌酯在山东青岛烟叶和土壤中的半衰期分别为5.9~9.5 d和11.1~13.4 d;在湖南长沙烟叶和土壤中的半衰期分别为3.1~5.3 d和5.4~6.4 d。  相似文献   

14.
利用气相色谱-火焰光度检测器 (GC-FPD) 测定了马拉硫磷在西葫芦中的残留量,根据2016年湖南、山东、北京、安徽、山西和黑龙江6地马拉硫磷在西葫芦中的规范性残留试验,对中国各类人群和不同作物中的马拉硫磷进行了膳食风险评估。样品用乙腈提取,丙酮置换乙腈后,GC-FPD检测。结果表明:在0.02~8.0 mg/kg添加水平下,马拉硫磷在西葫芦中的回收率在88%~109%之间,相对标准偏差 (RSD) 为5%,定量限 (LOQ) 为0.02 mg/kg。湖南和山东的消解动态试验结果显示,马拉硫磷的半衰期为2.74~4.65 d,属于易降解农药;6地的最终残留试验结果表明,距最后一次施药3、5、7 d后,西葫芦中马拉硫磷的最终残留量在 < 0.02~0.049 mg/kg之间。针对西葫芦的膳食风险评估结果显示,中国各类人群对马拉硫磷的国家估计每日摄入量 (NEDI) 为0.115~0.207 μg/(kg bw·d),风险商值 (RQ) 为0.000 4~0.000 7;全膳食暴露风险评估结果显示,马拉硫磷在各类食物中的NEDI值为82.251 μg/(kg bw·d),RQ值为0.275 1,表明马拉硫磷在西葫芦中的长期膳食摄入风险较低。推荐中国马拉硫磷在西葫芦上的最大残留限量值 (MRL) 为0.1 mg/kg,可确保中国西葫芦的食用安全性。  相似文献   

15.
葡萄和土壤中吡唑醚菌酯的高效液相色谱残留分析方法   总被引:7,自引:0,他引:7  
建立了测定葡萄及土壤中吡唑醚菌酯残留的液相色谱检测方法。样品以二氯甲烷提取和固相萃取柱(SPEC18柱)萃取净化,反向高效液相色谱法测定,乙腈和水(70+30)为流动相,C18色谱柱分离,278nm紫外定量检测吡唑醚菌酯。该方法吡唑醚菌酯的最小检出量为2×10^-10g,线性相关系数为0.9986,葡萄及土壤加标回收率分别为80.4%-94.1%、81.8%。98.4%.相对标准偏差(RSD)分别为1.8%~3.8%、2.6%-3.0%。方法具有简便、快捷。准确的特点,适合葡萄及土壤中吡唑醚菌酯残留量的测定。  相似文献   

16.
为了探究根部处理剂6-苄氨基腺嘌呤(6-BA)和吡唑醚菌酯在植物-土壤间的分布规律,以番茄为试材,建立了测定番茄根、叶及根围土壤中2种化合物的QuEChERS-高效液相色谱法,并采用该方法研究了两者在番茄体内和根围土壤中28 d内的含量变化。结果表明:6-BA与吡唑醚菌酯在番茄根、叶和根围土壤中的回收率在82%~107%之间,定量限在0.03~0.09 mg/kg之间;经番茄苗蘸根处理后12 h^28 d,在根围土壤中未检测到6-BA,而在番茄叶和根中均有检出(0.043~2.0 mg/kg),表明6-BA可被根部快速吸收,并传导至叶片,在番茄各部位中的含量为侧叶>根部>顶叶;6-BA在番茄根部和叶片中消解较快,处理7~10 d后低于检出限;吡唑醚菌酯可扩散至根围土壤中,大部分被根部吸收并维持在较高含量水平(1.2~3.0mg/kg)达28 d以上;根部的吡唑醚菌酯可转移至叶片,并以较低含量水平(0.11~0.78 mg/kg)保留4~6 d。研究结果为番茄根、叶及土壤中6-BA和吡唑醚菌酯的残留分析提供了方法,并为评价该根部处理剂的应用效果提供了必要数据。  相似文献   

17.
苯醚甲环唑在三七中的残留及其膳食风险评估   总被引:1,自引:0,他引:1  
通过田间试验和气相色谱(GC-ECD)检测,研究了苯醚甲环唑在三七中的残留消解动态以 及三七茎叶对其的吸收、转运与分布特性。结果表明:苯醚甲环唑在三七植株中的半衰期为12.3~12.8 d;叶面施药后,其可被三七茎叶吸收并迅速向下传导至根部,且主要集中在须根中。苯醚甲环唑在三七不同部位之间的最终残留量存在差异,依次为花>须根>块根。于三七病害发病初期 (通常在三七开花前的营养生长期)施用苯醚甲环唑10%水分散粒剂,用量为有效成分67.5 g/hm2, 施药4次,间隔期为7 d,距最后1次施药后间隔28 d收获的三七块根中苯醚甲环唑的残留量RQ)仅为0.21%,处于安全水 平。建议在使用苯醚甲环唑10%水分散粒剂防治三七上的病害时,用药量为有效成分67.5 g/hm2, 最多施用3次,安全间隔期为28 d。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号