首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TLCS与HPLC对比测定虫草中虫草素和腺苷含量   总被引:3,自引:0,他引:3  
冬虫夏草[Cordyceps sinensis(Berk.)Sacc.]是资源十分紧缺的药用真菌,蛹虫草[Cordyceps militaris(L.Fr.)Link]是冬虫夏草的近缘种,也是虫草属的模式种[1],具有与冬虫夏草相似的活性成份和医疗保健功效,其主要活性成分虫草素和腺苷的含量,均高于冬虫夏草[2],是代替冬虫夏草的首选菌种.  相似文献   

2.
建立蛹虫草子实体中腺苷和虫草素的UPLC检测方法。色谱柱:ACQUITY UPLC HSS T3(2.1mm×50mm,1.8μm);流动相:甲醇-水(15∶85,v/v);流速:0.3m L/min;柱温:35℃;检测波长:260nm;进样量:2μL。蛹虫草子实体中腺苷和虫草素分别在1.12ng~22.4ng、0.34ng~6.8ng范围内线性关系良好,平均加样回收率分别为101.53%、95.79%。该方法准确性高、重复性好,可用于蛹虫草子实体中腺苷和虫草素含量测定。  相似文献   

3.
采用不同种类培养基栽培蛹虫草,以虫草素和腺苷含量为指标,筛选出培养蛹虫草的最优培养基。结果表明,最佳栽培培养基配方为3号培养基(大米40 g+纯柞蚕蛹),以3号培养基栽培获得的蛹虫草子实体中虫草素和腺苷含量均为最高,分别达到15 986.3 mg/kg和2176.5 mg/kg,与其它实验组结果的差异达到极显著水平。  相似文献   

4.
为获得提高蛹虫草产量及虫草素和腺苷含量的最佳碳源及添加量,以蛹虫草菌株CM-16为研究对象,小麦为主要栽培基质,采用单因素分析法,研究不同碳源对蛹虫草的子座产量及虫草素和腺苷的影响。结果表明:在栽培基质中添加9g/L可溶性淀粉,蛹虫草子座产量及虫草素和腺苷的含量有显著提高,此时子座产量(以干质量计)达43.28g/盒,蛹虫草子座中虫草素和腺苷的含量最高,分别为3.43mg/g和2.38mg/g,而添加葡萄糖及蔗糖对其影响较小。碳源是影响蛹虫草子座产量及虫草素和腺苷含量的重要因素,当以小麦为主要原料栽培蛹虫草时,淀粉为最优碳源。  相似文献   

5.
蛹虫草中虫草素测定方法的比较   总被引:1,自引:0,他引:1  
采用紫外分光光度法和高效液相色谱法测定蛹虫草子实体中虫草素的含量。结果表明:这两种方法在测定蛹虫草子实体中虫草素的平均回收率分别为100.1%和100.2%,RSD分别为2.3%和1.2%。这两种方法均可作为蛹虫草子实体中虫草素含量的测定方法,但高效液相色谱法专属性强,灵敏度高,测定结果更为准确。  相似文献   

6.
本文开展试验研究红酵母菌对蛹虫草菌丝生长量、虫草素和腺苷含量的影响。结果表明,红酵母菌对三者均有诱导作用。其中,菌丝生长量是对照组的1.20倍,虫草素含量是对照组的1.53倍,腺苷含量是对照组的1.17倍。由此可见,红酵母菌对三者具有激发作用,对虫草素的诱导作用最高。  相似文献   

7.
以虫草素和腺苷含量为指标优化蛹虫草人工栽培   总被引:3,自引:2,他引:3  
为提高人工栽培蛹虫草中主要活性成分的含量,以虫草素和腺苷含量为检测指标进行蛹虫草优化栽培研究,在采用Cm-1菌株、以20%豆粕为氮源、水料比为1.4的条件下,可获得子实体产量为每瓶42.2 g、子实体中虫草素含量为4.46 mg.g-1的栽培效果,虫草素含量超过了以蚕蛹为寄主的蛹虫草(2.83 mg.g-1),表明植物蛋白完全可以用作栽培蛹虫草的氮源,同时证实采收子实体后的培养基中仍含有大量虫草素,可作为提取虫草素的原料。  相似文献   

8.
利用前期加速溶剂萃取法提取腺苷、虫草素的优化结果,分别挑选最优处理进行试验,即提取腺苷最适条件为温度70℃、时间10 min、乙醇含量20%、循环2次,提取虫草素最适条件为温度100℃、时间15 min、乙醇含量0%、循环2次。并将该方法与水热回流法、醇热回流法、超声水提法、超声醇提法4种传统方法进行比较,结果表明,加速溶剂萃取法明显优于其他传统4种方法,各个方法之间差异达显著水平(P<0.05);加速溶剂萃取法提取腺苷效果最好,提取量为2 118.07μg/g,提取效果最差的是超声波醇提法,提取量仅有180.72μg/g;加速溶剂萃取法提取的虫草素量为19 678.70μg/g,超声波醇提法提取虫草素效果最差,提取量仅有4 108.27μg/g;加速溶剂萃取法有其明显的优势,操作简单、方便快捷。  相似文献   

9.
北冬虫夏草发酵液中虫草素和腺苷含量的HPLC分析   总被引:11,自引:1,他引:11  
试用高效液相色谱法同时检测了5株北冬虫夏草菌株发酵液中虫草素和腺苷的含量,并系统地研究了各种发酵条件对虫草素和腺苷含量的影响.结果表明,虫草素和腺苷在所设色谱条件下得到了很好的分离,二组分的线性关系良好,回收率满意,其中虫草素峰保留时间为11.443min,腺苷峰保留时间为9.054min;虫草素的回收率为103.22%,RSD=4.4%,腺苷的回收率为98.42%,RSD=3.2%;虫草素和腺苷的线性范围分别为0.49~98μg/mL,0.46~92μg/mL.5株待测菌株发酵液中的菌丝干重第5天都达到了最大值,其中Cordycepsmilitaris G5124菌株的虫草素含量第9天达最大值,腺苷含量第1天达最大值.试验结果还表明,不同菌株发酵液中的虫草素和腺苷含量具有明显差异,这可能与菌株本身的遗传特性有关.其中C.militaris G(04)5f菌株的虫草素含量最高,可用作发酵生产虫草素的高功能菌株,进一步试验表明,当起始pH值为9时该菌株的虫草素含量达到最高.  相似文献   

10.
虫草素是蛹虫草中重要的生物活性之一,具有抗肿瘤、抗炎、抗菌、抗病毒、提高免疫力等生物功效,目前主要从蛹虫草相关培养物中提取虫草素。从虫草素的药理作用、提取、分离纯化、测定以及优化虫草素的产量方面进行综述,总结蛹虫草虫草素研究进展,并进行相关展望。  相似文献   

11.
人工栽培蛹虫草虫草素含量HPLC检测方法研究   总被引:2,自引:0,他引:2  
应用高效液相色谱法检测蛹虫草子实体及其固体培养基中的虫草素含量,优化了样品前处理条件,色谱柱为MP-C18 (4.6 mm ×150 mm,5 μm),流动相为V(甲醇):V(水)=15:85,流速1 ml/min,柱温25 ℃,样品回收率范围为95.1%~104.2%;同时对比使用3种不同的培养基(大米、小麦、蚕蛹粉)栽培的蛹虫草子实体中虫草素的含量,结果表明生长在大米培养基上的蛹虫草子实体中虫草素含量最高.  相似文献   

12.
虫草素是冬虫夏草和蛹虫草中主要活性成分之一,具有抗菌消炎、抗肿瘤、降血脂、清除体内自由基等方面的药理作用。该文介绍虫草素的药理作用,并总结其开发研究进展。  相似文献   

13.
江海涛 《北京农业》2013,(33):27-29
该实验利用响应面方法优化蛹虫草中虫草素的提取工艺,选择料液比、功率和时间为自变量,虫草素的提取率为响应值,利用Box-Benhnken中心组合试验和响应面分析法,研究各自变量交互作用及其对虫草素提取率的影响,模拟得到二次多项式回归方程的预测模型,并确定虫草素最佳提取工艺∶料液比1.00∶26.84,功率329.57W,时间40.25min,在此条件下,虫草素的提取率可达4.58000%。  相似文献   

14.
[目的]研究液体培养基中添加氨基酸对蛹虫草发酵液中虫草素含量的影响,并确定8种氨基酸最佳添加浓度。[方法]考察24种氨基酸(添加浓度为1 g/L)对虫草素含量的影响,采用DPS V18.10软件进行差异显著性分析,并对促进虫草素合成作用显著的8种氨基酸添加浓度进行研究。[结果]L-赖氨酸、L-半胱氨酸、L-精氨酸、L-天门冬酰胺、L-甘氨酸、L-丙氨酸、L-丝氨酸、L-苏氨酸、L-组氨酸、肌氨酸对蛹虫草发酵液中虫草素含量具有不同程度的提高作用;4 g/L的L-甘氨酸对虫草素的合成促进作用最强,发酵液中虫草素含量为1 022.25 mg/L。[结论]该研究为蛹虫草液体发酵生产虫草素提供参考依据。  相似文献   

15.
以双蒸水为溶剂,用反相高效液相色谱-紫外检测法测定蚕蛹虫草样品中虫草素和腺苷含量,并用该方法测定了19-3、17-3、MS、1-1以及1-Y等12种不同虫草菌株栽培的蚕蛹虫草、不同品质的蚕蛹虫草以及蚕蛹虫草不同组织中的虫草素和腺苷的含量。结果表明:1-Y菌株的虫草素和腺苷含量均最高,质量分数达15.45 mg/g和4.40 mg/g;不同品质的蚕蛹虫草中虫草素则以感染而未出草的僵蚕最高;蚕蛹虫草的僵蚕体对虫草素的富集能力高于子座,蚕蛹虫草的子座对腺苷的富集能力高于僵蚕体。该结果可对探求高虫草素含量和高腺苷含量的虫草材料提供理论依据。  相似文献   

16.
为探讨8种微量添加物(维生素B1、核黄素、烟酰胺、腺嘌呤、D-泛酸钙、叶酸、钴胺素以及甘氨酸与腺嘌呤混合物)对蛹虫草菌发酵液虫草素产量的影响,筛选提高虫草素产量的最佳方法,将不同质量浓度的微量添加物单独加入蛹虫草液体发酵培养基中,以HPLC法测定发酵液的虫草素产量。结果表明:甘氨酸和腺嘌呤的混合物、腺嘌呤、核黄素、D-泛酸钙均能显著促进虫草素的生物合成,适宜添加质量浓度为:甘氨酸14g/L和腺嘌呤2g/L的混合物、腺嘌呤2g/L、核黄素1g/L、D-泛酸钙2g/L;维生素B1和钴胺素均能促进虫草素的生物合成,适宜添加质量浓度均为2和2g/L;而烟酰胺和叶酸均抑制虫草素的生物合成。其中,添加甘氨酸14g/L和腺嘌呤2g/L的混合物对发酵液虫草素产量的提高作用最显著,比对照提高了103%。当甘氨酸与腺嘌呤的质量浓度比为7∶1时,两者通过协同互补过程促进虫草素合成的作用最为显著;此外,本研究认为甘氨酸和腺嘌呤分别由从头合成和补救合成途径共同促进了虫草素的生物合成。  相似文献   

17.
以蛹虫草菌株CM-16为研究对象,小麦为主要栽培基质,研究不同的光条件对蛹虫草的子座产量及虫草素和腺苷的影响。结果表明,当光照度为150lx时,子座产量及2种有效成分质量分数均较高,此时子座产量(以干质量计)达到每盒52.66g,虫草素和腺苷的质量分数分别为4.56mg/g和2.11mg/g;光照时间为8h/d时,子座产量及虫草素质量分数较高,此时子座产量达到每盒54.30g,虫草素质量分数为4.41mg/g,光照时间对腺苷的积累影响不大;蓝光有利于蛹虫草生长和子座积累虫草素,但其他光质对子座中的腺苷的作用没有太大差异。  相似文献   

18.
通过对比提取溶剂、料液比、温度、pH值及时间对提取蛹虫草小麦培养基中虫草素的影响,以确定虫草素提取最佳工艺参数.结果表明:最佳提取参数为水提取、pH值5,料液比1:50、温度70℃、时间3h.该方法从蛹虫草小麦培养基中提取虫草素,提取率可达94.87%.  相似文献   

19.
为建立同时测定地顶孢霉培养物中腺苷、虫草素和麦角甾醇含量的高效液相色谱法,选择色谱柱为Waters C18柱(4.6 mm×250 mm, 5μm),流动相为水-乙腈,梯度洗脱,检测波长270 nm,流速1 mL·min-1,柱温30℃,进样量20μL。结果表明:腺苷、虫草素和麦角甾醇在浓度20~640μg·mL-1(X)范围内与峰面积(Y)呈良好的线性关系,腺苷、虫草素和麦角甾醇的回归方程分别为Y=98.53X+586.26 (R2=0.999 3)、Y=124.16X+277.69 (R2=0.999 7)、Y=57.652X+107.47 (R2=0.999 6)。腺苷、虫草素和麦角甾醇的加标回收率分别为95.96%~99.95%、97.43%~99.94%和96.31%~99.95%。该方法准确度高、重复性好、灵敏度高,适用于地顶孢霉培养物中腺苷、虫草素和麦角甾醇含量的测定,为其质量监控提供了技术支撑。  相似文献   

20.
以蛹虫草[Cordyceps militaris(Linn.)Link]子实体为材料,首先通过单因素分析法探索虫草素的最佳提取溶剂,结果表明,70%乙醇是虫草素的最佳提取溶剂,并通过正交试验考察了微波助提法中微波功率、微波时间、提取次数和料液比4个因素对虫草素提取功率的影响,最终建立了提取虫草素的最佳工艺条件,即微波功率350 W,微波处理时间4 min,提取2次,料液比1∶50(g∶m L),提取率可达6.87%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号