首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosynthesis in balsam fir (Abies balsamea (L.) Mill.) was measured in the field at two locations in New Brunswick, Canada from late winter to late spring in 2004 and 2005. No photosynthesis was detectable while the soil remained below 0 degrees C throughout the rooting zone. In both years, photosynthesis began once soil temperature rose to 0 degrees C. In potted seedlings in growth chambers, there was no photosynthesis at an air temperature of 10 degrees C if the pots were frozen. These findings suggest that, once air temperatures permit photosynthesis, it is the availability of unfrozen soil water that triggers the onset of photosynthesis. In the field, full recovery of photosynthetic capacity following the onset of soil thaw was dependent on air temperature and took 5 weeks in 2005, but 10 weeks in 2004. There were two substantial frost events during the recovery period in 2004 that may explain the extended recovery period. In 2005, recovery was complete after the accumulation of 200 growing degree days above 0 degrees C after the start of soil thaw.  相似文献   

2.
Balsam fir (Abies balsamea (L.) Mill) was extensively sampled to investigate the effects of forest management practices, site location, within-crown position, tree component (i.e., stem, foliage, branches and roots), and tree social classes on biomass and carbon (C) partitioning at the individual tree level and across ecological regions. The sites were located in three ecologically distinct forest regions of west-central New Brunswick, Canada. There were no significant differences in %C content of trees across ecological regions or across tree social classes. However, at the individual tree level, significant differences were evident in biomass and C allocation between different parts of the tree, between treatment types (i.e., unmanaged and pre-commercially thinned stands) and between within-crown positions, indicating the need for separate estimates of biomass and C content of tree components to obtain more precise estimates of quantities at the stand level. Calculating stand C content based on constant allocation values, as is commonly done, produced errors of up to 15% compared with the values calculated in this study. Three allometric equations of biomass and C that account for partitioning among different parts of the tree were developed and compared: (1) a third-order polynomial, (2) a modified inverse polynomial and (3) a modified Weibull equation. Diameter at breast height (DBH) was used as the only explanatory variable to describe fresh biomass, dry biomass and C content. All regressions derived showed a high correlation with DBH, with most r2 values > 0.95. A comparison of the equation results showed that the modified Weibull equation gave consistent results with the best overall fit and was the simplest of the three equations investigated. The regressions can be used to estimate forest biomass and tree C content at the stand level, given specific information on DBH.  相似文献   

3.
Low temperature (LT) exposure has been shown to delay postharvest needle abscission and senescence (NAS) in balsam fir and changes in vapor pressure deficit (VPD) are expected to alter these processes. Two and half year-old seedlings were exposed to a LT of 5°C for 15 days while the control (CT) group was maintained at 22°C. Seedlings were then exposed to four different VPD (0.22, 0.87, 1.3 and 1.86?kPa) and observed for relative water content (RWC), xylem pressure potential (XPP), membrane injury index (MII), stem capacitance (SC) and NAS. An interactive effect of LT and VPD was observed in RWC, XPP, MII and NAS. Low VPD (0.22 and 0.87?kPa) resulted in less negative XPP, lower electrolyte leakage, higher SC and ultimately higher NAS than those at high VPD. Maximum NAS was recorded at 0.22?kPa. At 1.86?kPa, LT had 5× lower RWC (13%), 3× more negative XPP (?1.1?MPa), 1.8× higher membrane damage and 35% lower NAS (47 days) than CT. The SC declined with an increase in VPD with no effect of LT. The XPP and RWC of LT seedlings showed a positive relationship with NAS with R2 values of 0.54 and 0.59, respectively. LT offered no benefits to NAS at high VPD environments.  相似文献   

4.
Koga  S.  Zhang  S. Y. 《Wood Science and Technology》2004,38(2):149-162
This study quantified and compared intra-tree and inter-tree variations in ring width and wood density components in balsam fir (Abies balsamea) grown in Quebec, Canada. In addition, the study examined correlations between ring width and wood density components at different stem positions from the stump level to the stem top. Ring width and wood density components of individual rings were measured by X-ray densitometry. Both the intra- and inter-tree variations in balsam fir are large, but the inter-tree variation is relatively smaller than the intra-tree variation. Much of the intra-tree variation is due to the radial variation, whereas the axial variation is much smaller. Compared to ring width and its components, wood density characteristics show a considerably smaller variation at both the inter- and intra-tree level. In almost all wood characteristics studied (except for latewood width), the intra- and inter-tree variations are more or less influenced by tree age. Cambial age explains more intra-tree variation in wood density components than ring width, whereas more intra-tree variation in ring width components is due to ring width. Cambial age and ring width explain a comparable percentage of variation in ring density. Only a few of the correlations between ring width and wood density components vary significantly with stem position from the stump to the stem top at the inter-tree level. In balsam fir, a negative correlation between ring density and ring width is significant in the butt log, but the correlation decreases to an insignificant level at and above a height of 3.0 m.  相似文献   

5.
We have developed a spatially inexplicit model of canopy photosynthesis for balsam fir (Abies balsamea (L.) Mill.) that accounts for key processes of light-shoot interaction including irradiance interception by the shoot, spatial aggregation of shoots into branches and crowns, the differential propagation of diffuse and direct light within the canopy, and an ideal representation of penumbra. Also accounted for in the model are the effects of the average radiative climate and shoot age on needle retention, light interception, and photosynthetic capacity. We used reduced versions of this model to quantify the effects of simplifying canopy representation on modeled canopy net photosynthesis. Simplifications explored were the omission of direct beam transformation into penumbral light and the use of different constant shoot properties throughout the canopy. The model was parameterized for a relatively dense balsam fir stand (leaf area index of 5.8) north of Québec City, Canada, and run using hourly meteorological data obtained at the site. The overall performance of the complete model was satisfactory, with maximum values of canopy net photosynthesis of 23 micromol (m(2) ground)(-1) s(-1) (83 mmol m(-2) h(-1)), and a near-saturation of the canopy at a photosynthetically active radiation photon flux density of about 750 micromol m(-2) s(-1) (2.7 mol m(-2) h(-1)). The omission of penumbral effects through the use of unattenuated direct (beam) radiation at all layers of the canopy, as used for broad-leaved species, reduced canopy net photosynthesis by 3.7%. Analysis of the results show that the small impact of penumbra on canopy net photosynthesis stems from the high proportion of diffuse radiation (73%) estimated from our meteorological data set; single-hour results under clear sky conditions approach theoretical bias values of about 30%. Use of mean shoot photosynthetic, light capture and light transmission properties throughout the canopy biased canopy net photosynthesis by less than 3%. However, simulations carried out based on properties of 1-year-old shoots throughout the canopy overestimated canopy net photosynthesis by 9%. Use of the shoot as our smallest functional unit was a potential source of bias because the differential absorption of direct and diffuse radiation within the shoot could not be factored into the model. Other sources of potential bias are discussed.  相似文献   

6.

Context

The requirement for rebuilding forecrop stands besides replacement of meadow vegetation with forest plants and formation of soil humus is the presence of a compatible ectomycorrhizal (ECM) fungal community.

Aims

This study aims to assess ectomycorrhizal fungi diversity associated with silver fir (Abies alba Mill.) seedlings regenerating in silver fir stands and Scots pine forecrops.

Methods

One-year-old seedlings were sampled in six study sites: three mature fir forests and three pine forests. ECM fungi were identified by polymerase chain reaction amplification and sequencing of the internal transcribed spacer of rDNA.

Results

The mean mycorrhizal colonization exceeded 90 %. Thirty-six ectomycorrhizal taxa were identified in fir stands and 23 in pine forecrops; ten out of these species were common to both stands. The fungal communities were different between study sites (R?=?0.1721, p?=?0.0001). Tomentella stuposa was the only species present at all sites.

Conclusion

Silver fir seedlings in Scots pine forecrops supported smaller ECM fungal communities than communities identified in mature silver fir stands. Nevertheless, fungal colonization of seedling roots was similar in both cases. This suggests that pine stands afforested on formerly arable land bear enough ECM species to allow survival and growth of silver fir seedlings.  相似文献   

7.
Natural hazards are the main threat for forest all over the world. Some of these disturbances may be insured such as fire and/or storm in some European countries. However, forest insurance has trouble to spread in particular because of the existence of some brakes such as the forest insurance premium, often considered as too high compared to the profitability of the forest investment. In this context, we propose an actuarial insurance model to insure multiple natural hazards (windthrow, fire, insect outbreak) in forests that determine the insurance premium in different senarios. In particular, the scenarios differ in terms of the link between the hazards, either they are mutually independent or dependent, and in terms of the parametric solutions to the actuarial problem, either a discrete time period approach or a continuous one. We propose an application of the actuarial model to a silver fir (Abies Alba Mill.) stand in the Slovak Paradise region (Slovakia). We show that gross insurance premiums range from €5.62/ha at a scale of 150,000 ha at age 150, to €6312.81/ha at a scale of 15 ha at age 50. In addition, we show that the most efficient solution in terms of the minimisation of the gross insurance premiums is provided under the assumption of random occurrence of mutually independent natural hazards and with a continuous time period approach.  相似文献   

8.
In the present context of global climate changes and the continuous development of forest management strategies based on the concept of sustainable use, it is important to develop a better understanding of the climatic factors controlling the growth of boreal forests. In this study, we report the results of a five-year field research within which day-to-day balsam fir (Abies balsamea (L.) Mill.) stem diameter variation was measured with dendrometers and examined in relation with various daily climatic variables. A model built with data from three growing seasons that included solar radiation, relative humidity, temperature and precipitation explained 84% of the variance in day-to-day stem diameter variation from June to September. The model has approximately the same predictive capability when validated with independent daily data from two other growing seasons. The model captured both the cumulative increment associated with the irreversible growth and the high frequency variation of day-to-day fluctuations associated to changes in the stem water content. In general, rainy days during which relative humidity was high and solar radiation was low favored stem diameter expansion (growth and swelling) while stem diameter decreased during periods of low relative humidity and high solar radiation. Similar models were obtained when the June-September period was divided into two parts (June-July and August-September) to better represent the period during which most of the cumulative annual stem increment is observed (June-July). Inter-annual variation in stem growth computed from the modeled day-to-day variation in stem diameter was significantly correlated to the inter-annual variation in annual growth determined from tree core measurements over a 10 year period (p = 0.023). The model was notably able to capture a particularly poor growing year (2006) presumably due to a short-term heat stress period. Results suggest that the inclusion of daily data in growth-climate models may contribute to improve predictions of the potential tree growth response to climate by identifying particular climatic events that may escape to a classical dendroclimatic approach.  相似文献   

9.
Changes occurring in mycotrophy of fir seedlings (Abies alba Mill.) and in communities of the soil fungi, fungi living in roots, and fungi from rhizosphere were studied in mountain forest stands, both with good and poor regeneration of fir. The intent of these studies was to contribute to the elucidation of the problem of whether the lack of fir regeneration could be connected with microbiological changes taking place in the soil environment.  相似文献   

10.
We analyzed the response to drought of 420 individuals from eight half-sib families from a small and isolated population of silver fir (Abies alba Mill.): 105 of them were kept in well-watered conditions as control while the remaining 315 were exposed to drought for 27 days. A model describing stomatal behavior derived from Monteith and developed in beech by Leonardi et al. was fitted to experimental transpiration data obtained simply from the difference between two daily pot weighings. The estimated parameters were maximum stomatal conductance, maximum transpiration in well-watered conditions and sensitivity to soil water deficit. The model worked well: convergence for all but four individuals and concordance between experimental and fitted data were good (R(2)=0.86). Inter-individual variability for all three estimated parameters was high and two of them (maximum stomatal conductance and sensitivity to soil water deficit) were significantly different among families, suggesting genetic control. Our results validate the simplified method used to evaluate individual stomatal parameters. We also show that in the small and isolated population of our study substantial adaptive variability remains, a crucial prerequisite to endure environmental conditions determined by climatic change foreseen for the next decades.  相似文献   

11.
12.
13.
Activation spectra of wood under natural irradiation were investigated in detail in this work. The main purpose was to study colour changes on the wood surface over time and into the depth during natural light exposure and thus to further contribute to the optimization of surface-protecting treatments. In a natural weathering test, three 80-μm-thick strips of fir wood forming the surface layer of a wood composite were exposed to light under a series of glass cut-off filters. Samples were withdrawn at intervals and tested for colour changes. Identification of the most detrimental wavebands of light causing photodegradation was performed based on recorded colour changes. With chronological development of exposure, the colour changes shifted ever deeper into the surface and further into the visible region of the spectrum. A relatively narrow waveband from 360 to 435 nm was identified in the activation spectra to be the most active band, causing the greatest proportion of recorded colour changes. However, also visible light of wavelengths up to 515 nm significantly contributed to colour changes of the surface layers.  相似文献   

14.
Photosynthesis, respiration, and transpiration were studied in different Abies alba provenances during and alter ozone exposure at three different levels (0/control, 125, and 250 ppb O3, respectively). The after-effects of ozone on frost resistance and growth rate were also analyzed. Pronounced reductions of photosynthesis and transpiration rates and an increased respiration were registered as a response to O3. Five months after exposure the winter frost resistance was significantly reduced, and growth depressions were registered during the following year. Differences in ozone sensibility and regeneration ability between provenances could be demonstrated.  相似文献   

15.
Photosynthesis, transpiration and stomatal behavior were studied in different Abies alba provenances during and after SO2 exposure. Differences in SO2 sensitivity and regeneration ability between provenances could be demonstrated.  相似文献   

16.

Context

Understanding the effects of exogenous factors on tree development is of major importance in the current context of global change. Assessing the structure development of trees is difficult given that they are large and complex organisms with lifespan of several decades.

Aims

We used a retrospective analysis to derive the ontogenetic trends in silver fir development and assess the effects of climate or light environment on tree architecture.

Methods

Thanks to the identification of relevant growth markers (bud cataphylls and pseudo-whorl branches), a retrospective analysis allowed to record annual shoot extension and to date them on silver firs of various sizes under different environmental conditions.

Results

The length of successive annual shoots located on different axes clearly show gradual trends related to the physiological age of meristems. Within- and between-tree variations are noted due to the plasticity of development and growth induced by light environment and climate.

Conclusion

Retrospective analysis is an efficient method for getting information on the history of trees architecture and subsequently to relate it to environmental factors.  相似文献   

17.
  • ? Spruce budworm outbreaks are among the major natural disturbances affecting the dynamics and functioning of Canadian boreal forests. However, the element losses potentially associated with spruce budworm outbreaks have not been quantified.
  • ? We evaluated the influence of spruce budworm outbreaks on nutrient export from boreal forest soils by comparing nutrient leaching losses during a spruce budworm outbreaks episode (1981–1984) to an unperturbed period (1999–2003) in a calibrated catchment located in a balsam fir forest.
  • ? Nutrient soil leaching losses were significantly higher during the spruce budworm outbreaks (1981–1984) for N-NO3 (30.1 fold), K (8.3 fold), N-NH4 (6.2 fold), Mg (2.7 fold) and SO4 (2.2 fold), as compared to an unperturbed period (1999–2003). When the recurrence of spruce budworm outbreaks (33 years) and a plausible average length of such events (5 years) are taken into consideration, it is estimated that in the long term, 5.6 more NO3, 1.5 more K and 1.2 more NH4 are leached from the soil profile during outbreaks.
  • ? The important leaching losses during spruce budworm outbreaks, when added to the losses due to tree harvesting and fire (and acid deposition for K), may have considerable effects on soil fertility and ecosystem sustainability.
  •   相似文献   

    18.
    温度对杉木林土壤呼吸的影响(英文)   总被引:2,自引:0,他引:2  
    Soil samples collected from the surface soil (0(10 cm) in an 88-year-old Chinese fir (Cunninghamia lanceolata) forest in Nanping, Fujian, China were incubated for 90 days at the temperatures of 15°C, 25°C and 35°C in laboratory. The soil CO2 evolution rates were measured at the incubation time of 2, 5, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80 and 90 days. The results showed that CO2 evolution rates of soil samples varied significantly with incubation time and temperature during the incubation period. Mean CO2 evolution rate and cumulative amount of CO2 evolution from soil were highest at 35°C, followed by those at 25°C, and 15°C. Substantial differences in CO2 evolution rate were found in Q10 values calculated for the 2nd and 90th day of incubation. The Q10 value for the average CO2 evolution rate was 2.0 at the temperature range of 15-25°C, but it decreased to 1.2 at 25- 35°C. Soil CO2 evolution rates decreased with the incubation time. The cumulative mineralized C at the end of incubation period (on the 90th day) was less than 10% of the initial C amounts prior to incubation.  相似文献   

    19.
    20.
    Norway spruce (Picea abies (L.) Karst.) is an economically important, but relatively drought-sensitive tree species that might suffer from increasing drought intensities and frequencies, which are predicted to occur in parts of central Europe under future climatic change. In a throughfall exclusion experiment using sub-canopy roofs, we tested the hypothesis that enhanced drought leads to an increase in fine root mortality, and also to a higher, subsequent fine root growth. Fine root production and mortality were assessed using two independent approaches, sequential soil coring (organic layer) and direct observations in minirhizotrons (organic layer plus upper mineral soil). Six weeks of throughfall exclusion resulted in mild drought stress, i.e. a reduction in average soil moisture from 20 to 12 vol.% during the treatment. Based on the sequential coring data, experimental drought did not result in significant changes in fine root biomass during the 6-week treatment period, but caused an increase in fine root mortality by 61% in the 6 weeks following the drought treatment. Remarkably, fine root production showed a synchronous increase in this period, which more than compensated for the loss due to increased mortality. The minirhizotron data confirmed that the drought treatment increased fine root loss in the organic layer. Based on this method, however, root loss occurred during the drought period and was not compensated by increased root production. The mild drought stress was mainly restricted to the organic layer and did not significantly influence fine root dynamics in the mineral soil. We calculated that the drought event resulted in an extra input of about 28 g C m−2 and 1.1 g N m−2 to the soil due to increased fine root mortality. We conclude that even periods of mild drought significantly increase fine root mortality and the associated input of root-derived C to the soil organic matter pool in temperate Norway spruce forests.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号