首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Finite element software was used to simulate the internal force and deformation of high-rise pile cap-soil-structure under the wave and earthquake action. Meanwhile, wave force was calculated by using Morison equation, and the mechanical behavior of structure was simulated by inputing horizontal El-Centro wave. Then, the initial state and the state of the largest positive and negative acceleration were selected to study the structure according to the time history curve, and the displacement, bending moment, shear and axial force changes of pile foundation under wave and earthquake action were discussed, which was compared and analyzed with the structural response under the action of earthquakes solely. The result shows that the moment of front row of piles is biggest, and the force of pile bolck is the most dangerous; the axial force of the corner piles is the largest, and one of the center piles is the smallest under the action of wave and earthquake. When the wave forces and seismic forces are in the same direction, the displacement, moment, and shear force of pile bolck will be increased, on the contrary, the displacement, moment, and shear force of pile bolck will be decreased.  相似文献   

2.
为了对门架式抗滑桩的结构特性有进一步的认识和提升,进行了门架式抗滑桩三维地质力学模型试验与门架式抗滑桩结构模型试验。通过在桩身内部贴置应变片以及桩身的关键位置处放置千分表,来测量在推力荷载施加过程中,门架式抗滑桩的桩身应力变化特点及关键位置点的位移变化特征。试验结果表明:门架式抗滑桩桩前、后排桩桩顶位移大于滑动面处位移,后排桩桩身位移大于前排桩桩身位移;前、后排桩桩身内力均呈现明显的“s”型分布,桩顶应力不为零,其数值随着推力荷载的增大的而增大。  相似文献   

3.
五星形桩是一种横截面异形桩,是在圆桩的基础上向内切割5个圆弧,形成截面类似五星形的异形桩。按其截面性质分为周长最大化五星形桩F1、周长面积比最大化五星形桩F2两种桩型,为掌握五星形桩的水平承载性能进行了与圆桩的对比模型试验研究。试验用土为干砂,砂雨法土样制作,模型桩为预制钢筋混凝土桩,相似比为1∶8。模型试验桩包括:五星形桩F1、五星形桩F2、与五星形桩F2截面周长相同的圆桩C1、与五星形桩F2截面面积相同的圆桩C2。由于五星形桩水平承载性能具有方向性,试验采用理论计算中水平承载力最大的方向施加水平荷载,试验结果表明:F1C1F2的水平极限承载力相当,但F2的截面面积最小,仅为C1的0.44倍;与C2相比,F2的水平极限承载力是其1.63倍,可见,合理截面形式的五星形桩可以提供更大的水平承载能力;五星形桩与圆桩弯矩分布规律基本一致,都在4倍直径左右(五星形桩为外接圆直径)达到最大,但五星形桩截面面积小,抗弯刚度不足,容易折断,总体水平承载性能不及截面周长相同的圆形桩,但优于截面面积相同的圆形桩。  相似文献   

4.
Low strain dynamic testing on actual pile was conducted to investigate if the wave velocity is varied in the installed pre-cast pile.It was found that the wave velocity of the pile is raised along with time.The analysis has been carried out through with one dimension and three dimension stress wave propagation theories.Among various factors influencing the rise of wave velocity,the factor of the side soil contribution is the chief one.The soil around the pile works jointly with the pile,as if to enlarge the section size of the pile.Both the increase of wave velocity and the bearing capacity of pile are consistent.So the time effect of wave velocity can be used to study the time effect of bearing capacity of the pile and to determine the bearing capacity of piles.  相似文献   

5.
Anti sliding piles are an important engineering structure used extensively in landslide prevention. Their durability influences their work lives. In a laboratory model experiment of a cantilevered anti sliding pile under acid stress coupling, the pile body displacement variation is monitored continuously, and both concrete strength and neutralization depth are tested. The results indicate that the concrete strength decreases gradually under acid stress coupling, while the displacement increases continuously. The neutralization depth of the concrete in the anti sliding pile is linear to the square of duration in acid stress coupling.  相似文献   

6.
Based on the simplified elastoplastic constitutive model of soil, the calculation method for the laterally loaded single pile with large deflection was submitted. The coefficient of subgrade reaction was presumed to increase linearly with depth, which simulates the soil resistance close to ground well. The relevant program was then developed using FORTRAN language. The examples show that (1)the displacement and bending moment increase nonlinearly when the lateral load and the moment load increase. (2)The pile displacement decreases with depth. (3)The pile displacement at the point which is over ten times pile diameter from ground is so small that can be neglected. (4)The pile head condition is the key factor, which influences the distributions of pile responses along depth. (5)By improving the mechanical properties of soil around pile, the maximum lateral displacement and bending moment can be decreased efficiently. The calculation results are in good agreement with the field test results and are better than those obtained using the pre existing solutions, which shows the presented solutions are reliable.  相似文献   

7.
结合检测工况对测试数据的影响,对自平衡“精确转换法”进行改进,提出摩擦桩位移协调转换法和嵌岩桩的荷载协调转换法,实际应用结果说明两种转换方法合理。所得测试结果表明湄公河大桥桩基承载力符合设计要求;分析湄公河大桥试桩的侧摩阻力和端承力分布,嵌岩桩和摩擦桩纵向承载均以侧阻力为主。  相似文献   

8.
工程中基桩大多处于复杂的成层地基中,鲜有位于单一土层中,从宏观角度出发,引入初始地基比例系数,提出了基于m法的双曲线型p-y曲线。某现场7根试桩地基土非线性显著,实测和理论计算的地面处桩身水平位移水平荷载关系曲线均呈良好的二次抛物线关系,且理论与实测曲线吻合良好,验证了本文p-y曲线模型。地基土非线性对桩身最大弯矩、桩侧地基土压力影响显著,不容忽略。工程实际中采用m法计算基桩最大弯矩值偏小,建议乘以1.05~1.25的系数,以计入地基土非线性影响。  相似文献   

9.
In this paper, a large number of tests are made for studying the model test technique of socketed piles in soft rock, consisting of methods measuring peoperties of model materials, preparing model piles and pressure cells, forming different roughness of model pile, measuring initial lateral pressure,and testing of different types of model piles. According to the regularity and the comparison of the test results, the test method is feasible, from which the behavior of socketed piles in soft rock can be further understood.  相似文献   

10.
Based on the technique proposed by Muki & Sternberg, a rigorous analytical method for calculating the interaction factor between two piles with different lengths, diameters and properties is presented. The pile group in layered soils is calculated by using the principle of superposition. The validity of the presented method has been verified through comparing with those from other existing solutions. A parametric analysis is made to study the pile group settlement and the loads shared by the individual pile. The proposed interaction factors of pile-pile can consider the strengthening effect of intervening piles. The proposed method can be used to analyze the large pile group.  相似文献   

11.
考虑桩基的剪切变形影响,利用单广义位移深梁理论,建立了桩基m法的计算方法,导出了水平位移、转角、弯矩和剪力的初参数表达式和无量纲参数函数的统一表达式,根据桩底边界条件建立了初参数解的计算公式;给出了无量纲参数函数随换算深度和弯剪刚度比的变化图形。研究表明,换算深度小于3.0时,弯剪刚度比对无量纲参数函数影响较小,换算深度大于4.0时,弯剪刚度比对无量纲参数函数影响的趋势非常明显,桩基剪切变形的影响程度与桩的边界条件有关。算例结果表明,桩身的剪切变形有增大桩顶水平位移、提高弯矩零点位置、改变弯矩分布特征、扩大桩侧土压力大小等影响。  相似文献   

12.
This paper describs a case study of foundation engineering for forming sand and oval stone piles through the action of quaking, water striking,pouring and packing by a pile driver. The piles and packking mud are combined, forming a compound foundation to support the upper loads. This paper introduces the design and construction of this engineering. In order to check this method for consolidating the soft foundation,the loading test and the settlement observation in site are made. After the construction work,there has been an organized technical identifying meeting. The result out of the identification is positive.  相似文献   

13.
Based on the small deformation assumption, the equations of the laterally loaded piles influenced by the axial load were established. The effect of axial load on the lateral response of piles was studied with parameter analysis. The analysis shows that internal force and deformation of laterally loaded pile under axial loading is actually closely linked with the values of axial and lateral loads. In general, the high level axial load should be focused on. It is more significant that the effect of axial load on the internal force and lateral deflection of the upper part of flexible piles, while there is little effect on deep of long-thin pile foundation. The effect of axial load on the lateral response of pile is the largest as coefficient form of subgrade reaction increases linearly, while the effect is minimal as coefficient form of subgrade reaction is a constant. Except in case of buckling, the changes of axial load along the pile direction have little influence on the magnitudes of deflection and moment. The assumption that the axial load is constant with depth can meet the requirements of engineering.  相似文献   

14.
Compared with column bored pile,the bored pile with branches and plates is a new type of piles with higher bearing capacity and lower settlement.Field comparative tests related to ultimate bearing capacity of both the bored piles with branches and plates and column bored piles at the same site in Huzhou city of province Zhejiang in China were studied through self-balanced method under static pressure.The results testify that,compared with column bored pile under the same geological conditions,the bored pile with branches and plates can obtain better economic benefit such as: increasing ultimate compressive bearing capacity and ultimate extraction bearing capacity used per cubic meter concrete over 75.3%and 118.9%respectively,while dropping consumption of reinforced concrete upwards of 41.9%and 44.1% respectively,reducing settlement and pile length under the same loading.The tests will present an objective reference to the new type of piles in both theoretic study and application to analogous engineering.  相似文献   

15.
基坑复合土钉墙转角处有明显的空间效应,受力变形较小,对支护结构有利,但不清楚转角定量的有利影响范围,目前设计中仍按照与基坑中部一样保守设计,为在此范围内降低土钉用量,避免保守设计,对水泥土搅拌桩复合土钉支护结构建立了全尺寸整体三维有限元模型,这种模型包含基坑的转角,能考虑基坑的空间效应,通过建立接触面单元,能考虑土体和搅拌桩、土体和土钉的相互作用,量化分析了基坑转角对支护结构受力和变形的有利影响范围,计算结果表明,基坑转角对开挖面水平位移、地表沉降、坑底隆起、土钉轴力的有利影响范围分别约为1.3、1、1、1.2倍的开挖深度。经与实际工程现场实测值对比,验证了该模型分析结果的可靠性,同时分析结果优于平面二维和局部三维有限元模型,结论为复合土钉支护结构的优化设计和安全施工提供了理论依据和研究方法。  相似文献   

16.
To investigate the effect of consolidation soft soil, three groups of model tests were designed. The first group was PVC pile-net composite foundation, the second was pile-cap-net composite foundation, and the third was PVC and sand pile composite foundation. Butter was coated and plastic membrane was covered on inner side wall of model cast to reduce border effect. The gauges were glued with epoxy on the surface of the model with PVC piles and geogrids to measure the stress of PVC piles and geogrids. Soil pressure cells were installed in the middle of piles and the top of the sand piles, and dial indicators were installed in the middle of road and road shoulder to measure deformations. It is that shown: 1) as for the distribution of the road settlement and the differential settlement, the settlements of the third group are the largest and those of the second group are the least; 2) in terms of the stress ratio of PVC pile and soil, the values of the first group and the third group are similar, while the value of the second group is much larger; 3) the change of geogrid strain is disorderly. There are periodic peaks in the strain of geogrid of pile top and periodic troughs in the soil between the piles. The geogrid strain of the second group measured in the corresponding spot is much larger than those of the other two groups. The results of three groups of tests illustrate that if the condition is permitted, it would be the best to adopt the scheme of pile-cap-net composite foundation, which has better reinforcement effect for soft soil.  相似文献   

17.
Based on the principle of the foundation coefficient " m-k " method,the ginite difference method is presented to analyze the internal forces of a whole prestressed anchor stabilizing pile. The calculation and figure treatments are programmed. An example shows that the high precise solution can be obtained if the segments are small enough, though more computing time may be consumed. Obviously,the calculation precision is better than that of traditional method. The results of figure treatments by the program can optimize the construction design of stabilizing piles. Three kinds of support condition are taken into account.The foundation coefficient "m-k " method applies to the situation that above the slide-surface is soil layer or efflorescence layer,while below the slide-surface is terrane.  相似文献   

18.
In order to get the wave loads on pile groups with slab merged in water, an engineering approach was proposed. Three coefficients in terms of slab effect were discussed and a time -domain analysis of wave forces acting on piles was conducted. Wave diffraction from a slab was obtained by the potential theory and eigenfunction expansion method, while wave loads on piles were evaluated by Morison formula. The wave force on pile obtained by the proposed method and the numerical simulation are in good agreement, which shows a good reliability of the proposed method. The result shows that, owing to the size of slabs, there exist some differences in the changing rule of slab effect varying with the submerged depth. The resultant force decreases with the rise of incident wave number, and the changing trend of its acting point appears an inflection point at some wave number. The minimum force acting on piles lies in the meeting-wave side of the slab, while the maximum one arises at the back side or in the scope of 30 degrees between the axis of slab, which is perpendicular to the incident wave, and the back side. The presence of slab causes the deflexion and phase difference of inline force. Meanwhile, the grouping piles coefficient can be taken as 0.7.  相似文献   

19.
Aimed at the problem of the in partial section of the Nanjing Metro Line 3, the three-dimensional pattern of tunnel, segment and pile foundation was established after appropriate simplification. The simulation results showed that, the Overpass pile foundation of Shield Tunneling to Adjacent Metro Shield Tunnel will have effect on the force and deformation of the earth's surface and pile foundation, the maximum deformation value of the earth's surface is larger than that of the pile foundation top, stress concentration appeared in right working slope lower side segment of tunnel. Through the comparison with field monitoring results, the field dates is consistent with the Numerical Simulation Results, the execution parameters are advised to be well controlled in the further construction, in the same time strengthing the track monitoring, tracking grouting reinforcement should be carried when necessary. The research results could provide reference for the smooth going of the project.  相似文献   

20.
Influence of Pile Driving on Soil Resistance in Clay   总被引:1,自引:0,他引:1  
With the increase of platform size, pipe piles with super large diameter and deep penetration are increasingly used in practice. In order to make accurate prediction of pile drivability, it is essential to evaluate the change of the soil properties under pile driving exactly, and it is the premise to predict the pile bearing capacity after pile driving. In order to learn more about the change of clay properties during pile driving, analysis on the pile driving record of 36 piles in Bohai area is conducted. According to the analysis, the soil resistance in the clay layers decreases as the depth increases, and it is very different from that in the sand layer. The FEM method is used to discuss the mechanism of this decrease. The back analysis is carried out to get more information. The results show that the clay properties are affected by the dynamic effect. The undrained shear strength of clay approximately decreases with the increase of thickness of the layer linearly. At the same time, a prediction is conducted based on results, and the result is closer to the pile driving record than that calculated by method normally used today.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号