首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
OBJECTIVE: To evaluate the cardiopulmonary effects of anesthetic induction with thiopental, propofol, or ketamine hydrochloride and diazepam in dogs sedated with medetomidine and hydromorphone. ANIMALS: 6 healthy adult dogs. PROCEDURES: Dogs received 3 induction regimens in a randomized crossover study. Twenty minutes after sedation with medetomidine (10 microg/kg, IV) and hydromorphone (0.05 mg/kg, IV), anesthesia was induced with ketamine-diazepam, propofol, or thiopental and then maintained with isoflurane in oxygen. Measurements were obtained prior to sedation (baseline), 10 minutes after administration of preanesthetic medications, after induction before receiving oxygen, and after the start of isoflurane-oxygen administration. RESULTS: Doses required for induction were 1.25 mg of ketamine/kg with 0.0625 mg of diazepam/kg, 1 mg of propofol/kg, and 2.5 mg of thiopental/kg. After administration of preanesthetic medications, heart rate (HR), cardiac index, and PaO(2) values were significantly lower and mean arterial blood pressure, central venous pressure, and PaCO(2) values were significantly higher than baseline values for all regimens. After induction of anesthesia, compared with postsedation values, HR was greater for ketamine-diazepam and thiopental regimens, whereas PaCO(2) tension was greater and stroke index values were lower for all regimens. After induction, PaO(2) values were significantly lower and HR and cardiac index values significantly higher for the ketamine-diazepam regimen, compared with values for the propofol and thiopental regimens. CONCLUSIONS AND CLINICAL RELEVANCE: Medetomidine and hydromorphone caused dramatic hemodynamic alterations, and at the doses used, the 3 induction regimens did not induce important additional cardiovascular alterations. However, administration of supplemental oxygen is recommended.  相似文献   

2.
The characteristics of recovery from total intravenous anesthesia (TIVA) with propofol and inhalation anesthesia with isoflurane was clinically compared in 149 client-owned dogs that anesthetized for surgical or diagnostic procedures. In all dogs, anesthesia was induced with an intravenous injection of propofol following premedication with acepromazine or diazepam. As a result, 58 dogs anesthetized with propofol-TIVA showed slower but smoother recovery than 91 dogs anesthetized with isoflurane anesthesia. The dogs stood at 34.5 +/- 19.3 and 27.7 +/- 17.2 min after propofol-TIVA and isoflurane anesthesia, respectively. Adverse effects, including hypersalivation, neurologic excitement (paddling, muscle tremor/twitching, opisthotonos) and vomiting/retching, were observed in similar infrequent incidences during the recovery from both anesthetic protocols. Propofol-TIVA is suggested to be an alternative anesthetic protocol for canine practice.  相似文献   

3.
OBJECTIVE: To determine the effects of preoperative administration of ketoprofen on anesthetic requirements and signs of postoperative pain in dogs undergoing elective ovariohysterectomy. DESIGN: Randomized, controlled clinical trial. ANIMALS: 22 clinically normal client-owned dogs. PROCEDURE: 60 minutes before induction of anesthesia, 11 dogs were given ketoprofen (2 mg/kg [0.9 mg/lb], i.m.), and the other 11 were given saline (0.9% NaCl) solution. Dogs were premedicated with glycopyrrolate, acepromazine, and butorphanol and anesthetized with thiopental; anesthesia was maintained with isoflurane. Ovariohysterectomy was performed by an experienced surgeon, and butorphanol was given 15 minutes before completion of the procedure. Objective behavioral scores and numerical pain scores at rest and with movement were recorded every 2 hours for 12 hours after surgery and then every 4 hours for an additional 12 hours. RESULTS: Preoperative administration of ketoprofen did not reduce the dose of thiopental required to induce anesthesia or the end-tidal concentration of isoflurane required to maintain anesthesia. Activity levels and median objective behavioral scores were significantly higher 4 and 6 hours after surgery in dogs given ketoprofen than in dogs given saline solution. However, mean numerical pain scores in dogs given ketoprofen were not significantly different from scores for dogs given saline solution at any time. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that preoperative administration of ketoprofen does not reduce anesthetic requirements in dogs undergoing elective ovariohysterectomy but may reduce signs of pain after surgery. Results also suggest that the objective behavioral score may be a more sensitive measure of acute postoperative pain than traditional numerical pain scores.  相似文献   

4.
Objective: To define the peri‐anesthetic risk factors that are associated with the development of postoperative pulmonary complications (PPCs) in dogs following laparotomy. Study design: Retrospective study. Animals: One hundred and sixty‐two dogs that underwent laparotomy at a veterinary teaching hospital. Methods: Cases were evaluated for factors including signalment, American Society of Anesthesiologists (ASA) physical status (PS) score, duration of fast, duration of anesthesia, anesthetic and analgesic protocols, fluid and blood product therapy, animal positioning, and postoperative temperature. Results: Statistically significant differences between dogs that developed PPCs and those that did not (nPPCs) were identified in the following categories: ASA PS score≥III (P=0.041), emergent surgery (P=0.038), longer duration of anesthesia (P=0.0462), and use of butorphanol or oxymorphone instead of hydromorphone for postoperative medication (P=0.04 and 0.015, respectively). Dogs that received transfusions of stored blood products (fresh frozen plasma or packed red blood cells) during their hospital stay were also more likely to develop PPCs (P=0.035 and 0.005, respectively). Dogs that developed PPCs were also more likely to have received antagonists for potent opiates or benzodiazepines postoperatively and to have recovered in the intensive care unit (ICU) (P=0.03 and 0.009, respectively). Conclusions: Dogs with ASA PS scores≥III, or those requiring longer or emergency anesthesia are at a higher risk of developing PPCs. Additionally, dogs receiving stored blood products in the perioperative period may be at risk for pulmonary complications. Dogs fitting criteria for the above risk factors should be monitored closely postoperatively for development of pulmonary complications.  相似文献   

5.
OBJECTIVE: To evaluate dose-sparing effects of medetomidine-midazolam (MM), acepromazine-butorphanol (AB), and midazolam-butorphanol (MB) on the induction dose of thiopental and propofol and to examine cardiopulmonary changes in dogs. ANIMALS: 23 healthy Beagles. PROCEDURE: Dogs were administered MM, AB, MB, or physiologic saline (0.9% NaCI) solution (PS) IM, and anesthesia was induced with thiopental or propofol. Cardiopulmonary measurements were obtained before and after administration of medication and 0, 5, 10, and 15 minutes after endotracheal intubation. RESULTS: Induction doses were reduced significantly by preanesthetic administration of MM, AB, and MB (thiopental, 20, 45, and 46% after administration of PS; propofol, 42, 58, and 74% after administration of PS, respectively). Recovery time in dogs administered MM-thiopental or MM-propofol and AB-propofol were significantly prolonged, compared with recovery time in dogs administered PS-thiopental or PS-propofol. Relatively large cardiovascular changes were induced by administration of MM, which were sustained even after the induction of anesthesia. Administration of AB and MB induced cardiovascular changes during and immediately after endotracheal intubation that were significantly decreased by induction with thiopental or propofol. However, mild hypotension developed with AB-propofol. Apnea was observed in dogs administered MM during induction of anesthesia, but most respiratory variables did not change significantly. CONCLUSIONS AND CLINICAL RELEVANCE: Preanesthetic medication with MM greatly reduced the anesthesia induction dose of thiopental and propofol but caused noticeable cardiopulmonary changes. Preanesthetic medication with AB and MB moderately reduced the induction dose of thiopental and propofol and amelio rated cardiovascular changes induced by these anesthetics, although AB caused mild hypotension.  相似文献   

6.
The purpose of this study was to compare the echocardiographic Doppler blood pressure and heart rate effects of 1:1 thiopental/propofol with thiopental and propofol, when used as anesthesia‐induction agents. Seven healthy dogs (six Beagles and one Pembroke Welsh Corgi), ranging in age from 1 to 9 years and weighing 14.2 ± 2.4 kg (mean ± SD), were used during the study. In a cross‐over study design with a minimum drug interval of 3 days, each dog received propofol, thiopental, or a mixture of propofol–thiopental IV until each dog received all the three anesthetic agents. An initial dose (propofol 4.9 ± 0.8 mg kg?1; thiopental 12.9 ± 2.4 mg kg?1; propofol–thiopental 2.3 ± 0.3 mg kg?1 (P)?5.7 ± 0.8 mg kg?1 (T)) of each anesthetic agent was titrated IV until intubation was accomplished. Echocardiographic Doppler blood pressure and heart rate variables were recorded prior to anesthesia and at 1, 5, and 10 minutes after induction of anesthesia. anova and the Bonferroni's t‐test were used to evaluate the groups for differences. Alpha was <0.05. There was no significant effect of treatment on systolic or diastolic ventricular wall thickness, septal thickness, left atrial diameter, or systolic left ventricular diameter. There was a tendency for diastolic left ventricular diameter to decrease over time. There was a tendency for heart rate to increase with a significant difference at the 10‐minute time period between propofol (109 ± 26 beats minute?1) and thiopental (129 ± 23 beats minute?1). At the 10‐minute recording period, heart rate following the propofol/thiopental mixture (110 ± 34 beats minute?1) was closer to that following propofol than to that following thiopental. With all induction agents, indirect blood pressure tended to decrease over time (p = 0.005); however, there was no difference between the groups. The changes observed were not considered to be of clinical significance. The propofol/thiopental mixture produces similar changes in echocardiographic variables when compared to propofol or thiopental, and could be substituted for propofol for induction of anesthesia in dogs.  相似文献   

7.
OBJECTIVE: To compare anesthetic and cardiorespiratory effects of a 1:1 (vol:vol) mixture of propofol and thiopental sodium with either drug used alone in dogs. DESIGN: Randomized crossover study. ANIMALS: 10 healthy Walker Hounds. PROCEDURE: Dogs received propofol (6 mg/kg [2.7 mg/lb] of body weight), thiopental (15 mg/kg [6.8 mg/lb]), or a mixture of propofol (6 mg/kg) and thiopental (15 mg/kg) at 1-week intervals. Drugs were slowly administered i.v. over 90 seconds or until dogs lost consciousness. Increments of 10% of the initial dose were administered until intubation was possible. Amount of drug required for intubation, quality of induction and recovery, times from induction to intubation and to walking with minimal ataxia, and duration of intubation and lateral recumbency were recorded. Heart and respiratory rates, mean, systolic, and diastolic blood pressure, hemoglobin saturation of oxygen (SpO2), and end-tidal CO2 concentration (ETCO2) were determined before and after intubation. RESULTS: Amounts of propofol and thiopental required to permit intubation were less, but not significantly so, when administered in combination than when administered alone. Duration of lateral recumbency and time from induction to walking were greater and recovery quality was worse in the thiopental group, compared with the other groups. Dogs in all groups remained normotensive. Respiratory rate, heart rate, ETCO2, and SpO2 did not differ among groups. CONCLUSIONS AND CLINICAL RELEVANCE: A 1:1 mixture of propofol and thiopental induced anesthesia of similar quality to propofol or thiopental alone. Recovery quality and recovery times were similar to those of propofol and superior to those of thiopental.  相似文献   

8.
OBJECTIVE: To determine the effect of morphine administered prior to anesthesia on the incidence of gastroesophageal reflux (GER) in dogs during the subsequent anesthetic episode. ANIMALS: 90 dogs (30 dogs/group). PROCEDURE: The randomized prospective clinical study included healthy dogs with no history of vomiting. Dogs were scheduled to undergo elective orthopedic surgery. Food was withheld for (mean+/-SD) 17.8+/-4.1 hours prior to induction of anesthesia. The anesthetic protocol included acepromazine maleate, thiopental, and isoflurane. Dogs were randomly selected to receive morphine at various dosages (0, 0.22, or 1.10 mg/kg, IM) concurrent with acepromazine administration prior to induction of anesthesia. A sensor-tipped catheter was used to measure esophageal pH, and GER was defined as a decrease in pH to < 4 or an increase to > 7.5. RESULTS: 40 dogs had acidic reflux, and 1 had biliary reflux. Proportions of dogs with GER were 8 of 30 (27%), 15 of 30 (50%), and 18 of 30 (60%) for morphine dosages of 0, 0.22, and 1.10 mg/kg, respectively. Mean duration of GER was 91.4+/-56.8 minutes. There was no significant association between GER and age, weight, vomiting after preanesthetic medication, administration of antimicrobials, or start of surgery. CONCLUSIONS AND CLINICAL RELEVANCE: Most healthy dogs vomit after a large dose of morphine, but vomiting does not increase the likelihood of GER during the subsequent anesthetic episode. Administration of morphine prior to anesthesia substantially increases the incidence of GER during the subsequent anesthetic episode.  相似文献   

9.
The present study aimed to evaluate the effect of propofol and thiopental on the plasma oxidant-antioxidant profile in dogs undergoing surgery at doses used to induce anesthesia. The plasma total oxidant status (TOS) and oxidative stress index (OSI) levels increased significantly with time in both groups, whereas the plasma total antioxidant status (TAS) levels decreased with time in both groups. The OSI was significantly higher at the end of surgery than before induction of anesthesia in both groups. The TOS and OSI change ratio of propofol group were significantly lower than that of thiopental group. In conclusion, our findings show that propofol has antioxidant effects in dogs. Further studies need to be conducted to demonstrate the exact mechanism of oxidative stress due to anesthesia and surgery in dogs.  相似文献   

10.
OBJECTIVE: To determine the effect of meperidine administered prior to anesthesia on the incidence of vomiting before, and gastroesophageal reflux (GER) and regurgitation during, the subsequent period of anesthesia in dogs. STUDY DESIGN: Randomized, controlled trial. ANIMALS: A total of 60 healthy dogs, 4.3 +/- 2.3 years old, and weighing 35.5 +/- 13.1 kg. METHODS: Dogs were admitted to the study if they were healthy, had no history of vomiting, and were scheduled to undergo elective orthopedic surgery. The anesthetic protocol used was standardized to include thiopental and isoflurane in oxygen. Dogs were randomly selected to receive one of the following pre-medications: morphine (0.66 mg kg(-1) IM) with acepromazine (0.044 mg kg(-1) IM), meperidine (8.8 mg kg(-1) IM) with acepromazine (0.044 mg kg(-1) IM) or meperidine alone (8.8 mg kg(-1) IM). A sensor-tipped catheter was placed to measure esophageal pH during anesthesia. Gastro-esophageal reflux was judged to have occurred if there was a decrease in esophageal pH below four or an increase above 7.5. RESULTS: No dogs vomited after the administration of meperidine, but 50% of dogs vomited after the administration of morphine. When compared with morphine, treatment with meperidine alone or combined with acepromazine before anesthesia was associated with a 55% and 27% reduction in absolute risk of developing GER, respectively. Dogs receiving meperidine alone were significantly less sedate than other dogs in the study, and required more thiopental to induce anesthesia. Arterial blood pressure and heart rate were not significantly different between groups at the start of the measurement period. Cutaneous erythema and swelling were evident in four dogs receiving meperidine. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of meperidine to healthy dogs prior to anesthesia was not associated with vomiting and tended to reduce the occurrence of GER, but produced less sedation when compared with morphine. Meperidine is not a useful addition to the anesthetic protocol if prevention of GER is desired.  相似文献   

11.
OBJECTIVE: To evaluate the effects of various drugs and drug combinations conventionally used for anesthesia on arytenoid cartilage motion during laryngoscopy in normal dogs. STUDY DESIGN: Experimental study. ANIMALS: Six large breed healthy dogs with no previous history of respiratory dysfunction. METHODS: Each dog was randomly assigned to a different injectable anesthetic protocol once weekly for 6 weeks, then in the 7th week all dogs were anesthetized with isoflurane. Videolaryngoscopy was performed and recorded starting immediately after induction until dogs could no longer be safely restrained for endoscopy. Video was digitized and 3 still images of maximal inspiration and expiration from the first 15 seconds (induction) and the last 15 seconds (recovery) were captured and imported into an image analysis software program. The height and area of the laryngeal ostium were measured in pixels. Normalization of the glottal gap area was performed using the formula (normalized glottal gap area (NGGA)=area in pixels/height(2)). ANOVA was performed on the NGGA of images collected at inspiration and expiration during induction and recovery. Fischer's exact test was performed when significance (P<.05) was found. RESULTS: Within each protocol, laryngeal motion (defined as change in NGGA) at induction was not significantly different from laryngeal motion measured at recovery. Additionally, no significant differences were found in arytenoid motion immediately after induction when anesthetic protocols were compared. Arytenoid motion before recovery was significantly greater with thiopental when compared with propofol (P=.046), ketamine+diazepam (P=.0098), acepromazine+thiopental (P=.0021), and acepromazine+propofol (P=.0065). No significant difference in arytenoid motion was seen immediately after induction or before recovery when acepromazine+butorphanol+ isoflurane and thiopental were compared. CONCLUSION: We concluded that intravenous thiopental given to effect is the best choice for assessing laryngeal function in dogs. Dogs premedicated with acepromazine with or without opioids that require further anesthetic restraint for laryngoscopy should be anesthetized with isoflurane administered by mask. CLINICAL RELEVANCE: Misdiagnosis of laryngeal paralysis during laryngoscopy can be avoided by selecting the anesthetic regimens with the least effect on arytenoid motion.  相似文献   

12.
The purpose of this report was to evaluate the clinical safety and efficacy of sevoflurane as an inhalant anesthetic in dogs. Subjective and objective data from 196 clinical cases utilizing sevoflurane as the maintenance anesthetic was collected at three sites. After preanesthetic evaluation, the attending anesthesiologist assigned the dogs to one of the following six anesthetic protocols: protocol 1, oxymorphone premedication and thiopental induction; protocol 2, oxymorphone/acetylpromazine premedication and thiopental induction; protocol 3, xylazine/butorphanol premedication and thiopental induction; protocol 4, opioid premedication and propofol induction; protocol 5, optional premedication and mask induction with sevoflurane in oxygen; and protocol 6, optional premedication and optional induction. The average quality of induction, maintenance, and recovery was good to excellent in all protocols. The three most common side effects during maintenance and recovery were hypotension, tachypnea, and apnea. Sevoflurane produces anesthesia in dogs comparable to the other inhalation anesthetics currently used (i.e., halothane and isoflurane) for diagnostic or therapeutic procedures.  相似文献   

13.
OBJECTIVE: To evaluate concomitant propofol and fentanyl infusions as an anesthetic regime, in Greyhounds. ANIMALS: Eight clinically normal Greyhounds (four male, four female) weighing 25.58 +/- 3.38 kg. DESIGN: Prospective experimental study. METHODS: Dogs were premedicated with acepromazine (0.05 mg/kg) by intramuscular (i.m.) injection. Forty five minutes later anesthesia was induced with a bolus of propofol (4 mg/kg) by intravenous (i.v.) injection and a propofol infusion was begun (time = 0). Five minutes after induction of anesthesia, fentanyl (2 microg/kg) and atropine (40 microg/kg) were administered i.v. and a fentanyl infusion begun. Propofol infusion (0.2 to 0.4 mg/kg/min) lasted for 90 minutes and fentanyl infusion (0.1 to 0.5 microg/kg/min) for 70 minutes. Heart rate, blood pressure, respiratory rate, end-tidal carbon dioxide, body temperature, and depth of anesthesia were recorded. The quality of anesthesia, times to return of spontaneous ventilation, extubation, head lift, and standing were also recorded. Blood samples were collected for propofol and fentanyl analysis at varying times before, during and after anesthesia. RESULTS: Mean heart rate of all dogs varied from 52 to 140 beats/min during the infusion. During the same time period, mean blood pressure ranged from 69 to 100 mm Hg. On clinical assessment, all dogs appeared to be in light surgical anesthesia. Mean times (+/- SEM), after termination of the propofol infusion, to return of spontaneous ventilation, extubation, head lift and standing for all dogs were 26 +/- 7, 30 +/- 7, 59 +/- 12, and 105 +/- 13 minutes, respectively. Five out of eight dogs either whined or paddled their forelimbs in recovery. Whole blood concentration of propofol for all eight dogs ranged from 1.21 to 6.77 microg/mL during the infusion period. Mean residence time (MRTinf) for propofol was 104.7 +/- 6.0 minutes, mean body clearance (Clb) was 53.35 +/- 0.005 mL/kg/min, and volume of distribution at steady state (Vdss) was 3.27 +/- 0.49 L/kg. Plasma concentration of fentanyl for seven dogs during the infusion varied from 1.22 to 4.54 ng/mL. Spontaneous ventilation returned when plasma fentanyl levels were >0.77 and <1.17 ng/mL. MRTinf for fentanyl was 111.3 +/- 5.7 minutes. Mean body clearance was 29.1 +/- 2.2 mL/kg/min and Vdss was 2.21 +/- 0.19 L/kg. CONCLUSION AND CLINICAL RELEVANCE: In Greyhounds which were not undergoing any surgical stimulation, total intravenous anesthesia maintained with propofol and fentanyl infusions induced satisfactory anesthesia, provided atropine was given to counteract bradycardia. Despite some unsatisfactory recoveries the technique is worth investigating further for clinical cases, in this breed and in mixed breed dogs.  相似文献   

14.
BACKGROUND: Serum total magnesium (tMg) consists of 3 fractions: ionized magnesium (iMg), protein-bound magnesium (pbMg), and complexed magnesium (cMg). Serum iMg may be measured by an ion-selective electrode, but determination of pbMg and cMg has not been attempted in dogs. OBJECTIVES: The objectives of this study were to assess the validity of a micropartition system to fractionate serum tMg and to establish reference intervals for pbMg, cMg, and iMg in clinically normal dogs using this method. METHODS: Serum samples from 10 clinically healthy dogs were fractionated using a micropartition system (Centrifree YM-30, Amicon Corp, Lexington, MA, USA). Serum tMg and iMg were measured in whole serum, and tMg was also measured in the ultrafiltrate. Concentration of cMg was obtained by the subtraction of iMg from tMg concentrations of the ultrafiltrate. Protein-bound Mg was calculated by subtracting the tMg concentration of the ultrafiltrate from the tMg concentration of whole serum. RESULTS: Results for pbMg and cMg using the micropartition system showed good reproducibility. Determination of tMg and iMg had acceptable inter- and intra-assay precision. Concentrations of iMg, cMg, and pbMg were 0.50 +/- 0.05 mmol/L, 0.05 +/- 0.04 mmol/L, and 0.24 +/- 0.04 mmol/L, representing 63%, 6%, and 31% of the tMg concentration, respectively. CONCLUSIONS: The micropartition system was a reproducible means to accurately assess cMg and pbMg concentrations in dogs.  相似文献   

15.
OBJECTIVE: To assess whether administration of hydromorphone and, or ketamine are associated with post-anesthetic hyperthermia in cats undergoing routine surgery. STUDY DESIGN: Prospective clinical study. ANIMALS: Forty healthy, adult cats undergoing ovariohysterectomy (OVH), castration, or declaw surgery. MATERIALS AND METHODS: Each cat was assigned randomly to one of four groups (n = 10). For pre-anesthetic medication, all cats received subcutaneous (SC) glycopyrrolate (0.01 mg kg(-1)) and acepromazine (0.02 mg kg(-1)) and either hydromorphone (0.1 mg kg(-1) SC) or medetomidine (7.5 microg kg(-1) SC). Anesthesia was induced with either diazepam (0.1 mg kg(-1)) and ketamine (5 mg kg(-1)) or propofol (6 mg kg(-1) injected to effect). Group 1 (HDK) received hydromorphone and diazepam-ketamine. Group 2 (HP) received hydromorphone and propofol. Group 3 (MDK) received medetomidine and diazepam-ketamine. Group 4 (MP) received medetomidine and propofol. Rectal temperature was measured before drugs were given, at tracheal extubation and at hourly intervals for 5 hours thereafter. RESULTS: During the 5 hours after anesthesia and surgery, at least one cat in every group had a rectal temperature >39.2 degrees C (102.5 degrees F). The percentage of observations for which a cat's temperature exceeded its pre-anesthetic temperature in groups HDK, HP, MDK, and MP were 86%, 80%, 25%, and 34%, respectively. Maximum temperatures in groups HDK, HP, MDK, and MP were 41.6 degrees C (107.0 degrees F), 40.3 degrees C (104.2 degrees F), 39.2 degrees C (102.6 degrees F), and 40.1 degrees C (104.1 degrees F), respectively. By 5 hours after tracheal extubation there were no differences in temperature between the treatment groups. CONCLUSION: For up to 5 hours following anesthesia and surgery, cats might have body temperatures that exceed their pre-anesthesia body temperatures. The use of hydromorphone is associated with post-anesthetic hyperthermia. However, hyperthermia may occur when other drugs are used. CLINICAL RELEVANCE: Cats given hydromorphone should be closely monitored for hyperthermia following anesthesia and surgery.  相似文献   

16.
The effects of acepromazine-butorphanol (AB), midazolam-butorphanol (MB) and medetomidine (Med) on the induction dose of propofol and their compatibility with propofol were evaluated in client-owned dogs. All premedications induced good to excellent sedation and the induction dose of propofol was considerably reduced. Of the tested premedicants, Med induced the deepest sedation and the most potent dose-sparing effect. Induction of anesthesia was excellent to good in all dogs except for one dog premedicated with MB. Most dogs premedicated with AB or MB showed temporary apnea. Although other adverse effects such as bradycardia or hypotension may also occur, premedication with MB, AB or Med is a valuable technique for the induction of anesthesia with propofol in dogs in a clinical setting.  相似文献   

17.
Medications given preoperatively have the potential to affect the induction dose of injectable anesthetics, which could result in an anesthetic overdose. Tepoxalin is an NSAID approved for the treatment of arthritis in dogs in the United States and hence could be administered in patients requiring anesthesia. In this study, administration of a single dose or a 10-day course of tepoxalin did not affect the induction dose (dose that allowed intubation) of propofol, thiopental, or ketamine-diazepam and also did not affect the time required for dogs to recover from anesthesia.  相似文献   

18.
Propofol was used as an induction agent of general anesthesia in 77 dogs and 64 cats, all client owned, for a variety of surgeries/treatments or diagnostic procedures. The mean intravenous doses of propofol required to achieve endotracheal intubation in dogs and cats were 6.5 +/- 1.4 mg/kg and 10.1 +/- 2.8 mg /kg, respectively. Most of the animals could be induced to anesthesia smoothly by the administration of propofol with a high incidence of apnea. Propofol is a clinically valuable anesthetic induction agent in both dogs and cats, however, care must be taken for apnea.  相似文献   

19.
OBJECTIVE: To evaluate bispectral index (BIS) values in pigs during anesthesia maintained with sevoflurane-fentanyl or propofol-fentanyl as a predictor of changes in hemodynamic parameters and duration of recovery from anesthesia. ANIMALS: 12 pigs. PROCEDURE: Pigs were randomly allocated to undergo 1 of 2 anesthetic regimens. Anesthesia was induced with propofol (2 mg/kg, i.v.); 6 pigs were administered sevoflurane via inhalation (1 minimum alveolar concentration [MAC] at a fresh gas flow rate of 3 L/min; group I), and 6 were administered propofol (11 mg/kg/h, i.v.; group II). All pigs received fentanyl (2.5 mg/kg, i.v., q 30 min). After abdominal surgery, pigs were allowed to recover from anesthesia. Cardiovascular variables and BIS values were recorded at intervals throughout the procedure; duration of recovery from anesthesia was noted. RESULTS: No correlation was established between arterial blood pressure and BIS and between heart rate and BIS. Mean BIS at discontinuation of administration of the anesthetic agent was greater in group-II pigs (65.2 +/- 10.6 minutes) than in group-I pigs (55.8 +/- 2.9 minutes). However, recovery from anesthesia was significantly longer in group II (59.80 +/- 2.52 minutes) than in group I (9.80 +/- 2.35 minutes). CONCLUSIONS AND CLINICAL RELEVANCE: In swine anesthetized with sevoflurane or propofol and undergoing abdominal surgery, the BIS value derived from an electroencephalogram at the end of anesthesia was not useful for predicting the speed of recovery from anesthesia. Moreover, BIS was not useful as a predictor of clinically important changes in arterial blood pressure and heart rate in those anesthetized pigs.  相似文献   

20.
OBJECTIVE: To evaluate effects of medetomidine on anesthetic dose requirements, cardiorespiratory variables, plasma cortisol concentrations, and behavioral pain scores in dogs undergoing ovariohysterectomy. DESIGN: Randomized, prospective study. ANIMALS: 12 healthy Walker-type hound dogs. PROCEDURE: Dogs received medetomidine (40 micrograms/kg [18.2 micrograms/lb] of body weight, i.m.; n = 6) or saline (0.9% NaCl) solution (1 ml, i.m.; 6) prior to anesthesia induction with thiopental; thiopental dose needed for endotracheal intubation was compared between groups. Ovariohysterectomy was performed during halothane anesthesia. Blood samples were obtained at various times before drug administration until 300 minutes after extubation. Various physiologic measurements and end-tidal halothane concentrations were recorded. RESULTS: In medetomidine-treated dogs, heart rate was significantly lower than in controls, and blood pressure did not change significantly from baseline. Plasma cortisol concentrations did not increase significantly until 60 minutes after extubation in medetomidine-treated dogs, whereas values in control dogs were increased from time of surgery until the end of the recording period. Control dogs had higher pain scores than treated dogs from extubation until the end of the recording period. CONCLUSION AND CLINICAL RELEVANCE: Administration of medetomidine reduced dose requirements for thiopental and halothane and provided postoperative analgesia up to 90 minutes after extubation. Dogs undergoing ovariohysterectomy by use of thiopental induction and halothane anesthesia benefit from analgesia induced by medetomidine administered prior to anesthesia induction. Additional analgesia is appropriate 60 minutes after extubation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号