首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence of heterogeneity of parameters and genotype by country interactions was investigated for birth weight (BWT), weaning weight (WWT) and postweaning gain (PWG) between Australian (AUS), Canadian (CAN), New Zealand (NZ) and USA populations of Charolais cattle. An animal model was fit to data sets for each individual country to compare the within-country parameter estimates for homogeneity. The direct heritability estimates of BWT in AUS (0.34) and NZ (0.31) were less than CAN (0.55) and USA (0.47). Maternal BWT heritabilities (0.13–0.18), direct WWT heritabilities (0.22–0.27), and maternal WWT heritabilities (0.12–0.18) were similar across all four countries. Direct PWG heritability for AUS (0.14) was smaller than the same estimate in the other three countries (0.24–0.31). The phenotypic variances for all three traits were similar across AUS, CAN and USA; however, NZ was higher for BWT and WWT and lower for PWG. A multiple trait animal model that considered each trait as a different trait in each country was also fit to the data for pairs of countries. Direct (maternal) estimated genetic correlations for BWT for AUS–CAN, AUS–USA, USA–CAN, NZ–CAN and NZ–USA were 0.88 (0.86), 0.85 (0.82), 0.88 (0.82), 0.85 (0.83), and 0.84 (0.80), respectively. Direct (maternal) estimated genetic correlations for WWT for AUS–CAN, AUS–USA, USA–CAN, NZ–CAN and NZ–USA were 0.96 (0.91), 0.95 (0.90), 0.95 (0.91), 0.95 (0.92), and 0.95 (0.92), respectively. Direct estimated genetic correlations for PWG for AUS–CAN, AUS–USA, USA–CAN, NZ–CAN and NZ–USA were 0.89, 0.91, 0.94, 0.90, and 0.91, respectively. The magnitude of the across-country genetic correlations indicates that genotype by country interactions were biologically unimportant. However, strong evidence exists for heterogeneity of parameters across the countries for some traits and effects. Therefore, combining these countries into one single analysis to produce a common set of genetic values will depend on the development of methods to adjust for heterogeneous parameters for models containing both direct and maternal effects, and for circumstances where constant variance ratios or heritabilities are not present across populations.  相似文献   

2.
Weaning weight records of 44,357 Australian Angus calves produced by 1,020 sires in 90 herds were used to evaluate the importance of sire x herd interactions. Models fitted fixed effects of contemporary group (herd-year-date of weighing subclass), sex, calf age, and dam age and random effects of sire or of sire and sire x herd interaction using REML. Effects of standardizing the data, including sire relationships and including dam maternal breeding values (MBV) as a covariate were also investigated. Sire x herd interactions were found (P less than .05) in all cases and, in the most complete model, accounted for 3.3% of phenotypic variance. Across-herd heritabilities ranged from .19 to .28. Differential nonrandom mating among herds seemed to occur in the data. Significant sire x herd effects were observed for dam MBV, and adjustment for dam MBV yielded the smallest estimates of interaction variance and across-herd heritability. If sire x herd interactions were due only to genotype x environment interaction, within-herd heritabilities would range from .33 to .49. These estimates are larger than previously reported estimates. Thus, unreported environmental effects common to progeny of individual sires may also be involved in the observed interaction but could not be disentangled from true genotype x environment interaction effects using these data. Results of these analyses suggest that some accommodation of sire x herd interaction effects on weaning weight may be needed in beef cattle genetic evaluations, but a compelling case for development of herd-specific breeding value prediction cannot be made.  相似文献   

3.
全基因组关联分析(genome-wide association studies,GWAS)是研究家畜复杂经济性状和疾病遗传变异的有效方法,GWAS的核心是挖掘遗传变异与目标表型性状间的关系.随着牛全基因组测序工作完成,海量单核苷酸多态性(single nucleotide polymorphism,SNP)位点被标记...  相似文献   

4.
5.
6.
The objective of this study was to investigate the possibility of genotype x environment interactions for weaning weight (WWT) between different regions of the United States (US) and between Canada (CA), Uruguay (UY), and US for populations of Hereford cattle. Original data were composed of 487,661, 102,986, and 2,322,722 edited weaning weight records from CA, UY, and US, respectively. A total of 359 sires were identified as having progeny across all three countries; 240 of them had at least one progeny with a record in each environment. The data sets within each country were reduced by retaining records from herds with more than 500 WWT records, with an average contemporary group size of greater than nine animals, and that contained WWT records from progeny or maternal grand-progeny of the across-country sires. Data sets within each country were further reduced by randomly selecting among remaining herds. Four regions within US were defined: Upper Plains (UP), Cornbelt (CB), South (S), and Gulf Coast (GC). Similar sampling criteria and common international sires were used to form the within-US regional data sets. A pairwise analysis was done between countries and regions within US (UP-CB vs S-GC, UP vs CB, and S vs GC) for the estimation of (co)variance components and genetic correlation between environments. An accelerated EM-REML algorithm and a multiple-trait animal model that considered WWT as a different trait in each environment were used to estimate parameters in each pairwise analysis. Direct and maternal (in parentheses) estimated genetic correlations for CA vs UY, CA vs US, US vs UY, UP-CB vs S-GC, UP vs CB, and S vs GC were .88 (.84), .86 (.82), .90 (.85), .88 (.87), .88 (.84), and .87 (.85), respectively. The general absence of genotype x country interactions observed in this study, together with a prior study that showed the similarity of genetic and environmental parameters across the three countries, strongly indicates that a joint WWT genetic evaluation for Hereford cattle could be conducted using a model that treated the information from CA, UY, and US as a single population using single population-wide genetic parameters.  相似文献   

7.
Abstract

When developing total merit indices (TMI's), estimated breeding values (EBV's) may be lacking for several traits. Methodology exists to address these challenges, calculating index weights using economic values and genetic (co)variances between traits included in the TMI and aggregate genotype. TMI's including production and functional traits were developed for beef breeds in the Norwegian breeding scheme, and potential for genetic gain was evaluated. Selection based on the TMI developed in this study was found to improve growth and carcass quality, while genetic deterioration was expected for calving difficulty. Alternative selection indices were applied to avoid these effects, but reduced the genetic gain for production traits. The results of our study show that is possible to achieve genetic gain in most economically important traits for beef cattle by using a TMI. When additional EBV's and genetic correlations become available, these should be included into the TMI for further improvement.  相似文献   

8.
An analysis of reproductive traits in beef cattle   总被引:1,自引:0,他引:1  
  相似文献   

9.
Data collected from steer and bull progeny, fed to a constant final feedlot weight over 11 yr, were used to estimate heterosis in post-weaning feedlot growth and carcass traits in two-way and three-way rotational crossing systems and a breed composite from crossing Hereford, Angus and Charolais breeds. Steer and bull progeny from matings of beef x Brown Swiss-cross sires and dams also were compared with the straight beef breeds and beef crosses. Growth traits evaluated were initial weight on test, 112-d weight, total feedlot average daily gain and total days from initial to final weight. Carcass traits included hot carcass weight, dressing percentage, rib eye area, 12th-rib fat thickness, kidney, pelvic and heart fat, yield grade and marbling score. Heterosis estimates for calves of all crossing systems were significant for initial and 112-d weight and for saving of days in the feedlot, but not for average daily feedlot gain. Heterosis estimates were small and nonsignificant for most carcass traits except for fat traits in specific crosses. Males from Hereford and Angus sires mated to Angus x Hereford dams had higher (P less than .10) backfat than did the parental average. Male progeny from Charolais ranked higher (P less than .10 to P less than .01) than calves from Hereford and Angus sires for most growth traits. Progeny from Charolais sires were more desirable (P less than .10 to P less than .01) for traits related to cutability, but they had less (P less than .05 to P less than .01) marbling than calves of Angus sires.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Divergent selection for serum insulin-like growth factor-I (IGF-I) concentration began at the Eastern Ohio Resource Development Center (EORDC) in 1989 using 100 spring-calving (50 high line and 50 low line) and 100 fall-calving (50 high line and 50 low line) purebred Angus cows. Following weaning, bull and heifer calves were fed in drylot for a 140-d postweaning period. At the conclusion of the postweaning test, bulls not selected for breeding were slaughtered and carcass data were collected at a commercial abbatoir. At the time of this analysis, IGF-I measurements were available for 1,283 bull and heifer calves, and carcass data were available for 452 bulls. A set of multiple-trait, derivative-free, restricted maximum likelihood (MTDFREML) computer programs were used for data analysis. Estimates of direct heritability for IGF-I concentration at d 28, 42, and 56 of the postweaning period, and for mean IGF-I concentration were .32, .59, .31, and .42, respectively. Direct heritabilities for carcass traits ranged from .27 to 1.0, .26 to 1.0, and .23 to 1.0 when the age-, fat-, and weight-constant end points, respectively, were used, with marbling score having the smallest heritability and longissimus muscle area having the highest heritability in each case. Maternal heritability and the proportion of phenotypic variance due to permanent environmental effect of dam generally were < or = .21 for IGF-I concentrations and for carcass traits other than longissimus muscle area. Additive genetic correlations of IGF-I concentrations with backfat thickness, longissimus muscle area, hot carcass weight, marbling score, quality grade, and yield grade averaged -.26, .19, -.04, -.53, -.45, and -.27, respectively, when carcass data were adjusted to an age-constant end point. Bulls with lower IGF-I concentrations had higher marbling scores and quality grades, but also had higher backfat thickness and yield grades regardless of the slaughter end point. Serum IGF-I concentration may be a useful selection criterion when efforts are directed toward improvement of marbling scores and quality grades of beef cattle.  相似文献   

11.
The relationships of performance in time-constant intervals to that in the full feedlot phase of production and of bulls to steers were studied. Monthly records on 43 bulls and 48 steers for gain, ultrasonic backfat, weight and hip height were collected in the period postweaning to an estimated 6 to 7 mm subcutaneous backfat. Information gathered in the first 140 d (performance test) was used to predict feedlot performance to Canada grade A1 finish (7 mm backfat). Traits predicted were days to market finish (DM), weight at market finish (WM), relative growth rate (RGR) and economic rate of maturing (Ke). Economic maturing rate was derived as an estimator of growth relative to weight at fixed body composition (7 mm backfat). Prediction equations were developed by stepwise regression which explained 91, 92, 83 and 79% of the variation in DM, WM, RGR and Ke, respectively. Ratios for steer to bull values for DM and WM were .901 and .928, respectively. It was concluded that accurate prediction of DM, WM, RGR and Ke is possible from information on weight and backfat measurements as currently gathered in many test stations. Prediction of RGR and Ke could be improved by inclusion of heart girth measurements. Differences among animals in Ke are easier to estimate than are differences in rate of maturing, and may be of greater relevance for the genetic improvement of livestock.  相似文献   

12.
Two methods to jointly model age of dam (AOD) and age of animal in random regression analyses of growth in Gelbvieh cattle were examined. The first method (M1) was analogous to the multiple-trait analysis and consisted of AOD as a nested class variable and a cubic polynomial regression on age nested within birth, weaning, and yearly weights. The second method (M2) used two-dimensional splines, with age knots at 150, 205, 270, 340, and 390 d. The AOD knots were placed at 725, 1,464, and 2,189 d. These selected knots were used to form a two-dimensional grid containing 15 knots, each representing a specific age and AOD combination. A data set containing Gelbvieh growth records was split along contemporary groups into two data sets. Data set 1 contained 316,078 records and was used for prediction by mixed-model equations. Data set 2 contained 164,167 records and was used for cross validation. In the complete data set, only 90 and 30% of animals with birth weight had records on weaning and yearling weights, respectively. Models were evaluated based on R2, average squared error (ASE), percent bias, and plots of solutions. The ASE for weights associated with birth weight, weaning weight, and yearling weight for M1 were 15, 505, and 703 kg2. With M2, large jumps in fixed-effect estimates were observed outside the two-dimensional grid. To eliminate this problem, weighted one-dimensional splines were used for extrapolation beyond the two-dimensional grid. For M2 with weighted spline extrapolation, the ASE were 15, 542, and 777 kg2 for birth weight, weaning weight, and yearling weight, respectively. Creation of optimal two-dimensional splines is difficult when data are clustered. Despite such difficulties, the two-dimensional spline was capable of jointly and continuously modeling AOD and age of animal.  相似文献   

13.
The objectives of this study were to investigate milk casein polymorphisms in dams and to determine the impacts of maternal casein genotypes on growth traits of their sucking calves. Milk samples from 433 dams of the breeds German Angus (GA) and German Simmental (GS) were typed at the milk protein loci α s1-casein (αs1-CN), β-casein (β-CN), α s2-casein (αs2-CN), and κ-casein (κ-CN) via isoelectric focusing. Associations between casein genotypes in maternal milk with growth traits of their 1,872 calves were analyzed until the age of weaning using linear mixed models, considering either genotypes of individual casein loci (model 1) or composite α s1-β-α s2-κ-CN genotypes within the casein cluster (model 2). Besides environmental effects such as sex, age of the dam, and calving year-season, genetic effects (breed group and maternal and paternal effects) were considered in statistical models. The composite casein genotype BBǀA2A2ǀAAǀAB (order of genes on bovine chromosome 6: α s1-ǀβ-ǀα s2-ǀκ-CN) was associated with greater average daily weight gains (ADG) and heavier age-adjusted weaning weights (WW) of calves (P < 0.05). The effects of composite genotypes on birth weight of calves were similar (P > 0.05; model 2). With regard to individual casein loci, greater ADG and WW were observed for calves from dams with the genotypes κ-CN BB and α s1-CN BB, respectively (P < 0.05; model 1). Age-adjusted WW was largest for calves from dams carrying the κ-CN genotype BB (215 kg) compared with calves representing the maternal AB and AA genotypes (both 204 kg). Results from the present study suggested selectable casein genotypes due to their nutritional value of milk (value in terms of offspring performances), offering new perspectives for breeding strategies in beef cattle to improve preweaning calf performance.  相似文献   

14.
Reproductive data were collected on 4,595 cow exposures and subsequent calvings over four generations in a rotational crossbreeding study involving Angus, Brahman, Charolais and Hereford breeds. Direct and maternal additive (Ig and Mg) and nonadditive (Ih and Mh) genetic effects were estimated for calving rate, calf survival, weaning rate, calving assistance and calf birth date. Genetic effects were estimated by regressing individual animal response on the proportion of genes from breed of origin and gene combinations expected for the four breeds in offspring and in dams. Breed direct and maternal additive and nonadditive genetic effects were expressed as a deviation from the least squares mean. Brahman Ig effects decreased calving and weaning rate (-9.5 +/- 4.0 and -11.8 +/- 4.4%) but Mh effects for weaning rate that included Brahman were positive, ranging from 16.5 +/- 6.7% for Angus-Brahman to 27.8 +/- 6.9% for Brahman-Hereford. The Brahman Ig effect delayed calf birth date (9.8 +/- 2.1 d; P less than .01), whereas Angus and Hereford Ig effects influenced earlier calf birth dates (-4.3 +/- 1.9 and -4.1 +/- 1.9 d; P less than .05). Brahman combination Mh effects also influenced earlier calf birth dates (P less than .01). The Charolais Ig effect for calving assistance was positive (4.3 +/- 1.9%; P less than .05), whereas Angus-Brahman and Brahman-Charolais Mh effects for calving assistance were negative (-6.5 +/- 3.2 and -7.0 +/- 3.2%; P less than .05) and more desirable. Predicted reproductive traits for rotational mating systems were intermediate between predicted reproductive traits for two- and three-breed terminal crosses. Predicted calving and weaning rates were maximized when Brahaman first-cross and Charolais-Hereford cows were used in three-breed cross mating systems.  相似文献   

15.
Crossbred steer and heifer progeny from 5-, 6- and 7-yr-old dams produced in a four-breed diallel crossing experiment involving the Brown Swiss, Red Poll, Hereford and Angus maternal grandsires and maternal granddams were evaluated for postweaning growth and carcass traits to estimate breed mean maternal heterosis, maternal heterosis for specific breed cross females, average maternal heterosis for all crosses, breed grandmaternal effects and net breed effects in crosses. All progeny evaluated were born in 1979 and 1980 and were sired by 7/8 or 15/16 Simmental bulls. Average maternal heterosis was significant for 200-d weight in heifers but not in steers and was not significant for final weight (444-d) in either heifers or steers. The effects of maternal heterosis on postweaning growth were not important. Differences among breeds in mean maternal heterosis values were small for growth-related traits. Breeds did not differ (P greater than .05) in grandmaternal effects for growth-related traits; Brown Swiss tended to be highest, Red Poll lowest, with Hereford and Angus intermediate. Differences in net breed effects in crosses favored Brown Swiss over the three other breeds and were generally significant for growth traits. Average maternal heterosis, though generally positive, was not significant for carcass traits on either an age-constant or weight-constant basis. Differences among breeds were small in grandmaternal effects, specific heterosis and net effects in crosses for carcass traits associated with both weight or composition; generally the Brown Swiss breed was favored on carcass traits associated with weight in the age-constant analysis and generally had a higher lean-to-fat ratio than the three other breeds in both the age-constant and weight-constant analyses.  相似文献   

16.
Severe lameness attributed to osteochondrosis is described in an extensively managed Brahman herd grazing on improved native pasture. Clinical signs were observed in five animals, three of which were necropsied. The most prominent lesions were in the elbow and stifle joints. There was multiple fissuring and ulceration of thickened articular cartilage with numerous osteochondral bodies present in the joint spaces. All affected animals were entire males sharing a common ancestral sire. Inheritance and gender were suspected to be contributing factors in the development of the disease.  相似文献   

17.
The interest in the effect of genotype × environment interaction is increasing because animal breeding programs have become geographically broader. Climate changes in the next decades are also expected to challenge the present breeding goals, increasing the importance of environmental sensitivity. The aim of this work was to analyze genotype × environment interaction effect on cattle BW using the environmental sensitivity predicted by random regression reaction norm models, including sex and age effects as additional dimensions in the study. Genetic parameters were estimated for adjusted BW of Brazilian Nelore cattle at different ages (120, 210, 365, and 450 d), using linear polynomials for random regression analysis. The analyses with sex as a fixed effect (total analyses) were compared with those with sex-separated progenies (male and female progeny analyses, respectively). (Co)variance components were estimated and breeding values calculated EPD. The results showed important differences in reaction norm model genetic parameter estimates according to different age and sex analyses. The results confirmed the presence of an important genotype × environment × sex × age interaction for Nelore cattle BW. The patterns in these results lead to a revision of the importance of sexual and developmental factors on plasticity and adaptation concepts.  相似文献   

18.
《Livestock Science》2006,99(1):61-68
Although a number of recent studies have focused on the existence of a non-negligible sire × contemporary group interaction effect (s) affecting the estimation of genetic parameters for maternally influenced traits in beef cattle, the assessment and interpretation of this effect using field data remains poorly understood. In this study 27,639 records of both birth weight (BW) and weaning weight (WW) from the Asturiana de los Valles breed were used to assess the consequences of the inclusion of an s effect on the estimation of genetic parameters for BW, WW and average daily gain (ADG) fitting univariate and bivariate models. Estimations of s2 for BW, WW and ADG were 0.040, 0.070 and 0.077 regardless of the fitted model. Inclusion of s in the estimation models induced a reduction of both the direct and the maternal heritability, varying between 8 and 28% with the trait and the estimation model employed. As expected, the correlations between both direct and maternal genetic effects for each trait were less negative when s was included in the estimation model. The estimated correlations between the s effect affecting BW, WW and ADG were 0.108, − 0.038 and 0.616 for the pairs BW–WW, BW–ADG and WW–ADG, respectively. These results suggest that misidentification of individuals cannot be the sole cause of the effect of s and that this effect is of a different nature and origin for different traits (i.e. selective matings for low BW's and unaccounted management practices for preweaning growth traits). Models including the s effect should be accepted as working models in beef improvement schemes.  相似文献   

19.
20.
SUMMARY: Field data on weight recordings provided by the Australian Simmental Breeders Association was analysed. From a data set of 64,962 animals, which had either birth (BW), weaning (WW), yearling (YW), or final weight (FW) records a subset of 17 herds comprising 18,083 animals was used to obtain uni- and bivariate estimates of variance components. This subset had to be subdivided into six further subsets, called group herds. The models used allowed for additive genetic, maternal genetic, and permanent environmental effects and for a covariance between additive direct and maternal genetic effects. Estimates were pooled across group herds. The results for BW, WW, YW, FW were .33, .35, .37, and .30, respectively, for heritabilities and .074, .18, and .11 for maternal heritabilities (not estimated for FW). Significant correlations between direct and maternal genetic effects (rAM) existed for WW and YW in the magnitude of -.39 and -.22. However, further research is needed due to the problems associated with the estimation of r(AM) . ZUSAMMENFASSUNG: Sch?tzung direkter und maternaler (Ko)Varianz-Komponenten für Wachstumsmerkmale bei australischem Fleckvieh Gegenstand der Untersuchung waren im Feld erhobene Gewichte, die von der Australischen Simmental Breeders Association bereitgestellt worden waren. Aus einer Datei von 64.962 Tieren, die entweder ein Geburtsgewicht (GG), ein Absetzgewicht (AG), ein J?hrlingsgewicht (JG) oder ein Endgewicht (EG) aufwiesen, wurde ein Teildatensatz von 18.083 Tieren extrahiert und einer uni- und bivariaten Sch?tzung von Varianzkomponenten unterzogen. Diese Datei mu?te weiterhin in sechs verschiedene Dateien aufgeteilt werden; diese wurden Gruppenherden genannt. Die verwendeten Modelle erlaubten additiv-genetische, maternal-genetische und permanente Umwelteffekte sowie das Vorhandensein einer Kovarianz zwischen additiv-genetischem und maternal-genetischem Effekt. Die Sch?tzwerte wurden über die Gruppenherden gepoolt. Die Ergebnisse in der Reihenfolge GG, AG, JG und EG waren 0,33, 0,35, 0,37 und 0,30 für die Heritabilit?ten sowie 0,074, 0,18 und 0,11 für die maternalen Heritabilit?ten (nicht gesch?tzt für EG). Signifikante Korrelationen zwischen direktem und maternal-genetischem Effekt (r(AM) ) existierten für AG und JG in der Gr??enordnung von -0,39 und -0,22. Trotz dieses Ergebnisses sind weitere Untersuchungen n?tig, weil die Sch?tzung von r(AM) problematisch ist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号