首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
河蟹生态养殖池塘PVC管底层微孔增氧机的使用效果   总被引:1,自引:0,他引:1  
为了探索河蟹生态养殖池塘底层增氧机的使用规律,分别测定了12:00~14:00和0:00~6:00增氧时,距增氧机输出口1、3、5、7、10 m各点的溶解氧含量。结果表明,功率为2.2 kW的PVC管底层微孔增氧机持续开机2 h后,可以显著增加10 m内水域溶解氧含量;且试验组溶解氧含量显著高于对照组。根据河蟹生态养殖模式的特点,总结PVC管底层微孔增氧机的使用规律为:晴天中午开,日出前夕勤开;阴雨天夜晚长开;闷热天气延长开,大风天气可少开。  相似文献   

2.
河蟹生态养殖池塘溶解氧分布变化的研究   总被引:3,自引:0,他引:3  
在晴天、强风和阴雨天等不同天气,对高温季节河蟹生态养殖池塘水草稀疏区和水草密集区的水体溶解氧进行昼夜测定,并对强风天,池塘上下风处溶解氧进行测定。测定结果显示,池塘水体溶解氧14:00~16:00最高,4:00~6:00最低。高温季节无风晴天10:00~16:00河蟹池塘上下水层存在热阻力现象,导致上下层溶解氧存在显著差异(P<0.05),14:00最大差值为10.4 mg/L;6:00底层溶解氧为0.2~2.5 mg/L。强风天,在风力作用下,14:00上下层溶解氧差异缩小;6:00底层溶解氧为1.2~4.9 mg/L。阴雨天,光照强度较弱,上下层溶解氧差异最小,14:00最大差值为3.4 mg/L;6:00底层溶解氧为0.6~1.0 mg/L。晴天、多云等天气,水草密集区水体溶解氧显著高于水草稀疏区(P<0.05),而阴雨天夜晚水草稀疏区溶解氧略高于水草密集区。强风天,16:00下风处溶解氧显著高于上风处(P<0.05);6:00下风处溶解氧略高于上风处,但无显著差异(P>0.05)。此结果表明河蟹生态养殖池塘内水草是主要的溶解氧生产者,也为池塘增氧设备的使用提供一定的参考。  相似文献   

3.
纳米曝气盘式增氧机是鱼塘增氧的好工具,经多项试验证明,在阳光下水中生物光合作用增加水质溶解氧及水体呼吸作用消耗溶解氧的实际鱼塘应用中,及没有任何外界影响的实验室内进行水体试验,均表明该类型增氧机具有良好的增氧效果.在实际应用中,采用直径100 cm的曝气盘,每盘从外到内装有外径15mm的纳米曝气管4圈,曝气管间距为10 cm,在2~3m深水体中,1 hm2安置90个曝气盘,使用0.25 kW的鼓风机,可以满足水体溶解氧的增氧要求.  相似文献   

4.
一、如何适时使用增氧机1.晴天中午开机。在夏秋季中午由于池塘水温比较高,大量投喂饲料会造成水质过肥、水中有机物多、浮游植物丰富、透明度降低,致使池塘上下层溶解氧差过大,这时要开启增氧机1—2小时及时增氧。因为在高温的晴天,浮游植物的光合作用特别强,会产生大量氧气,而在水质肥的鱼塘,光照能达到20—30厘米的深度,致使水体表层溶解氧达到饱合,而水体底层溶解氧相对较低门此时开启增氧机,  相似文献   

5.
2010年8月对三疣梭子蟹4种不同养殖模式池塘溶解氧含量进行连续24 h的观察,分析不同养殖模式水体中溶解氧含量的昼夜和垂直变化特征。结果表明:表层溶解氧在4种养殖模式池塘中昼夜变化规律基本一致,表现为下午最高,凌晨最低,白天高于夜间;底层溶解氧,在有机械增氧的三种养殖模式中,昼夜变化规律与表层基本一致,与之相反,无增氧的条件下,其溶解氧变化呈夜间高于白天的状态。溶解氧的垂直变化,均为中午表层高于底层,尤以传统养殖更为显著;夜间垂直变化相对较少。通过对3种增氧模式的增氧效果的比较分析,以高位池精养模式效果最好,底充氧模式稍差。同时探讨了溶解氧与水深和光照等环境因子的关系,认为夏季在梭子蟹养殖生产中,如未配置增氧设施,水位应控制在1.0 m左右为宜。  相似文献   

6.
从池塘建设、施肥种草、微孔增氧系统安装与使用、苗种放养与饲养、水体调节、病害防治等方面介绍了池塘河蟹套养青虾微孔增氧养殖技术,并对其取得的效益进行分析,以供广大养殖户参考。  相似文献   

7.
正溶解氧是养殖鱼、虾、蟹等水生动物生存的必要条件,溶解氧的多少影响着养殖水生动物种类的生存、生长和产量。采用有效的增氧措施,是提高池塘养殖单位产量和效益的重要手段。1池塘微孔增氧的概念池塘微孔增氧技术就是池塘管道微孔增氧技术,也称纳米管增氧,是近几年涌现出来的一项水产养殖新技术,是国家重点推荐的一项新  相似文献   

8.
为探究气液混合泵能否满足在高密度养殖条件下养殖对象对水体溶氧的需求,基于气液(氧气-水)混合泵搭建溶氧试验平台,在不同水温、不同出水压力和不同气水体积比的条件下,测试气液混合泵溶氧性能,并在池塘圈养桶(直径4 m,高2 m,养殖水体体积20 m3)内进行增氧试验。溶氧性能测试结果显示:当出水压力为0.25 MPa、气水体积比为0.01~0.05时,在不同水温(5.6、13.5、30.3)条件下出水溶解氧与水温成反比,溶解氧在47.93~20.60 mg/L变化;氧气吸收效率与气水体积比呈反比,氧气吸收效率在91%~33.7%变化;动力效率与气水体积比成正比,动力效率在22.32~55.12 kg/(kW·h)变化。基于圈养桶的增氧试验结果显示,在有鱼耗氧的条件下(黄颡鱼,单个桶内养殖密度为13.19~16.49 kg/m3),使用功率3 kW的气液混合泵为4个圈养桶增氧时,每个桶内水体溶解氧在光照时间内可达11 mg/L,夜间稳定保持在8 mg/L以上。试验结果表明气液混合泵可应用于高密度的水产养殖,并能有效应对夏季高温供氧难题。  相似文献   

9.
河蟹养殖池应用微孔管道增氧试验   总被引:1,自引:0,他引:1  
在河蟹池塘应用微孔管道进行增氧对比试验,结果表明:微孔管道增氧对蟹池底层增氧效果明显,可增大池塘养殖密度,提高产量,增加效益。  相似文献   

10.
水体是鱼类生活的环境,优良的水体是鱼类健康养殖的基本保证。氧气作为一种生态因子,是保证鱼类生理功能健康的必需物质,是鱼类赖以生存的必要的基本条件之一。养鱼池塘中溶解氧的含量是水质好坏的重要指标,适宜的溶解氧可以提高鱼塘饲料的利用率,促进池塘鱼类的健康生长,溶氧度过高或过低都会影响鱼类的健康。基于此,本研究分析影响池塘溶解氧低的因素,并提出生态增氧法,以期为养殖者提供参考,为提高养殖产量和品质提供依据。  相似文献   

11.
工厂化水产养殖溶解氧自动监控系统的研究   总被引:5,自引:0,他引:5  
为以曝气增氧方式的养殖系统(养殖平均体重为450 g的虹鳟Oncorhynchus mykiss,养殖密度为27kg/m3)设计了在线自动监控系统,即对水体溶解氧进行在线监测,对增氧设备进行自动控制。该监控系统是以覆膜溶解氧电极作为检测元件,用组态王软件设计在上位机中运行的监控系统完成在线检测,以PLC为下位机直接控制增氧气泵实现溶解氧控制功能。结果表明:该溶解氧在线自动监控系统能直观地在计算机屏幕上显示养殖现场溶解氧的变化情况,并可以储存、打印、记录溶解氧的变化数值,为掌握溶解氧的变化规律,分析溶解氧产生变化的原因提供基础数据。对增氧设备进行控制,可确保水体中的溶解氧维持在适合鱼类生长的最佳范围内,减少了设备的运行时间,降低了生产过程的能源消耗,取得了较好的效果。  相似文献   

12.
利用光合细菌调节养殖用水的比较试验   总被引:1,自引:0,他引:1  
[目的]为光合细菌在水产养殖中的推广使用提供理论依据。[方法]以pH值、溶解氧含量和透明度作为试验测定的水质指标,采用水质分析测定仪测定水产养殖池塘中水体的pH值,碘量法测定水体的溶解氧含量,黑白盘法测定水体的透明度。[结果]2年的对比试验结果表明:施用光合细菌后,养殖池塘的透明度、溶解氧含量明显高于未施用光合细菌的养殖池塘;pH值变化不明显。实施光合细菌调节水质的池塘,其pH值和溶解氧含量均达到无公害水产养殖用水标准(GB11607-1989)。[结论]光合细菌通过光合作用将有机质分解为无机盐类,具有增加水体溶解氧含量、改善水质的作用。因此,在水产养殖中推广使用光合细菌,对防止水体富营养化、改善水质具有十分重要的意义。  相似文献   

13.
为探明池塘中安装微孔曝气增氧机对池塘水质、溶氧量的影响,分别对安装微孔曝气增氧机和喷水式增氧机的池塘进行水质相关指标和水体溶氧量监测。结果表明:松浦镜鲤养殖池塘中安装微孔曝气增氧机的立体增氧效果优于喷水式增氧机,尤其是对下层水体增氧效果明显,能降低水体中的亚硝酸盐、氨氮和硫化氢,优化养殖池塘水质。  相似文献   

14.
增氧机的作用是能够增加池塘溶氧、防止和解救鱼类浮头、改善水质、提高池塘养鱼产量。目前采用较多的是叶轮增氧机,其主要作用:一是增氧:一般叶轮增氧机每千瓦小时能向水中增氧1公斤左右。二是搅水:搅动池水垂直循环流转。使上下层水中氧气趋于均匀分布。三是曝气:夜间和清晨开机,能加速水中有毒气体如硫化氢、氨气等的选散。  相似文献   

15.
<正>在池塘中采用微孔管道底部增氧,能有效提高池塘溶氧,溶氧分布均匀,增氧范围广,特别适合底栖性水生动物,如河蟹、对虾、鱼等。微孔管道增氧技术能适当加大池塘养殖密度,提高养殖产量,增加经济效益。1.微孔增氧原理采用罗茨鼓风机将空气送入输气管道,输气管道将空气送入微孔管,微孔管将空气以微气泡形式分散到水中,微气泡由池底向上浮,气泡在气体高氧分压作用下,  相似文献   

16.
根据池塘生态原理和河蟹生物学特性,采用耕水机配合微孔曝气增氧协同工作的立体增氧技术,形成生态增氧与机械增氧并举的高效增氧机制,使河蟹池塘上下水层交换,平衡营养元素、强化光合作用,大幅降低BOD、COD,提高营养物质转化规模,提升初级生产力,辅以栽草移螺营造环境、选优放种科学投喂、生物生态综合防病等措施,建立复合型的池塘生态系统,以达到"养大蟹"、"养优质蟹"的生态健康养殖目的。  相似文献   

17.
为解决池塘增氧装置水动力形成能力不足的问题,提出了一种新的设计方案。新设计基于双向输出传动机构原理,利用破水叶轮及空气中低阻偏心块的复合作用,在保障增氧能力的同时提升水动力影响范围,并对该摇摆式水动力装置在池塘的影响范围和增氧能力进行了测试。结果表明:该装置可以将水动力影响范围提升至4670 m2以上,高于3 k W和1.5 k W的叶轮式增氧机;同时在1.5 k W能耗下增氧能力为2.67 kg/h,并能达到3 k W叶轮式增氧机的66.7%,符合国家标准中对于1.5 k W增氧机的增氧能力要求。研究表明,新装置的水动力形成能力有明显提升,能够更好地解决池塘水产养殖增氧过程中水体循环能力不足的问题。  相似文献   

18.
影响池塘养殖水体溶解氧的主要因素分析   总被引:1,自引:0,他引:1  
阐述影响池塘养殖水体溶解氧的主要因素,主要包括浮游藻类的光合作用、空气扩散作用、水体呼吸作用和底质呼吸作用。分析透明度与池塘上下层水体溶解氧水平的关系以及空气扩散进入水体的影响因素。水体呼吸作用即水体中浮游生物、细菌呼吸消耗氧气是溶解氧消耗的主要去向。详细分析池塘底泥层次以及底泥对池塘中溶解氧浓度和水质的影响。  相似文献   

19.
与传统增氧机械相比,超微泡增氧装置具有增氧效率高、噪音小、便于维修保养等特点,但同时也存在辅助结构多、安装调试不便、价格较高等缺陷,从而影响该装置的应用推广.在深入研究超微泡增氧装置的基础上,提出改进方案,设计一套改进型超微泡增氧装置实验室模型.改进型超微泡增氧装置正常开机运行22 min,实验水体溶氧量达到饱和,计算得到微气泡的直径范围是10~120 μm,平均直径为40 μm左右,标准增氧能力为1.908 kg(O2)/h,氧吸收率为36%,动力效率为3.469 kg(O2)/h,增氧效率较高.通过改进,可省去1台自吸泵、1个射流器和1只能量释放器,在达到同样增氧效果前提下,简化了装置,降低成本约50%左右,运行平稳可靠.改进方案可行,便于应用推广.  相似文献   

20.
河蟹生态养殖池塘不同水层水质变化的研究   总被引:1,自引:0,他引:1  
为了探究河蟹生态养殖池塘不同水层水质因子昼夜变化规律,于2014年8月选择3个连续的晴天天气对上海松江泖港地区3个河蟹生态养殖池塘上层、中层和下层的水质因子进行昼夜监测。结果表明:水质因子均存在昼夜变化和分层现象,3个水层的水温、pH、COD_(Mn)浓度和PO_4~(3-)-P浓度昼夜变化差异不显著;上层和下层水体的DO浓度和NO_2~--N浓度差异显著;3个水层的NH_4~+-N浓度和NO_3~--N浓度均表现出显著差异。一天中,水温、DO浓度、pH和NO_3~--N浓度在5:00最低,NH_4~+-N、NO_2~--N浓度在5:00最高,COD_(Mn)浓度在1:00最高,PO_4~(3-)-P浓度较稳定;NH_4~+-N浓度和DO浓度的昼夜变化表现出负相关关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号