首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A water deficit during stage III of fruit growth was established with the aim of determining if it is possible to achieve an improvement in tree water status by summer pruning and fruit thinning. The experiment was set up as a randomized block split-plot design across trials (irrigation) where pruning was assigned to the main plot and fruit thinning to the sub-plots. The irrigation treatments were (1) standard full irrigation (FI), and (2) suppression of irrigation during stage III of fruit growth until leaves visibly withered (LWI); the pruning treatments were (1) experimental summer pruning (EP), and (2) standard summer pruning (CP); and three fruit thinning intensities were applied to facilitate analysis of the effects of the treatments in relation to fruit load. Changes in amount of light intercepted and in tree stem water potential (Psi stem) were evaluated. The EP treatment reduced the amount of light intercepted by the tree. In the FI treatment, there was a significant reduction in fruit growth measured as both water accumulation and dry mass accumulation. Under FI conditions, reductions in fruit load as a result of EP were not accompanied by a significant improvement in Psi stem. In the LWI treatment, EP produced a significant improvement of 0.17 MPa in Psi stem, but there was no improvement in fruit growth compared with CP trees. A reduction in fruit load from 350 (commercial load) to 150 per tree significantly improved Psi stem by 0.3 MPa at the end of stage III of fruit growth. These results indicate that improvements in water status in response to pruning may be insufficient to promote fruit growth if the pruned trees are unable to provide an adequate supply of assimilates to the developing fruits.  相似文献   

2.
Crop load affects maximum daily trunk shrinkage of plum trees   总被引:1,自引:0,他引:1  
We studied the effects of low fruit load (3-4 fruits cm(-2) of trunk cross-sectional area (TCSA), and high fruit load (6-7 fruits cm(-2) TCSA) on maximum daily trunk shrinkage (MDS) and trunk growth rates (TGR) over two seasons in plum (Prunus salicina Lindell) trees receiving full irrigation or deficit irrigation. Seasonal changes in MDS and TGR were compared with those in midday stem water potential (Psi(s)) and leaf stomatal conductance (g (s)). Crop load increased g (s) in fully irrigated trees approaching harvest. Although crop load did not affect plant water status in either watering regime, there were considerable differences in both MDS and TGR as a function of crop load. Compared with low-cropping [corrected] trees, MDS was 34% higher and TGR was 48% lower in high-cropping [corrected] trees. The differential responses of MDS and Psi(s) to crop load were a consequence of a higher MDS for a given Psi(s) in the high-cropping trees compared with the low-cropping trees. There was a linear increase in MDS with crop load, with a slope of 15.2 microm MPa(-1) per unit increment of crop load. In the fully irrigated trees, day-to-day variations in MDS were related to evaporative demand; however, the slope of the relationship between MDS and evaporative demand increased with crop load, indicating that different reference equations must be used to adjust for tree crop load when using MDS to determine plant water status and irrigation requirements.  相似文献   

3.
In nut tree orchards in California, irrigation is typically withheld during the harvest period to reduce the likelihood of bark damage during mechanical shaking of the trees. The ensuing water stress, however, may result in premature defoliation and subsequent yield declines. Our objective was to establish and quantify the water stress resulting from irrigation deprivation and determine its impact on leaf function and persistence in mature almond trees (Prunus dulcis (Mill.) D.A. Webb cv. Nonpareil) during a 3-year field experiment. The severity of the water stress was characterized by measurements of predawn leaf (Psi(pd)) and midday stem (Psi(ms)) water potentials, stomatal conductance (gs), net CO2 assimilation rate (A) and leaf abscission. During 1995, Psi(ms) of fully irrigated (FI) trees was maintained above -1.0 MPa. In trees in the moderate- (MS) and severe-stress (SS) treatments, Psi(ms) was reduced to -1.4 to -2.0 MPa and -2.0 to -2.6 MPa, respectively. After 18 days of irrigation deprivation, A was reduced by 32 and 58% at midday and early afternoon, respectively, compared with morning values. A significant decrease in morning values of A only occurred after 30 days of irrigation deprivation. Water-use efficiency and A declined as evaporative demand increased from morning to afternoon. Assimilation also declined seasonally as leaves aged. Midday stem water potential was highly correlated with A, but less so with gs. The coefficient of determination between Psi(ms) and gs improved considerably when vapor pressure deficit and wind were multiply regressed with Psi(ms). Although A recovered rapidly when MS trees were irrigated, recovery in SS trees was slower and incomplete. Integrating the MS and SS effects for an extended period during 1995 resulted in 14 and 30% declines in A, and 6 and 20% declines in gs, respectively. The apparent Psi(ms) threshold for leaf abscission was -1.8 MPa. Daily canopy light interception declined with decreasing Psi(ms) as a result of premature defoliation (and perhaps altered leaf angles) from 67.9% in FI trees to 61.4 and 60.7% in MS and SS trees, respectively.  相似文献   

4.
Marsal J  Girona J 《Tree physiology》1997,17(5):327-333
Effects of water deficits on leaf turgor maintenance processes were analyzed for pear trees (Pyrus communis L. cv. "Barlett") grown in 120-liter containers. Four irrigation treatments were applied: a well-watered control treatment, a spring water stress cycle (Sp), a summer water stress cycle (Su), and a spring plus summer water stress cycle (Sp + Su). For the Sp treatment, water application was progressively reduced from 100 to 20% of the control dose over a period of 27 days in spring. For the Su treatment, water application was progressively reduced over 23 days in summer, from 100 to 20% of the control dose. The Sp + Su treatment comprised both the spring and summer drought stress cycles. Pressure-volume (P-V) curves were constructed and stomatal conductances were determined for pear leaves from each treatment during the spring and summer stress cycles. Leaf water potential (Psi(pi) (0)) and relative water content (R(0)) at the turgor loss point of control leaves tended to decrease from spring to summer. Changes in leaf osmotic water potential at full turgor (Psi(pi) (100)) and in symplast water fraction (R(s)) did not explain the seasonal decrease in Psi(pi) (0). The water stress treatments had no effect on Psi(pi) (100), but R(s) was reduced by the water stress treatments, particularly during the summer stress cycle of the Su and Sp + Su treatments. The decrease in R(s) was correlated with an increase in the slope of the linear region of the P-V curve. Such a coupled adjustment would lead to increased water uptake capacity of water-stressed trees only under non-turgor conditions. Furthermore, pear leaves did not actively accumulate solutes. We conclude, therefore, that changes in leaf tissue water relations as a result of leaf acclimation to water stress are unlikely to facilitate maintenance of fruit productivity under drought.  相似文献   

5.
Lopez G  Girona J  Marsal J 《Tree physiology》2007,27(11):1619-1626
Effect of water stress during stage III of peach fruit development on winter root starch concentration (RSC) and subsequent reproductive development was studied. Two irrigation treatments were applied in two consecutive seasons (2003-2004): full irrigation (FI) and no irrigation during stage III of fruit development until visible leaf wilting (LWI), which occurred when midday stem water potential reached -1.80 MPa. Three fruit thinning intensities were applied within each irrigation treatment. The year 2005 was a recovery year in which all trees received full irrigation and commercial fruit thinning. Water deficit and high fruit loads in the previous season significantly reduced the concentration of winter RSC. Fruit set and fruit growth from full bloom to 30 days after full bloom (30 DAFB) increased with increasing winter RSC before other factors, such as inter-fruit competition and availability of carbon from current photosynthesis, came into play. Consequently, severe water stress reduced the total number of fruits and fruit dry mass growth 30 DAFB. However, during the recovery year and after fruit thinning, fruit loads were similar between irrigation treatments and yield capacity remained unaffected. Peach fruit production recovered quickly from the deleterious effects of two consecutive years of water stress because of a combination of two factors: (1) reduced initial fruit set that was still adequate to achieve a commercial crop; and (2) the low sensitivity of fruit growth 30 DAFB to winter RSC.  相似文献   

6.
Both drought and root pruning (RP) increased the number of cones induced when black spruce (Picea mariana (Mill.) B.S.P.) grafts were injected with gibberellins A(4/7) (GA), but their effects on predawn shoot water potential and current-year needle development differed. Drought decreased predawn shoot water potential (Psi(pd)), but only during the period when irrigation was withheld, and it had no effect on the growth or gas exchange properties of current-year needles. Conversely, root pruning had little effect on Psi(pd), but it resulted in trees with smaller current-year needles that had lower nitrogen and chlorophyll concentrations and reduced rates of gas exchange up to the later stages of shoot elongation compared with needles of control trees. These findings are discussed in relation to potential effects on the development of induced cones in the following growth cycle.  相似文献   

7.
Recovery of water status in water-stressed pistachio trees (Pistacia vera L. cv. Kerman) was investigated by subjecting trees to regulated deficit irrigation (RDI) (60% of crop evapotranspiration rate, ET(c)) during stages I and II of fruit development (FD) followed by full irrigation during FD stage III (kernel-filling). Trees irrigated at 100% ET(c) throughout FD stages I, II and III served as controls. Water-stress severity was characterized by changes in soil water content and midday stem water potential (Psi(md)). Midday leaf conductance (g(1)) and trunk diameter variation (TDV) were also measured. In RDI trees, the lowest Psi(md) value, -1.8 MPa, occurred at the end of the RDI period. The corresponding value for the control trees was around -1.1 MPa. Although the RDI treatment affected gas exchange later than Psi(md), the greatest reductions in gas exchange (60% of control values) also appeared at the end of the RDI period. There were significant differences in TDV between control and RDI trees at the end of the RDI period. Although plant water status recovered within 20 days of resuming irrigation, the TDV values indicated a longer period might be necessary for complete recovery. Recovery of g(1) was faster than that of Psi(md), although differences in TDV between control and RDI trees indicated that gas exchange recovered later than Psi(md). The slow recovery of pistachio trees during FD stage III from water stress imposed during FD stages I and II suggests that irrigation should exceed 100% ET(c) during FD stage III or that more extensive irrigation should commence before the end of FD stage II.  相似文献   

8.
Naor A  Naschitz S  Peres M  Gal Y 《Tree physiology》2008,28(8):1255-1261
The combined effects of irrigation rate and crop load on apple yield and fruit size were examined in two commercial apple orchards (cv. Golden Delicious) in a semi-arid zone. The irrigation rates applied were 1, 3 and 7 mm day(-1), and the two fruit thinning treatments involved adjusting crop load to 100 and 300 fruits per tree at Ortal and 50 and 150 fruits per tree at Matityahu. Unthinned trees served as the control. The fruit from each tree was picked separately, and fruit size distribution was determined with a commercial grading machine. Midday stem water potentials varied from -0.9 to -2.8 MPa, crop load varied from 80,000 to 1,900,000 fruit ha(-1) and crop yield varied from 10 to 144 Mg ha(-1). Midday stem water potential decreased with increasing crop load in all irrigation treatments at Matityahu, but only in the 1 mm day(-1) treatment at Ortal. The extent of the lowering of midday stem water potential by crop load decreased with increasing soil water availability. At both orchards, a similar response of total crop yield to crop load on a per hectare basis was observed. Mean fruit mass and relative yield of fruit > 70 mm in diameter increased with midday stem water potential, with the low crop loads having similar but steeper slopes than the high crop load. The responses of mean fruit mass and relative yield of fruit > 70 mm in diameter to midday stem water potential were similar at both orchards, perhaps indicating that thresholds for irrigation scheduling are transferable to other orchards within a region. Factors that may limit the transferability of these thresholds are discussed.  相似文献   

9.
To examine physiological responses to thinning, fertilization, and crown position, we measured net photosynthesis (P(n)), transpiration (E), vapor pressure difference (VPD), stomatal conductance (g(s)), and xylem pressure potential (Psi(1)) between 0930 and 1130 h under ambient conditions in the upper and lower crowns of a 13-year-old loblolly pine (Pinus taeda L.) plantation six years (1994) after the treatments were applied. Photosynthetic photon flux density (PPFD) and air temperature (T(a)) within the canopy were also recorded. Needle P(n) of thinned trees was significantly enhanced by 22-54% in the lower crown, because canopy PPFD increased by 28-52%. Lower crown foliage of thinned plots also had higher E and g(s) than foliage of unthinned plots, but thinning had no effect on needle Psi(1) and predawn xylem pressure potential (0430-0530 h; Psi(pd)). Tree water status did not limit P(n), E and g(s) during the late-morning measurements. Fertilization significantly decreased within-canopy PPFD and T(a). Needle Psi(1) was increased in fertilized stands, whereas P(n), E and g(s) were not significantly altered. Upper crown foliage had significantly greater PPFD, P(n), VPD, g(s), E, and more negative Psi(1) than lower crown foliage. In both crown positions, needle P(n) was closely related to g(s), PPFD and T(a) (R(2) = 0.77 for the upper crown and 0.82 for the lower crown). We conclude that (1) silvicultural manipulation causes microclimate changes within the crowns of large trees, and (2) needle physiology adjusts to the within-crown environmental conditions.  相似文献   

10.
We investigated crop load and water stress effects on diurnal stem extension growth of field-grown peach (Prunus persica (L.) Batsch) trees. Neither the presence of fruit nor reduced irrigation significantly altered the timing of diurnal fluctuations in stem growth rate. Stems with subtending fruit had significantly reduced growth compared to stems with no subtending fruit. Crop load had no significant effect on relative stem extension rates and the majority of the reduction in absolute growth was the result of a smaller zone of elongation in fruit-bearing stems than in stems with no subtending fruit. Fruit removal did not increase growth rates within 24 h. When irrigation was reduced, the length of the stem elongation zone and total daily stem growth were significantly decreased relative to well-irrigated controls and the decreases were highly correlated with stem water potential. Compared with well-irrigated controls, relative stem extension rates of water-stressed trees were reduced at several times during the 24-h period, but the degree of reduction was not proportional to the difference in stem water potentials between the treatments.  相似文献   

11.
Abstract

This paper reports the early effects of stump height on the growth and natural pruning of potential crop trees after precommercial thinning of a young stand of naturally regenerated beech (Fagus sylvatica L.) in Denmark. The experiment comprises five treatments based on combinations of three grades of precommercial thinning and three stump heights. Treatments include the unthinned control, thinning only of whips and wolf trees (using low stumps), and thinning for potential crop trees using low, medium or high stumps. All treatments were replicated three times. Stump heights averaged 10, 90 or 230 cm, respectively. Pretreatment stem number (live trees) varied from 17,500 to 41,000 ha?1. In the potential crop tree treatment, post-treatment stem number ranged from 4750 to 9500 ha?1. Following two growth seasons, the quantity of stump regrowth increased with increasing stump height, the rate of stump regrowth increased with increasing stump height, the diameter growth of potential crop trees increased with decreasing stump height, the increase in stand height did not depend on stump height or post-treatment stem number, and the natural pruning of potential crop trees increased with increasing stump height. It remains to be seen whether these trends hold in the long run, and whether additional economic return from the increase in wood quality with increasing stump height compensates for the reduction in diameter growth.  相似文献   

12.
Commercial thinning is a silvicultural treatment used to increase the merchantable yield of residual trees. Growth response to thinning, however, is highly variable and discrepancies between studies remain largely unexplained. The objective of this study was to demonstrate the effect of natural root grafting on growth response after thinning. We excavated root systems of jack pine (Pinus banksiana) in five naturally regenerated stands, in which three had been commercially thinned 6 and 9 years earlier. Radial growth before and after thinning was examined using dendrochronological techniques. Thinning increased radial growth of trees, however growth increments were significantly less for trees that had root grafts with removed trees, while growth of grafted trees was better in unthinned stands. Furthermore, radial growth response of trees grafted to removed trees was smaller than that of non-grafted trees 4 years and more post-thinning. On average, non-grafted stumps survived less than 1 year (0.4 year), while grafted stumps lived 2.0 years after the stem was removed. Differences in growth response to thinning between grafted and non-grafted trees thus appear to be linked to the support of roots and stumps of removed trees by live residual trees.  相似文献   

13.
Poplar hybrids were grown with irrigation in a large-scale plantation to investigate the mechanisms underlying clonal differences in drought resistance. Beginning in spring 1992, Populus trichocarpa x P. deltoides (TD) and P. deltoides x P. nigra (DN) cuttings received 46, 76, or 137 cm year(-1) of irrigation to supplement the 18-20 cm of annual precipitation, and all trees received the same fertilization regime. Stem volume, assessed as the square of stem diameter at breast height times tree height (D(2)H), and water relations of the trees were studied from the end of their second growing season until the end of their fifth growing season. By the end of the second growing season, stem volume of Clone TD was 40-146% larger than that of Clone DN, but stem volume growth was independent of irrigation in excess of 46 cm year(-1) in both clones. During the third growing season, stem volume growth of both clones was limited by both the 46- and 76-cm irrigation treatments, so that by the end of the third growing season trees in the 46-cm irrigation treatment were only half the size of trees in the 137-cm irrigation treatment. These treatment differences were maintained through the fifth growing season. Although stem volumes of Clone TD trees in the 76- and 137-cm irrigation treatments were larger than the corresponding values for Clone DN trees at the end of the third growing season (1994), these clonal differences gradually decreased in subsequent years and were not detectable after 5 years, because stem volume relative growth rate of Clone DN was greater than that of Clone TD in all treatments. Although both clones exhibited similar predawn leaf water potentials, Clone DN typically maintained higher midday leaf water potentials, suggesting better stomatal control of water loss. Clonal and treatment differences in osmotic potential at full turgor were minimal and could not explain the clonal differences in drought resistance. Root density and root density to stem volume ratio increased more in response to moderate drought in Clone DN than in Clone TD, resulting in enhanced drought resistance (high stem volume growth rate under moderate drought conditions) and an increased capacity to withdraw water from the soil. We conclude that the greater drought resistance of Clone DN compared with Clone TD was the result of the maintenance of a more favorable water balance by stomatal regulation and greater carbon allocation to roots during the early stages of drought. However, the low root density to stem volume ratio in Clone DN growing in the 46-cm irrigation treatment suggests that severe water limitation restricted the preferential allocation of carbon to belowground tissues, so that both root and shoot growth were constrained by severe drought.  相似文献   

14.
Ponderosa pine (Pinus ponderosa Dougl. ex P. Laws) forest stand density has increased significantly over the last century (Covington et al. 1997). To understand the effect of increased intraspecific competition, tree size (height and diameter at breast height (DBH)) and leaf area to sapwood area ratio (A(L):A(S)) on water relations, we compared hydraulic conductance from soil to leaf (kl) and transpiration per unit leaf area (Q(L)) of ponderosa pine trees in an unthinned plot to trees in a thinned plot in the first and second years after thinning in a dense Arizona forest. We calculated kl and Q(L) based on whole- tree sap flux measured with heat dissipation sensors. Thinning increased tree predawn water potential within two weeks of treatment. Effects of thinning on kl and Q(L) depended on DBH, A(L):A(S) and drought severity. During severe drought in the first growing season after thinning, kl and Q(L) of trees with low A(L):A(S) (160-250 mm DBH; 9-11 m height) were lower in the thinned plot than the unthinned plot, suggesting a reduction in stomatal conductance (g(s)) or reduced sapwood specific conductivity (K(S)), or both, in response to thinning. In contrast kl and Q(L) were similar in the thinned plot and unthinned plot for trees with high A(L):A(S) (260-360 mm DBH; 13-16 m height). During non-drought periods, kl and Q(L) were greater in the thinned plot than in the unthinned plot for all but the largest trees. Contrary to previous studies of ponderosa pine, A(L):A(S) was positively correlated with tree height and DBH. Furthermore, kl and Q(L) showed a weak negative correlation with tree height and a strong negative correlation with A(S) and thus A(L):A(S) in both the thinned and unthinned plots, suggesting that trees with high A(L):A(S) had lower g(s). Our results highlight the important influence of stand competitive environment on tree-size-related variation in A(L):A(S) and the roles of A(L):A(S) and drought on whole-tree water relations in response to thinning.  相似文献   

15.
We compared seasonal changes in maximum diurnal trunk shrinkage (MDS) with seasonal changes in midday stem water potential (Psi(s)) over three years in plum trees grown in differing drip-irrigated regimes. In well-irrigated trees, day-to-day variations in Psi(s) and MDS were related to evaporative demand. Reference equations were obtained to predict MDS and Psi(s) values for well-irrigated trees as functions of environmental conditions. A decrease in plant water status toward the end of the growing season occurred even in the well-irrigated trees, probably reflecting a reduced volume of soil wetted by the drip irrigation system. Thus, for the prediction of Psi(s), different reference equations are required for the fruit-growth and after-harvest phenological periods. A seasonal change in the relationship between MDS and Psi(s) was observed, which compensated for the decrease in plant water status such that well-irrigated trees had similar MDS values during both the fruit-growth and after-harvest periods. The influence of tree size on the relationship between MDS and Psi(s) was also investigated. For tree trunk diameters ranging between 8 and 13 cm, MDS increased 13% for each cm of increase in trunk diameter, as a result of the thicker phloem tissues of the larger trees. This finding may allow extrapolation of Psi(s) predictions based on empirical relationships with MDS to plum trees of different sizes.  相似文献   

16.
Effect of irrigation deprivation during the harvest period on the nonstructural carbohydrate (NC) content of dormant, mature, field-grown almond (Prunus dulcis (Mill.) D.A. Webb cv. Nonpareil) trees was studied. Roots, trunk, branches, spurs and stems of 12 trees were subsampled in February 1997, across a gradient of irrigation treatments (FI = fully irrigated, MS = moderately stressed and SS = severely stressed) to relate NC concentration to the degree of water stress experienced by individual trees during the previous (1996) harvest period. To assess the effect of water stress on whole-tree NC content, three dormant FI trees and three dormant SS trees were excavated on December 10, 1997, and dry weights and NC and N concentrations of the tree components were determined. Whole-tree biomass did not differ significantly between FI and SS trees, although SS trees tended to have less total dry weight. Although roots constituted just 13% of tree biomass, they stored 36 and 44% of tree NC and N contents, respectively. There were negative relationships between the seasonal minimum values of both midday (Psi(ms)) and predawn (Psi(pd)) stem water potentials during the harvest period and root NC content of dormant trees. Severe water stress during the harvest period resulted in a 26% reduction in NC content and a 50% reduction in biomass of current-year stems (> 5 cm in length) per tree. The reduction in NC content is consistent with the previously reported late season reductions in leaf function and persistence. The SS trees exhibited a reduction in NC content but not in N content per tree, indicating that late season accumulation of NC and N were uncoupled in trees subjected to severe harvest-period water stress.  相似文献   

17.
In the autumn of 1987, young balsam fir (Abies balsamea (L.) Mill.) and white birch (Betula papyrifera Marsh.) trees were thinned and their water relations followed during the next two growing seasons. At the beginning of the first summer following treatment, thinned trees of both species had lower osmotic potentials at full saturation (Psi(pi,sat)) and at turgor loss point (Psi(pi,tlp)) compared with controls. At this time, Psi(pi,sat) was linearly related to the percentage of full sunlight reaching the trees. A higher sugar concentration in leaves was an important component of the lower Psi(pi,sat) of thinned trees. For the other two sampling dates during the first growing season after treatment and all three sampling dates during the second growing season after treatment, little osmotic adjustment of the thinned trees relative to the control tress was observed in either species. The absence of osmotic adjustment during the second growing season following thinning suggests that other mechanisms were responsible for the acclimation of the treated trees to the higher atmospheric evaporative demand. Sapwood permeability (k) of white birch was higher than that of balsam fir, but no differences in k or in sapwood area were found between treated and control trees of either species. Predawn water potentials (Psi(pred)) of treated trees were less negative than those of controls.  相似文献   

18.
苹果树梨树腐烂病是对果树危害严重的一种病害,对果树生产造成了较大的威胁。通过对苹果树梨树腐烂病发生程度的相关性因素的分析,结果表明,苹果树梨树腐烂病的发生程度与果树大小年、树龄、果树生长状况、冻害的发生、土壤管理制度、修剪程度等都有十分密切的相关性:树龄1~10a的发病轻,20a以上的发病重;枝条发育不充实,不能自然落叶的果园发病重,枝条充分成熟的树体发病轻;易遭冻害的果园发病重;清耕不间作的果园发病重,间作的发病轻;重修剪的发病重,轻修剪的发病轻。  相似文献   

19.
This study considered the effects of thinning on the development of compression wood in stems of 35-year-old stand of Corsican pine (Pinus nigra L.). Part of the stand had been thinned at 5-yearly intervals and part left unthinned. Twenty trees each from the thinned and unthinned stands were randomly selected and felled. Measurements were made on tree height, stem diameter, stem slenderness and canopy depth. Wood samples were removed from the central part of the main log and cross-sectional measurements made on ring width, basic density and compression wood content. Cross-sectional area of compression wood was found to be three time higher in stems from the unthinned trees in comparison with those from the thinned trees. No significant differences in mean radial ring width or basic density were found between treatments. Correlations indicated that, with increasing in stem diameter, compression wood content increased in the unthinned trees, while a decline in compression was observed in the thinned trees. Tree height was also positively correlated with compression wood content in unthinned trees, while no equivalent relationship was observed in thinned trees. Observations from this study, while not conclusive, suggest that phototropic stimulus may be producing stem inclinations in the unthinned stand as trees compete for space in the canopy, whereas crown competition has been largely eliminated in the thinned stand; and that this is responsible for compression wood levels recorded in this study.  相似文献   

20.
Conceptual models accounting for the influence of source:sink ratio on water relations of trees are theoretically relevant from a physiological perspective and practically important for irrigation scheduling. Midday stem water potential of horticultural trees often declines with increasing crop load but the actual response depends on environmental, management and plant factors. Here we advance a quantitative synthesis of the response of stem water potential to crop load from the perspective of phenotypic plasticity, defined as 'the amount by which the expression of individual characteristics of a genotype are changed by different environments'. Data sets of stem water potential for contrasting crop loads were compiled for apple (Malus domestica L. Borkh.), olive (Olea europea L.), peach (Prunus persica L.), pear (Pyrus communis L.) and plum (Prunus domestica L.). Phenotypic plasticity of stem water potential was calculated as the slope of the linear regression between stem water potential for each crop load and the environmental mean of stem water potential across crop loads. Regression lines for trees with different crop load diverged with decreasing environmental mean stem water potential. For the pooled data, plasticity of stem water potential was a linear function of relative crop load. This represents a significant shift in perspective: the effect of crop load on the trait per se (stem water potential) is environmentally contingent, but the effect of crop load on the plasticity of the trait is not. We conclude that research on the effects of crop load on tree water relations would return more robust results if plant traits are considered from the dual perspective of the trait per se and its plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号