首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Monte Carlo computer simulation was used to investigate the conditions favouring doubled haploid breeding over conventional breeding of self-fertilizing crops. Two different systems of doubled haploid breeding and three systems of conventional breeding were compared for two criterion parameters, i.e., the probability of obtaining desirable genotypes and the expected genetic advance of selected lines. It was inferred that the efficiency of production of haploid and doubled haploid plants primarily determines the success of the doubled haploid breeding method. In doubled haploid breeding, about 1/5, hopefully 1/2 as many test plants need to be raised as in conventional breeding to achieve the same level of success. With this condition begin satisfied, the doubled haploid breeding method can efficiently be used when one or more of the following conditions are met: (i) a relatively small number of loci, presumably ten of less, is involved with the breeding objective concerned, (ii) desirable alleles are recessive to undesirable ones at most, if not all, of the segregating loci, and (iii) the genes are not strongly linked. It was confirmed that the doubling of haploids can better be applied to selected F2 plants rather than to F1 plants.  相似文献   

2.
Summary A haploid breeding program was initiated to develop doubled haploid salt tolerant rice breeding line via anther culture. Two sensitive breeding lines BR4608-R1-R2 and BR4909-R1-R2 were crossed with a salt tolerant line IR13146-13-3-3 to transfer its salt tolerant character to the doubled haploids.Anther from confirmed F1s of the two crosses were cultured in defined medium for callus induction and eventual plant regeneration. Fifteen doubled haploid (DH) lines were obtained from two crosses. Test for salt tolerance were done in vitro. Five out of 15 lines were found tolerant at the level of 8–10 decisiemens/m (ds/m) while the rests were sensitive to that level of salinity.Field experiment was conducted to evaluate the doubled haploids under saline and non saline soil. Five salt tolerant lines produced comparable yield with the resistant control (BR 23) under saline condition, whereas these lines yielded even higher in non saline soil under irrigated condition when evaluated with other 10 sensitive DH linesAbbreviations LSD Least Significant Difference - NAA Napthalene Acetic Acid  相似文献   

3.
Summary The segregation of 12 heterozygous isozyme markers was analyzed among F2 plants and 51 anther culture (AC)-derived lines obtained from the japonica × indica cross of rice, IRAT 177 × Apura. All the lines except two were homozygous products of recombination of the two parental phenotypes. Doubled haploid (DH) lines derived from plants regenerated from the same callus were identical, confirming previously obtained results in rice. Surprisingly, some lines derived from different calli were also identical, suggesting a phenomenon of early callus fragmentation. All these observations at the isozyme level were confirmed by field evaluation. Deviations of segregations from the expected 1 : 1 ratio were observed at 4 loci among the DH lines. Among these, two were also noted among the F2 plants. The two other distortions, both in favor of the japonica allele, were observed specifically in the AC-derived materials.Although this concerns a small proportion of the genes under study, it suggests that the embryogenic microsporal population does not represent a random gametic array. On the other hand, evaluation of recombination between isozyme genes located on chromosome 6 appears consistent with F2 data and data previously recorded on the other japonica × indica crosses. The potential use of isozymes in breeding doubled haploids derived from remote crosses in rice is discussed.Abbreviations MCPA = 2-methyl-4-chlorophenoxyacetic acid - IAA = indolacetic acid - AC plant or line = anther culture-derived plant or line - DH line = doubled haploid line  相似文献   

4.
A total of 147 simple sequence repeat (SSR) markers (including86 barley and 61 wheat microsatellite markers) were tested for their segregation in a doubled haploid (DH) and an F2 population of barley. The DH population consisted of 71 doubled haploid lines, developed from F1 plants of a cross between Tadmor and WI2291using isolated microspore culture technique. A genetic linkage map consisting of 43 microsatellite markers was constructed using the DH population. Particularly on chromosome 4H microsatellite markers showed distorted segregation ratios. Segregation of DH lines based on molecular markers were compared with segregation of 92 F2 lines from the same cross. The proportion of loci deviating from the expected monogenic segregation ratios in the DH population was significantly higher (19/43loci, 44%) than in the F2 population (7/43 loci, 16%). The deviation was biased towards the WI2291 parent alleles. In line with this observation, WI2291 was found to perform better than Tadmor in regenerating green plantlets with the isolated microspore-culture technique. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Isolated microspore cultures from two doubled haploid (DH) lines of wheat, Triticum aestivum L., were used to develop an in vitro chromosome-doubling protocol. During the initial 24 h or 48 h of culture the microspores were treated with either of the two antimicrotubule herbicides trifluralin or amiprophos-methyl (APM) in concentrations ranging from 0.1 μM to 10μM. Untreated control cultures yielded 209 embryos per 100000 microspores, which is the equivalent of one spike. Among the regenerated plantlets 67% were green, and 15% of the flowering plants were spontaneously chromosome doubled. Treatments with both the herbicides had a significant effect on chromosome doubling, measured as the percentage of fertile regenerants. With the best combination of treatment duration (48 h) and herbicide concentration (10/μM) the percentage of fertile plants among regenerants could be increased up to 74% with APM and up to 65% with trifluralin. The largest numbers of DH plants per spike could be obtained with herbicide concentrations at 1–3 μM. Treatments with either herbicide at these concentrations resulted in an estimated average between the two genotypes of 27 DH plants per 100 000 microspores. These results demonstrate the high potential of APM and trifluralin as chromosome-doubling agents in isolated microspore cultures. The in vitro treatment integrated into tissue culture procedures will constitute an efficient method for chromosome doubling in future wheat breeding  相似文献   

6.
G. Mülier    T. Böhme    H. Borschel    U. Vahl  A. Wiberg 《Plant Breeding》1990,104(4):272-280
Anther culture in the breeding process of winter wheat. III. Ability of winter wheat F1 populations with the two heterozygous 1AL–IAS/1AL–IRS and 1BL–1BS/1BL–IRS chromosome pairs Application of anther culture to four F1 hybrids between the IBL–IRS (‘Amigo’) and several 1BL–IRS wheat-rye translocation forms yielded 129 green pollen plants in an average embryo induction frequency of 17.6 %. A total of 2632 anthers was inoculated. 25 % and 42 % of the regenerated plants were haploid and spontaneously doubled haploid, and 33 % had abnormal chromosomal structure. After chromosome doubling treatment 87% of all pollen plants set seeds. By means of multiple peroxidases and Giemsa C-banding patterns, the anther culture progeny could be further classified into 16 plants without the short arm of IR-chromosome of rye, 21 IAL–IRS and 50 1BL–IRS translocation lines and into 16 IAL–IRS, IBL–IRS double translocation lines according to the four possible characteristic types of F2 gametes of the tested F1 hybrids. Advantages of the haploid technique for the selection of desirable traits and the meaning of the IRS genes in wheat are discussed.  相似文献   

7.
Summary Wheat doubled haploid (DH) lines were produced from the F1 hybrid, Fukudo-komugi x Oligo Culm, through intergeneric crosses between wheat and maize. F2 plants and 203 DH lines were analyzed for the segregation of the eight genetic markers, namely, grain proteins, grain esterases, GA-insensitivity and glume traits. The segregation in the F2 plants fitted to the expected ratios. No deviation was observed among the DH lines, either, except for the glume pubescence. The result indicates the absence of correlation between the markers investigated and the efficiency of embryo formation in the DH lines.  相似文献   

8.
This study was conducted to expedite disease-resistance breeding in canola by screening haploid plants against blackleg disease. Microspore-derived haploid plantlets from 14 unrelated crosses were inoculated with Leptosphaeria maculans pycnidiospores and were rated as resistant, intermediate or susceptible. Blackleg-inoculated and control haploid plants were then colchicine-treated to produce doubled haploid (DH) lines. The DH lines thus produced were again screened against blackleg using the cotyledon bioassay. In general, the proportion of the resistant DH lines derived from selected resistant haploid plants was much higher than the proportion of resistant DH lines from control haploid populations. There was no detrimental effect on the survival of haploid plants after the combined treatment of blackleg inoculation and colchicine. The importance of the micro-environment on the final outcome of plant-pathogen interaction in case of non-obligate pathogens is also discussed.  相似文献   

9.
In cereals, chromosome doubling of microspore-derived haploid plants is a critical step in producing doubled haploid plants. This investigation was undertaken to study the effect of incorporation of colchicine in the induction medium for anther culture, and the effect of colchicine on anther culture-derived plants of triticale grown under controlled greenhouse conditions. In the latter case, chromosome doubling of adult sterile plants derived from anther culture of fourteen triticale populations was attempted, where androgenetic plants with non-dehiscent anthers were cloned and subjected to the colchicine treatment, and then grown with the aid of hydroponics. The hydroponic system provided optimal conditions for recovery of the affected haploids from the toxic effects of colchicine treatment and all colchicine-treated plants survived. A topcross-F1 (TC1F1) population with timopheevii cytoplasm produced the highest percentage of plants with seed-set either due to chromosome doubling by colchicine (98%) or spontaneous doubling of chromosome number (15%). Colchicine-treated anthers performed inferior than control in both induction and regeneration phases. One of the key observation of this study was the reversal from reproductive stage back to the vegetative stage which in turn enabled further cloning of haploid plants under hydroponic conditions once they were identified as sterile. The one hundred percent survival rate of in vitro-derived plants, 100% survival rate of colchicine treated haploid plants and the high chromosome doubling success rate (X = 82.3) observed in this study imply that a temperature-controlled greenhouse with an hydroponic system provides an efficient environment for inducing chromosome doubling of haploid plants in cereals. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
A total of 316 doubled haploid lines (DH) of spring wheat were compared with 621 lines selected in a pedigree system (PS) under field conditions in a breeding nursery. The lines originated from 21 crosses and the samples tested represent mean values for variables comprising the main breeding goals such as disease resistance, baking quality, and agronomic traits. In general, the DH lines were later in days to heading and shorter than PS lines of different homozygosity levels. Except for leaf rust (Puccinia recondite), the DHs were more resistant to the artificially infected diseases such as powdery mildew (Erysiphe graminis), stripe rust (Puccinia striiformis), and septoria nodorum blotch (Septoria nodorum). These differences, which were relatively small for practical selection purposes, were probably due to easier and more precise disease assessment of the homozygous DH lines. For quality characters, the DHs had a higher protein level, while the rest of the parameters were similar for both origins. The data analyzed suggest so far that androgentic doubled haploids in spring wheat are very similar to lines selected in a pedigree system in respect to all the agronomic characters tested. However, the DH lines were produced in a much shorter period of time. It is suggested that androgenetic doubled haploids be produced from F1 hybrids and that the well-established bulk method should continue to allow selection bulk method should continue to allow selection for rare recombinants as soon as homozygosity is reached.  相似文献   

11.
RAPD markers linked to a clubroot-resistance locus in Brassica rapa L.   总被引:10,自引:0,他引:10  
Linkage of random amplified polymorphic DNA (RAPD) markers with resistance genes to clubroot (Plasmodiophora brassicae Wor.) in Brassica rapa L. was studied in a doubled haploid (DH population obtained by microspore culture. Thirty-six DH lines were obtained from F1 plants from a cross between susceptible ‘Homei P09’ and resistant ‘Siloga S2’ plants. ‘Homei P09’ was a DH line obtained by microspore culture of the Chinese cabbage variety ‘Homei’, which is highly responsive in microspore culture. The resistant line ‘Siloga S2’ was obtained by two rounds of selfing of the fodder turnip ‘Siloga’. Three RAPD markers, RA12-75A, WE22B and WE49B, were found to be linked to a clubroot-resistance locus. These three markers were linked in the DH lines and an F2 population and should be useful for marker-assisted selection in breeding programs. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The use of doubled haploids (DHs) in maize has become ubiquitous in maize breeding programmes as it allows breeders to go from cross to evaluation in as little as 2 years. Two important aspects of the in vivo DH system used in maize are as follows: (i) the identification of haploid progeny and (ii) doubling of the haploid genome to produce fertile inbred lines. This study is focused on the first step. Currently, identification of maize haploid progeny is performed manually using the R1‐nj seed colour marker. This is a labour‐intensive and time‐consuming process; a method for automated sorting of haploids would increase the efficiency of DH line development. In this study, six inbred lines were crossed with the maternal haploid inducer ‘RWS/RWK‐76’ and a sample of seed was sorted manually for each line. Using the VideometerLab 3 system, spectral imaging techniques were applied to discriminate between haploids and hybrids. Using DNA markers to confirm the haploid/diploid state of the tested seed, for the majority of genotypes haploid identification was possible with over 50% accuracy.  相似文献   

13.
Greenbug is one of the most aggressive pests of barley and wheat. In Argentina, yield losses of wheat, barley, oat and sorghum crops caused by greenbug are chronic and at times severe. Since Marker Assisted selection for greenbug resistance genes in barley is very limited, the purpose of the current study was to map greenbug resistance genes in doubled haploid (DH) lines and to identify candidate genes. A set of DH lines of the Oregon-Wolfe Barley (OWB) mapping population derived from the cross between OWBDOM and OWBREC and both parental lines were screened for tolerance to greenbug. There was significant variation among the DH lines in foliar area (FA), dry weight (DW) and chlorophyll contents (Ch) between infested and control DH lines. Three main QTLs were identified. These QTLs explained 82 % of the FA, 80 % of DW and 58 % of Ch variability of infested plants. The initial and final FA and DW of controls and final DW of infested plants were associated with the same molecular markers on chromosome 2H (Vrs1, BmAc0144f, GBR259, GBS705). The final FA of infested plants was significantly linked to molecular markers on chromosome 5H (GBRO986, GBR518, GBM1483, GBR1082). The positive alleles were provided by OWBDOM. The content of chlorophyll of infested plants was associated with the marker loci Ris44, GBR1608, GBR1637N and GBS0785 on chromosome 7H, with the positive alleles provided by OWBREC. Both parents contributed to different tolerance traits. The QTLs found in this population are new greenbug resistance loci. A sequence homology search was performed to derive the putative function of the genes linked to the QTLs.  相似文献   

14.
Doubled haploid lines derived from anther culture of two Iranian spring wheat genotypes‘Ghods’susceptible and‘9106’resistant to yellow rust in Iranian field conditions, and their F1 hybrids were used in this study. Seedlings of 36 doubled haploid lines, selected out of 96 according to their agronomic traits and the two parental genotypes were inoculated with eight races of yellow rust. The parental genotypes (‘Ghods’and‘9106’) were segregating for some of the races but their doubled haploid lines were either resistant or susceptible to them.‘Ghods’was susceptible to three of the races studied but three doubled haploid lines derived from it were resistant to them. Five selected doubled haploids from the‘9106’genotype and six from F1 hybrid plants were resistant to all eight races tested. After further investigations in Iranian field conditions it was found that some of these lines can be used as donor genotypes for resistance to yellow rust in wheat breeding programmes. Use of these genotypes should be possible if the French yellow rust races used for selection also represent the dominant races in Iran. It can be concluded that anther culture provides an efficient method for fixing genes of resistance to yellow rust and desirable doubled haploids from F1 plants can be derived.  相似文献   

15.
Cucumber is one of the most important vegetable crops worldwide, which makes it a good candidate to produce doubled haploid (DH) lines to accelerate plant breeding. Traditionally, these approaches involved induction of gynogenesis or parthenogenesis with irradiated pollen, which carries some disadvantages compared to androgenesis. Despite this, studies on anther/microspore cultures in cucumber are surprisingly scarce. Furthermore, most of them failed to unambiguously demonstrate the haploid origin of the individuals obtained. In this work we focused on anther cultures using two cucumber genotypes, different previously published protocols for anther culture, different in vitro culture variants to make it more efficient, and most importantly, a combination of flow cytometry and microsatellite molecular markers to evaluate the real androgenic potential and the impact of anther wall tissue proliferation. We developed a method to produce DH plants involving a bud pretreatment at 4 °C, a 35 °C treatment to anthers, culture with BAP and 2,4-D, and induction of callus morphogenesis by an additional 35 °C treatment and sequential culture first in liquid medium in darkness and second in solid medium with light. We also found that factors such as genotype, proliferation of anther wall tissues, orientation of anthers in the culture medium and growth regulator composition of the initial anther culture medium have a remarkable impact. Our rate of chromosome doubling (81%) was high enough to exclude additional chromosome doubling steps. Together, our results present androgenesis as an improvable but yet more convenient alternative to traditional gynogenesis and parthenogenesis-based approaches.  相似文献   

16.
双单倍体(doubled haploid,DH)育种技术具有加速育种进程的突出优势,已成为玉米育种关键性核心技术并在国外广泛应用.本试验选用47份玉米地方种质,进行单倍体诱导和单倍体加倍特性研究.结果表明,47份玉米地方种质材料之间杂交诱导的拟单倍体率有显著差异,介于1.64%~14.50%之间,平均为5.95%.种植12份玉米地方种质的拟单倍体籽粒进行田间鉴定,标记鉴定准确率介于40.2%~82.3%之间,校正单倍体诱导率介于2.33%~6.45%之间,表明玉米遗传背景影响到籽粒标记的表达,单倍体诱导率有明显差异.将15份玉米地方种质拟单倍体于冬季在海南田间种植,加倍授粉株率介于2.7%~27.2%之间,加倍结实株率介于0.7%~8.9%.说明我国玉米地方种质的遗传多样性丰富,单倍体诱导率和加倍率具有明显差异,利用DH育种技术可以拓宽和加强我国玉米地方种质在玉米育种中的利用.  相似文献   

17.
To assess the usefulness of the doubled haploid (DH) method in the breeding of forage grasses, a sample of anther-derived progeny of pentaploid F1 hybrids of Festuca arundinacea × Lolium multifiorum was karyotyped using genomic in situ hybridization (GISH). The technique allowed scoring of the total number of chromosomes, the number of chromosomes contributed by each parent, and the number and positions of the Festuca-Lolium translocation breakpoints. Among 27 plants analysed, 13 belonged to three clones, effectively reducing the number of different progeny karyotyped to 17. These included 10 haploids, five doubled haploids and two plants for which the origins could not be explained. In all plants analysed, a mixture of chromosomes of both parents was present, including an average of 1.88 intergeneric translocations per plant. The translocation breakpoints were distributed along almost the entire length of the chromosome arms. Chromosome variation among androgenic progeny appeared much wider than that in the conventional backcross but low vigour and high mortality suggest that this additional variation may be difficult to exploit directly in breeding. However, a change in the pattern of recombination makes the entire genome accessible to manipulation.  相似文献   

18.
The induction of haploid plants from F1 hybrids between CMS shallot with Allium galanthum cytoplasm and common onion was examined. Starting with 535 unpollinated flowers cultured in B5 medium 25 seedlings from part henogenetic embryos were obtained of which 13 seedlings survived. Eleven seedlings were determined as haploid plants (2n = x = 8) and 2 seedlings were doubled haploid plants (2n = 2x = 16). All haploid and doubled haploid plants preserved chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) from A. galanthum. Segregation in different characters was observed among the haploid plants. The haploid and doubled haploid plants exhibited the different combinations of genes from shallot and common onion. Crossing of the doubled haploid plants with other shallot strains, common onion cultivars or related species may produce excellent F1 hybrids for bulb production. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Summary The doubled haploid (DH) system and the single seed descent (SSD) technique are frequently applied in breeding of self-pollinated crops to rapidly obtain homozygous lines from heterozygous hybrids. This study presents a comparison of populations of barley DH and SSD lines in terms of traits of stem structure. The SSD and DH lines derived from F1 and F2 hybrids Roland x Apex were examined in a field experiment. On the basis of a comparison of means, variances and correlations between traits in the F1DH, F2DH and SSD populations the occurrence/absence of linkage between genes responsible for the analysed traits was inferred. Independent inheritance was found for 1000-grain weight and the length of particular internodes, spike length and stem wall thickness. Moreover, no linkage was found for stem wall thickness and spike length, length of internodes I, II and thickness of stem walls, stem diameter and thickness of stem walls. The results obtained for the other pairs of traits indicate the presence of linkage.  相似文献   

20.
In plant breeding, androgenic doubled haploids represent powerful tools to save time and resources for pure line generation. While in many species efficient protocols are known, in tomato (Solanum lycopersicum), the knowledge on the induction of androgenesis is still very scarce, and little is known about the particularities of this highly recalcitrant species. The only known method capable of yielding haploid/doubled haploid tomato plants is anther culture. However, this method has important limitations, including low efficiency of haploid induction and a low proportion of spontaneously doubled haploids. To understand these limitations better, we have analyzed the process of callus formation in anthers of tomato lines carrying the ms10 35 gene for male-sterility, using light and electron microscopy, flow cytometry and genetic analysis with morphological and molecular markers. Our results demonstrate that haploid, doubled haploid and diploid calli occur in tomato anthers, although at different frequencies. Diploid calli derived either from somatic cells or from the fusion of two genetically different haploid nuclei account for more than 90% of the total of calli produced. Somatic calli are derived from the stubs of connective tissue present in the interlocular septa of anthers. This growth is markedly increased in the ms10 35 mutants, which explains their higher callogenic rates than standard tomato lines. Together, our results reveal serious drawbacks that explain the low efficiency of anther-derived, doubled haploid production in tomato, and stress the need for alternatives towards doubled haploidy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号