首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this work was to evaluate the effects of nitrogenous compounds and/or starch supplementation on the intake, digestibility and rumen dynamics of neutral detergent fibre (NDF) in cattle fed low-quality tropical forage. Four crossbred heifers (Holstein × Zebu) with a body weight 231.9 ± 15.5 kg and fitted with ruminal cannulae were used. The forage fed to the animals consisted of low-quality signal grass (Brachiaria decumbens Stapf.) hay, with an average crude protein (CP) level of 51.6 g/kg, on a dry matter (DM) basis. Four treatments were evaluated: control, without supplementation; supplementation with nitrogenous compounds (CP of the roughage was raised to 100 g/kg), on a DM basis; supplementation with starch at a ratio of 200 g/kg DM of roughage; and supplementation with nitrogenous compounds and starch as described above. A mixture of urea, ammonium sulphate and albumin was used as a source of nitrogenous compounds at a ratio of 4.5:0.5:1.0. The experiment was carried out according to a 4 × 4 Latin square design in a 2 × 2 factorial arrangement. There was a positive effect of the nitrogenous compound supplementation on the DM and NDF intake (P < 0.01). In contrast, starch supplementation decreased forage intake (P < 0.10). Nitrogen supplementation increased the digestibility coefficient of DM and NDF (P < 0.05). Supplementation with nitrogen and starch together increased the microbial assimilation of nitrogenous compounds in the rumen (P < 0.05). We observed that nitrogen supplementation increased the estimated weighted degradation rate of NDF by 14.8%, whilst starch supplementation decreased this rate by 32.5%.  相似文献   

2.
Background: There is little information in the tropics with regard the comparative understanding of how an increased nitrogen supply in the rumen or in the intestines affects efficiency of nitrogen utilization in cattle. This study evaluated the effects of supplementation with nitrogenous compounds in the rumen, abomasum, or both on intake, digestibility and the characteristics of nitrogen utilization in cattle fed tropical forage. Four rumen- and abomasum-fistulated Nellore bulls(227 ± 11 kg) were used. Four treatments were evaluated: control, ruminal supplementation(230 g/d of supplemental protein in the rumen), abomasal supplementation(230 g/d of supplemental protein in the abomasum), and ruminal and abomasal supplementation(115 g/d protein in both the rumen and the abomasum).The basal forage diet consisted of Tifton 85 hay with a crude protein(CP) level of 78.4 g/kg dry matter. Casein was used as a supplement. The experiment was conducted using a 4 × 4 Latin square.Results: There were no differences between the treatments(P 0.10) with regard to forage intake. The intake and total digestibility of CP increased(P 0.01) with supplementation. The nitrogen balance in the body increased(P 0.01) and muscle protein mobilization decreased(P 0.01) with supplementation, regardless of the supplementation site.The efficiency of nitrogen utilization did not differ among the treatments(P 0.10).Conclusions: The supplementation of cattle fed tropical forage with protein in the rumen, abomasum, or both similarly increased the nitrogen accretion in animal, which reflects improvements on nitrogen status in animal body.  相似文献   

3.
Twelve Hereford cows and four mature, ruminally cannulated Hereford x Angus heifers were fed supplements providing either 0 (control), 1, 2, or 3 kg/d of soybean hulls and including 440 g of protein/d (cottonseed meal was used to equalize protein intake) to determine the effects of supplementation on intake and utilization of low-quality native grass hay. Cattle were housed in individual pens and fed coarsely chopped (5-cm screen) native grass hay harvested in mid-November (4.1% CP, 76.9% NDF). Hay OM intake peaked (quadratic, P = .04) at 10.1 kg/d with 1 kg of soybean hulls and decreased when 2 kg (9.8 kg/d) or 3 kg (9.1 kg/d) of soybean hulls were fed. Although hay intake decreased when soybean hulls replaced cottonseed meal, feeding 3 kg soybean hulls decreased hay OM intake by only .64 kg. Total OM digestibility increased linearly (P = .009) with added increments of soybean hulls (45.8%, 46.2%, 46.6% and 48.6% for 0 through 3 kg soybean hulls/d, respectively), indicating that hulls were more digestible than the hay. Digestibility of NDF was not affected (P = .14) by level of soybean hull supplementation, although ADF digestibility increased (linear, P = .03). Increases in OM intake and digestibility with soybean hulls combined to increase digestible OM intake (linear, P = .0001). Soybean hull supplementation increased ruminal VFA concentrations (linear, P = .04) and the molar proportion of propionate (linear, P = .006).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Two trials were conducted to evaluate the effects of whole shelled corn supplementation on intake and digestibility of low-quality meadow hay by cattle. In Trial 1, four ruminally cannulated steers (avg BW 418 kg) were used in a latin square design with four treatments (no corn or corn fed at .25%, .50% or .75% of BW). Hay DMI decreased (P = .002) linearly .43 g for each gram of increase in corn intake. In contrast, total diet DMI increased (P = .001) linearly as level of corn supplementation increased. Apparent DM digestibility of the diet increased (P = .026) linearly, whereas hay DM digestibility was not affected (P greater than .05) by supplemental corn, although the DM digestion coefficient for hay alone was 24% higher than for hay fed with corn at .75% of BW. Ruminal ammonia concentration and pH were not affected (P greater than .05) by treatments; however, ratio of acetate:propionate and acetate:butyrate responded (P less than or equal to .097) quadratically to increased corn supplementation. Corn supplementation resulted in a cubic (P less than or equal to .081) decrease in meadow hay NDF disappearance from nylon bags suspended in the rumen at all incubation intervals after 4 h. In Trial 2, 45 crossbred, nonlactating, pregnant cows (avg BW 474 kg) were used in a completely randomized design with three treatments (no corn, .91 and 1.81 kg corn.hd-1.d-1). Cow performance was not altered (P greater than .05) by treatments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Four experiments were conducted to evaluate the influence of changing the proportion of supplemental degradable intake protein (DIP) from urea on forage intake, digestion, and performance by beef cattle consuming either low-quality, tallgrass prairie forage (Exp. 1, 2, and 4) or forage sorghum hay (Exp. 3). Experiments 1, 2, and 3 were intended to have four levels of supplemental DIP from urea: 0, 20, 40, and 60%. However, refusal to consume the 60% supplement by cows grazing tallgrass prairie resulted in elimination of this treatment from Exp. 1 and 2. Levels of supplemental DIP from urea in Exp. 4 were 0, 15, 30, and 45%. Supplements contained approximately 30% CP, provided sufficient DIP to maximize digestible OM intake (DOMI) of low-quality forage diets, and were fed to cows during the prepartum period. In Exp. 1, 12 Angus x Hereford steers (average initial BW = 379) were assigned to the 0, 20, and 40% treatments. Forage OM intake, DOMI, OM, and NDF digestion were not affected by urea level. In Exp. 2, 90 pregnant, Angus x Hereford cows (average initial BW = 504 kg and body condition [BC] = 5.0) were assigned to the 0, 20, and 40% treatments. Treatment had little effect on cow BW and BC changes and calf birth weight, ADG, or weaning weight. However, pregnancy rate tended to be lowest (P = 0.13) for the greatest level of urea. In Exp. 3, 120 pregnant, crossbred beef cows (average initial BW = 498 kg and BC = 4.6) were assigned to the 0, 20, 40, and 60% treatments. Prepartum BC change tended (P = 0.08) to be quadratic (least increase for 60% treatment), although BW change was not statistically significant. Treatment effect on calf birth weight was inconsistent (cubic; P = 0.03), but calf ADG and weaning weight were not affected by treatment. Pregnancy rate was not affected by prepartum treatment. In Exp. 4, 132 pregnant, Angus x Hereford cows (average initial BW = 533 and BC = 5.3) were assigned to the 0, 15, 30, and 45% treatments. Prepartum BC loss was greatest (quadratic; P = 0.04) for the high-urea (45%) treatment, although BW loss during this period declined linearly (P < 0.01). Prepartum treatment did not affect pregnancy rate, calf birth weight, or ADG. In conclusion, when sufficient DIP was offered to prepartum cows to maximize low-quality forage DOMI, urea could replace between 20 and 40% of the DIP in a high-protein (30%) supplement without significantly altering supplement palatability or cow and calf performance.  相似文献   

6.
7.
An in situ study (Exp. 1) using 4 ruminally cannulated steers (343 ± 11 kg of BW) in a completely randomized design was used to compare ruminal degradation characteristics of low-quality cool-season (C3; Kentucky bluegrass straw; Poa pratensis; 6.3% CP; DM basis) and warm-season (C4; tallgrass prairie; 5.7% CP; DM basis) forage. Four ruminally cannulated steers (252 ± 8 kg of BW; Exp. 2) and 4 wethers (38 ± 1 kg of BW; Exp. 3) were used in two 2 × 2 factorial arrangements of treatments to determine the influence of supplemental CP (CPSupp; soybean meal; 0.09 and 0.19% of BW, CP basis, for steers and lambs, respectively) on nutrient intake and digestion of C3 and C4 forages. Steers and wethers were allotted to separate 4 × 4 Latin squares that ran simultaneously with 20-d periods. In Exp. 1, C3 had a greater A fraction (fraction of total pool disappearing at a rate too rapid to measure) and effective degradability of DM and NDF compared with C4 (P < 0.01). In addition, C3 had a greater (P < 0.01) A fraction and effective degradability of N, whereas the C fraction (fraction of total pool unavailable in the rumen) was less (P < 0.01) than those for C4. Consequently, RDP accounted for 84.7% of total CP in C3 as compared with 66% for C4 (P < 0.01). In Exp. 2, a CPSupp × forage interaction (P < 0.01) was noted for forage and total DMI, with CPSupp increasing intake of C4 by 47% and intake of C3 forage by only 7%. Dry matter digestibility responded similarly, with a CPSupp × forage interaction (P = 0.05; CPSupp increased digestibility by 21% with C4 and by 9% with C3 forage). In addition, CPSupp × forage interactions were noted for ruminal liquid retention time (P = 0.02; CPSupp decreased retention by 3.6 h with C4 and by only 0.6 h with C3 forage) and particulate passage rate (P = 0.02; CPSupp increased passage by 46% with C4 and by 10% with C3 forage). As in Exp. 2, a CPSupp × forage interaction (P = 0.01; CPSupp increased digestibility by 18% with C4 and by 7% with C3 forage) was observed with DM digestibility in Exp. 3. In contrast, only N balance (P < 0.01) and N digestibility (P < 0.01) were affected by CPSupp. These data suggest that intake and digestion of low-quality C3 and C4 forages by ruminants are not similar and, more important, that the physiological response of ruminants to protein supplementation of low-quality forage is dependent on forage type.  相似文献   

8.
Our objectives were to compare the effects of sources of supplemental N on ruminal fermentation of dried citrus pulp (DCP) and performance of growing steers fed DCP and bahiagrass (Paspalum notatum) hay. In Exp. 1, fermentation of DCP alone was compared with that of isonitrogenous mixtures of DCP and solvent soybean meal (SBM), expeller soybean meal (SoyPLUS; SP), or urea (UR). Ground (1 mm) substrates were incubated in buffered rumen fluid for 24 h, and IVDMD and fermentation gas production kinetics and products were measured. Nitrogen supplementation increased (P < 0.10) ruminally fermentable fractions, IVDMD, pH, and concentrations of NH3 and total VFA, but reduced the rate of gas production (P < 0.10) and the lag phase (P < 0.01). Supplementation with UR vs. the soy-based supplements increased ruminally fermentable fractions (P < 0.05) and concentrations of total VFA (P < 0.10) and NH3 (P < 0.01), but these measures were similar (P > 0.10) between SBM and SP. In Exp. 2, 4 steers (254 kg) were fed bahiagrass hay plus DCP, or hay plus DCP supplemented with CP predominantly from UR, SBM, or SP in a 4 x 4 Latin square design, with four 21-d periods, each with 7 d for DMI and fecal output measurement. Nitrogen-supplemented diets were formulated to be isonitrogenous (11.9% CP), and all diets were formulated to be isocaloric (66% TDN). Intake and digestibility of DM, N, and ADF were improved (P < 0.05) by N supplementation. Compared with UR, the soy-based supplements led to greater (P < 0.05) DM and N intakes and apparent N and ADF digestibilities. Plasma glucose and urea concentrations increased (P < 0.10) with N supplementation and were greater (P < 0.01) for the soy-based supplements than for UR. Intake, digestibility, and plasma metabolite concentrations were similar (P > 0.1) for SBM and SP. In Exp. 3, 24 steers (261 kg) were individually fed bahiagrass hay plus DCP (control), or hay plus DCP supplemented with CP predominantly from UR or SBM. Over 56 d, DMI and ADG were greatest (P < 0.05) in steers fed SBM. Nitrogen supplementation increased (P < 0.05) DMI, ADG, and G:F. However, SBM supplementation produced greater (P < 0.05) DMI and ADG and similar (P > 0.05) G:F compared with UR supplementation. We conclude that supplemental N is important to optimize ruminal function and performance of growing steers fed forage diets supplemented with DCP. Diets with supplemental N mainly from SBM improved diet digestibility and animal performance beyond that achieved by UR.  相似文献   

9.
The aim of this work was to evaluate the effect of quebracho tannins extract (QTE) on feed intake, dry matter (DM) digestibility, and methane (CH4) emissions in cattle fed low-quality Pennisetum purpureum grass. Five heifers (Bos taurus × Bos indicus) with an average live weight (LW) of 295 ± 19 kg were allotted to five treatments (0, 1, 2, 3, and 4% QTE/kg DM) in a 5 × 5 Latin square design. Intake, digestibility, and total methane emissions (L/day) were recorded for periods of 23 h when cattle were housed in open-circuit respiration chambers. Dry matter intake (DMI), organic matter intake (OMI), dry matter digestibility (DMD), and organic matter digestibility (OMD) were different between treatments with 0 and 4% of QTE/kg DM (P < 0.05). Total volatile fatty acid and the molar proportion of acetate in the rumen was not affected (P < 0.05); however, the molar proportion of propionate increased linearly (P < 0.01) for treatments with 3 and 4% QTE. Total CH4 production decreased linearly (P < 0.01) as QTE increased in the diet, particularly with 3 and 4% concentration. When expressed as DMI and OMI by CH4, production (L/kg) was different between treatments with 0 vs 3 and 4% QTE (P < 0.05). It is concluded that the addition of QTE at 2 or 3% of dry matter ration can decrease methane production up to 29 and 41%, respectively, without significantly compromising feed intake and nutrients digestibility.  相似文献   

10.
Animals on pasture do not always have the opportunity for ad libitum consumption. Our objectives were to determine effects of intake level on digestibility of 12 grass hays, and to relate differences in intake and digestibility to proportions of leaf blade, leaf sheath and stem. In each of two periods, 24 wethers were offered one of 12 hays at three consecutive levels of feeding: (L1) ad libitum, allowing 15% refusal; (L2) restricted to 100% of hay consumed ad libitum by individual wether during L1; and (L3) 1.8% of BW on a DM basis. Hays offered included two sorghum-sudan, four barley, four oat and two pearl millet. Hays were similar in NDF concentration but differed in morphological composition Organic matter intake averaged 1.99 +/- .04, 1.79 +/- .04 and 1.52 +/- .01% of BW for L1, L2 and L3, respectively. Organic matter digestibilities averaged 71.8 +/- .55 72.4 +/- .60 and 72.3 +/- .65% for L1, L2 and L3, respectively. Intake SEM within hays were lower with restricted intakes (L3), whereas the opposite was observed for the SEM for digestibility. Forage morphological composition within feeding level influenced intake and digestibility by altering diet selection capabilities of wethers. Wethers did not consume equal NDF amounts, ranging form .95 to 1.47% of BW, because hays differed in morphological composition. Ash-free ADF and 72% sulfuric acid lignin were higher (P less than .01) in stem than in blade or sheath. In vivo digestibilities measured under restricted feeding conditions were related more closely (P less than .05) to in vitro estimates of digestibility than were digestibilities measured under ad libitum conditions (r = .72, .79 and .85 for L1, L2 and L3, respectively). This study demonstrates that variation in morphological characteristics of forages may account for part of the difference in voluntary intake of forages of similar chemical composition. New knowledge in this area will be valuable in developing improved forage quality prediction procedures.  相似文献   

11.
Thirty-two beef cows (467 kg) were individually fed native grass hay and supplement for two 14-d periods in each of 2 yr. Supplement treatments and amounts fed (kilograms/day) were negative control (NC), 0, or equal amounts of protein from soybean meal (SBM), .7; a blend of soybean meal and corn gluten feed (SBM/CGF), 1.0; or corn gluten feed (CGF) 1.6. Cows received supplement at 0645 and had ad libitum access to native grass hay from 0700 to 1130 and from 1530 to 2000. Compared with NC, all protein supplements increased (P less than .05) ruminal NH3, propionate and butyrate concentrations at 4 and 25 h postfeeding. Ruminal fluid pH, total VFA and acetate concentrations at 4 and 35 h postfeeding were not affected by supplements. All supplements increased (P less than .01) hay intake as well as hay, acid detergent fiber (ADF) and total diet dry matter (DM) digestibility. Compared to supplemental SBM, feeding CGF reduced (P less than .01) hay intake. Calculated daily intakes of metabolizable energy (ME) were 12, 17, 18, and 17 Mcal for NC, SBM, SBM/CGF and CGF, respectively. Hay intake, DM and ADF digestibility and ME intakes tended to be higher for SBM/CGF than for the average of SBM and CGF fed alone. Intakes of digestible DM and ADF were not altered by protein supplements, suggesting that intake responses were due to increased diet digestibility. Corn gluten feed appears to be an effective source of supplemental protein and energy for cows consuming low-quality roughage.  相似文献   

12.
按 2个 3× 3的拉丁方设计研究了利用舔砖进行多营养补充对黄牛氮平衡和草料营养物质消化率的影响。结果表明 :多营养补充可明显改善黄牛的增重速度 (P<0 .0 1)和饲料转化率 (P <0 .0 5) ,使黄牛的日增重在单喂稻草、氨化稻草和干草的基础上分别提高了2 4 .99%、16 .12 %和 2 2 .92 % ;可提高牛对草料中 DM、OM、CP、NDF和 ADF等成分的摄入量并减少这些成分的粪中排泄量 ;显著 (P<0 .0 5)提高草料中 DM、OM、NDF和 ADF的消化率和极显著 (P<0 .0 1)提高 CP的消化率 ;明显改善黄牛的氮平衡 ,显著 (P<0 .0 5)增加氮的摄入量和存留量 ,极显著 (P<0 .0 1)提高氮和蛋白质的利用率。说明多营养补充不失为提高养牛生产水平的有效途径  相似文献   

13.
Two experiments were conducted to determine the effects of ruminal protein degradability, supplementation frequency, and increasing dietary protein on the expression and distribution of urea transporter-B (UT-B) in lambs fed low-quality forage (mature crested wheatgrass hay; 4.2 to 4.7% CP). In Exp. 1, 15 Dorset wether lambs (initial BW=45.8+/-1.3 kg) were blocked by initial BW and assigned to 1 of 3 treatments within a randomized complete block design for 28 d, with supplements fed to achieve 7, 10, or 13% total dietary CP. In Exp. 2, 13 Dorset wether lambs (initial BW=34+/-4 kg) were used in a completely randomized design and given 1 of 4 isonitrogenous supplements: 1) ruminally degradable protein (RDP) fed daily (n=3), 2) RDP fed on alternate days (n=3), 3) ruminally undegradable protein (RUP) fed on alternate days (n=3), or 4) a 50:50 mixture of RDP and RUP fed on alternate days (n=4) for 18 d. Alternate-day treatments were fed at twice that of daily supplementation. On the last day of both experiments, lambs were killed and samples taken for Western blot analyses for UT-B. Immunoblotting using a rabbit polyclonal antibody to UT-B confirmed the presence of distinct 32-kDa (consistent with a nonglycosylated UT-B protein) and 47-kDa (probable N-glycosylated form of UT-B) protein bands in all 9 tissues analyzed. In both experiments, the liver, dorsal rumen, reticulum, and ventral rumen displayed strong bands at 32 kDa and lighter bands at 47 kDa, whereas the cecum, large colon, spiral colon, and parotid salivary gland displayed slight 32-kDa bands and stronger, more visible bands at 47 kDa. Both protein bands were apparent in the kidney at similar visual intensities in Exp. 1, whereas the relative intensities of the 2 UT-B bands in the kidney were variable, and appeared somewhat reciprocal among animals in Exp. 2. Although the abundance of the 47-kDa UT-B band in the ventral rumen was greater (P=0.03) in lambs fed RDP daily in Exp. 2, no other treatment differences (P >or= 0.15 to 0.99) in the abundance of the 32- or 47-kDa UT-B proteins within tissues were observed in either experiment. Although protein supplementation strategy had little effect on UT-B expression in tissues other than the ventral rumen, differences in the degree of glycosylation of UT-B across tissues may provide insight into its regulation.  相似文献   

14.
Two experiments were conducted to determine the effect of supplementation of xylanase to a wheat-based diet on the apparent ileal digestibility (AID) of AA and the performance of growing pigs fed diets limiting in AA. In Exp. 1, eight pigs (average initial BW = 20.5+/-1.2 kg) fitted with a simple T-cannula at the distal ileum, were fed four diets according to a repeated 4 x 4 Latin square design. Diet 1 was a basal diet that contained 97.6% wheat. Diets 2, 3, and 4 were the basal diet supplemented with xylanase at rates of 5,500, 11,000, and 16,500 units of xylanase activity (XU), respectively (as-fed basis). There were linear and quadratic effects (0.062 < P < 0.001) of xylanase supplementation on the AID of CP and most of the AA. The largest increases in AID of CP and AA were obtained when xylanase was supplemented at a rate of 11,000 XU; no further increases were observed with xylanase supplementation at a rate of 16,500 XU. In Exp. 2, 30 pigs (average initial BW 21.4+/-1.8 kg) were randomly allotted to six dietary treatments. Diets 1 to 4 were similar to those used in Exp. 1. Diet 5 was the same as Diet 1, but supplemented with 0.53% lysine, 0.12% threonine, and 0.05% methionine. Diet 6 (positive control diet) was a wheat-soybean meal diet that contained 18.2% CP (as-fed basis). The total contents of lysine, threonine, and methionine were similar for Diets 5 and 6. There was a linear effect of xylanase supplementation on ADG (P = 0.093) and feed:gain ratio (P = 0.089), and a quadratic effect on ADG (P = 0.067) and feed:gain ratio (P = 0.074). But, the greatest response was obtained with the supplementation of 11,000 XU. The supplementation of lysine, threonine, and methionine to Diet 1 increased (P = 0.001) ADG and ADFI and improved (P = 0.01) feed:gain ratio. There was no difference (P = 0.508) in the performance of pigs fed the AA-supplemented or control diet. In conclusion, the supplementation of xylanase to a diet in which wheat provided the sole source of protein and energy improved the AID of AA, ADG, and feed:gain ratio; however, this improvement was very small compared with that obtained with the supplementation of synthetic amino acids.  相似文献   

15.
16.
Two experiments were conducted to evaluate the impacts on forage use and beef cattle performance of incorporating divergent wheat milling by-products in a 30% CP supplement. The by-products were wheat bran (high fiber) and second clears (high starch). The by-products were added as 1) 100% wheat bran; 2) 67% wheat bran, 33% second clears; or 3) 33% wheat bran, 67% second clears to constitute approximately 47 to 49% of the supplement. In Exp. 1, 90 Hereford x Angus cows (BW = 554 kg) grazing winter, tallgrass-prairie range were fed the supplement treatments (2.27 kg/cow daily) from early December 1997 until calving (average calving date = 3/11/98). Cumulative BW and condition changes from trial initiation through calving were not significantly different among treatments. Similarly, significant treatment effects on cow pregnancy rates as well as calf birth weights, ADG, and ending weights were not evident. In Exp. 2, 16 ruminally fistulated Hereford x Angus steers (BW = 484 kg) were blocked by weight and assigned to one of the same three supplement treatments or to a negative control (forage only). Steers had ad libitum access to tallgrass-prairie hay (76.4% NDF, 3.1% CP) and were fed supplement at the same rate (relative to BW) as the cows in Exp. 1. Forage OM, NDF, and digestible OM intakes were lower (P < 0.01) for the negative control than for supplemented steers but were not significantly different among the supplemented steers. Digestion of OM was lower (P = 0.03) for the negative control than for supplemented steers, although significant treatment differences were not evident among the supplemented groups. Digestion of NDF was not affected (P = 0.49) by treatment. Within the context of the amount of supplemental protein offered, changes in the combination of wheat milling by-products in the supplement did not affect cow performance or intake and digestion of low-quality forage.  相似文献   

17.
Our objective was to determine the impact of supplemental energy, N, and protein on feed intake and N metabolism in sheep fed low-quality forage. Six Texel x Dorset wethers (16 mo, 63+/-3.1 kg) fitted with mesenteric, portal, and hepatic venous catheters were used in a Latin square design with five sampling periods. Lambs were fed chopped bromegrass hay (4.3% CP) to appetite, and a mineral mixture was given. Treatments were 1) control (no supplement), 2) energy (cornstarch, molasses, and soybean oil), 3) energy plus urea, 4) energy plus soybean meal (SBM), and 5) energy plus ruminally undegraded protein (RUP; 50:50 mixture of blood and feather meals). Supplements were fed once daily (.3% BW). Forage DMI did not differ (P = .13), but intake of total DM, N, and energy differed (P<.01) among treatments. Apparent digestibilities of DM, OM, and energy were less (P<.01) for control than for other treatments. Apparent N digestibility was least for control and energy and greatest for urea treatments (P<.05). As a result, digested DM, OM, and energy ranked from least to greatest were control, energy, urea, SBM, and RUP, respectively. Apparently digested N was 2.44, 2.24, 11.39, 9.80, and 11.25 g/d for control, energy, urea, SBM, and RUP (P<.01; SE = .10). Hour of sampling x treatment was a significant source of variation for blood concentrations of ammonia N and urea N, net ammonia N release from portal-drained viscera (PDV) and liver, and urea N release from splanchnic tissues. These results were primarily because patterns through time for the urea treatment differed from the other treatments. Net PDV release of alpha-amino N did not differ (P>.05) between control and energy treatments. Values for those treatments were about one-half of values for urea, SBM, and RUP treatments, which did not differ (P>.05). Hepatic net uptake (negative release) of alpha-amino N for control was 53% of values for the other treatments, which did not differ (P>.05). Net release of alpha-amino N from splanchnic tissues did not differ among treatments (P = .34) and did not differ from zero. The data indicate that arterial alpha-amino N concentration, hepatic alpha-amino N uptake, PDV release and hepatic uptake of ammonia N, and hepatic release of urea N were greater in energy than in control treatments. We also found that hepatic uptake of alpha-amino N was 187% of PDV release in energy-supplemented lambs. These results suggest that energy supplementation of a protein-limiting diet stimulated mobilization of body protein.  相似文献   

18.
19.
Two trials (feedlot and metabolism) were conducted to evaluate the influence of level of chopped tall fescue hay (FH) in high concentrate diets on average daily gain (ADG), liquid and particulate passage rates, digestibility and in situ digestibility of corn. In the feedlot trial, 36 Hereford steers were fed diets containing 15, 30 and 50% FH in combination with 74, 59 and 39% whole shelled corn (WSC) and a soybean meal supplement. Steers offered 15, 30 and 50% FH consumed 9.0, 9.0 and 7.6 kg dry matter (DM) per d; gained 1.19, .89 and .67 kg; and had DM to gain ratios of 7.6, 10.1 and 11.5, respectively. A negative correlation was observed between fecal pH and ADG (r = -.52) and between fecal pH and fecal starch (r = -.40). In a 4 X 4 Latin-square trial, four cannulated steers were fed 4, 8, 16 or 24% FH in combination with 86, 82, 74 or 66% WSC and a soybean meal supplement. After 14 d of adaptation, steers were offered ytterbium (Yb)-labelled WSC and were ruminally pulse-dosed with chromium ethylenediaminetetraacetic acid (Cr-EDTA) on the first day of the collection period. Steers fed 4, 8, 16 or 24% FH had the following particulate passage rates: 2.3, 2.7, 2.7 and 2.9%/h from fecal analyses; 2.3, 1.7, 2.4 and 2.8%/h from ruminal analyses; 6.0, 5.3, 6.3 and 8.1%/h for liquid, respectively. With increasing FH level, liquid passage rate exhibited linear and quadratic effects (P less than .05), while particulate passage rate (rumen sampling) showed linear and cubic effects (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Two in vivo digestibility trials with sheep were conducted to identify the minimum period length of feeding a new diet to obtain reproducible values of nutritional variables onward and the minimum length of collection period as to obtain maximal precision for each variable. Trial 1 was conducted with ten Polwarth male sheep (34 ± 5 kg body weight (BW)) throughout three 21‐day periods, in a completely randomized two‐way crossover design. The animals were divided into two groups (Group A and B, n = 5 per group) which were fed ad libitum with a sequence of the following diets throughout the periods: Group A: hay – hay plus concentrate – hay; Group B: hay plus concentrate – hay – hay plus concentrate. The concentrate was included in a proportion of 0.33 of the total diet. The intake, and the faecal and urinary excretion were measured daily throughout the experiment. For evaluating rumen fermentation variables, in Trial 2 four Santa Inês male sheep (65 ± 5 kg BW) fitted with ruminal cannula were used. The animals were randomly divided into two groups (n = 2 per group), and the trial was conducted through four 21 days experimental period, in a three‐way crossover design, using experimental diets and feeding management similar to Trial 1. The results indicated that, even though no clear or consistent steady‐state condition was identified for rumen fermentation or urinary excretion variables, the adaptation period for measuring OM digestibility in in vivo trials with sheep fed ad libitum where the diet shifts from one of only hay to another containing concentrate, or vice‐versa, should be at least 12 days long. Moreover, although no precision improvement was obtained by increasing the collection period above 1 day for measuring OM digestibility, the minimal length of collection period should be 4 days for measuring faecal excretion variables and 7 days for measuring urinary excretion variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号