首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 303 毫秒
1.
Cosmid clones containing human DNA inserts have been mapped on chromosome 11 by fluorescence in situ hybridization under conditions that suppress signal from repetitive DNA sequences. Thirteen known genes, one chromosome 11-specific DNA repeat, and 36 random clones were analyzed. High-resolution mapping was facilitated by using digital imaging microscopy and by analyzing extended (prometaphase) chromosomes. The map coordinates established by in situ hybridization showed a one to one correspondence with those determined by Southern (DNA) blot analysis of hybrid cell lines containing fragments of chromosome 11. Furthermore, by hybridizing three or more cosmids simultaneously, gene order on the chromosome could be established unequivocally. These results demonstrate the feasibility of rapidly producing high-resolution maps of human chromosomes by in situ hybridization.  相似文献   

2.
Rice is the world's most important food crop and a model for cereal research. At 430 megabases in size, its genome is the most compact of the cereals. We report the sequence of chromosome 10, the smallest of the 12 rice chromosomes (22.4 megabases), which contains 3471 genes. Chromosome 10 contains considerable heterochromatin with an enrichment of repetitive elements on 10S and an enrichment of expressed genes on 10L. Multiple insertions from organellar genomes were detected. Collinearity was apparent between rice chromosome 10 and sorghum and maize. Comparison between the draft and finished sequence demonstrates the importance of finished sequence.  相似文献   

3.
【目的】利用基因组荧光原位杂交(genomic in situ hybridization,GISH)技术,对黄瓜(Cucumis sativus L.,2n=2x=14)种内两个变种(栽培黄瓜C. sativus var. sativus和野生黄瓜C. sativus var hardwickii)进行中期染色体分析,建立黄瓜变种染色体核型的快速分析方法,为黄瓜细胞分子遗传学研究提供基础。【方法】以栽培黄瓜‘9930’和野生黄瓜C. sativus var. hardwickii为材料,利用CTAB法提取栽培黄瓜‘9930’的基因组总DNA,采用缺刻平移法,将栽培黄瓜‘9930’基因组DNA和45S rDNA分别利用地高辛和生物素标记为探针,与栽培黄瓜‘9930’和野生变种C.sativus var. hardwickii的中期染色体进行荧光原位杂交,根据杂交结果显示的栽培黄瓜与野生变种每条染色体GISH荧光带型的不同,结合45S rDNA位点信号特征,区分栽培黄瓜与野生变种的每条染色体,并进行核型分析。【结果】荧光原位杂交结果显示,GISH信号并非平均分布于所有染色体上,而是在不同染色体的特定部位产生独特的信号,且两个变种间中期染色体的GISH信号模式差异显著。在栽培黄瓜‘9930’有丝分裂中期染色体上,除了6号染色体仅在短臂末端和近着丝粒处产生GISH信号外,其他染色体上的GISH信号集中分布于染色体的两端和近着丝粒的一侧或两侧,且每条染色体的信号特征差异明显;45S rDNA信号主要分布于‘9930’的第1、2、3、4和7号染色体的近着丝粒处,有3对强信号和2对弱信号。在野生黄瓜C. sativus var. hardwickii有丝分裂中期染色体上,杂交信号的位置及强弱与栽培黄瓜‘9930’表现明显不同,近着丝粒处均有GISH信号,但仅在第1、2、4和5号染色体的一端产生GISH信号,45S rDNA信号仅出现在第1、2和3号染色体上,表现为第1号染色体上信号极强,第2和3号染色体上信号极微弱。这些结果显示,以栽培黄瓜基因组DNA为探针的荧光原位杂交能反应出两个变种中期染色体独特的信号分布模式,通过信号的分布模式和强弱,结合45S rDNA位点信号的特异分布,可对每条染色体进行清晰地鉴别,并据此建立了两个变种的核型模式。比较前人发表的黄瓜已有重复序列的分布图,发现GISH揭示的信号分布主要位于黄瓜染色体串联重复序列区域。【结论】黄瓜基因组原位杂交能一次性快速显示基因组串联重复序列的分布图,能有效地用于不同黄瓜变种的快速核型分析;同时发现染色体上串联重复序列的分布及强弱在黄瓜变种间表现出明显的分化。  相似文献   

4.
A view of interphase chromosomes   总被引:36,自引:0,他引:36  
  相似文献   

5.
In the parasitic wasp, Nasonia vitripennis, males are haploid and usually develop from unfertilized eggs, whereas females are diploid and develop from fertilized eggs. Some individuals in this species carry a genetic element, termed psr (paternal sex ratio), which is transmitted through sperm and causes condensation and subsequent loss of paternal chromosomes in fertilized eggs, thus converting diploid females into haploid males. In this report the psr trait was shown to be caused by a supernumerary chromosome. This B chromosome contains at least three repetitive DNA sequences that do not cross-hybridize to each other or to the host genome. The psr chromosome apparently produces a trans-acting product responsible for condensation of the paternal chromosomes, but is itself insensitive to the effect. Because the psr chromosome enhances its transmission by eliminating the rest of the genome, it can be considered the most "selfish" genetic element yet described.  相似文献   

6.
植物着丝粒的研究进展   总被引:1,自引:0,他引:1  
着丝粒是许多高等真核生物染色体的重要结构域之一,它的最内层是由串联重复的卫星DNA及其侧翼富集的中度重复元件组成。在整个真核生物类群中,不同物种间着丝粒的DNA序列千差万别,但其功能却相当保守,可确保在有丝分裂和减数分裂过程中染色体的正确分离和传递。近年来,植物着丝粒的结构、功能和进化方面的研究进展较快,故对此进行了综述。  相似文献   

7.
Fluorescence in situ hybridization (FISH) was applied to somatic chromosomes preparations of Oryza sativa L. (AA), O. glaberrima (AA), and O. officinalis Wall. (CC) with a labeled probe of C 0 t-1 DNA. Genomic in situ hybridization to its own chromosomes (self-GISH) was conducted in a control experiment. The homologous chromosomes showed similar signal bands probed by C 0 t-1 DNA, while karyotypic analysis of chromosomes between A genome in the two cultivated species and C genome in O. officinalis were conducted based on the band patterns. The ideograms with C 0 t-1 DNA signal bands were also built. The nonuniform distribution of hybridization signals of C 0 t-1 DNA from O. sativa and that on its own chromosome of O. officinalis were observed. However, the similarity and correspondence between C 0 t-1 DNA signal patterns and genomic DNA signal patterns indicated that the self-GISH signals actually resulted from the hybridization of genomic repetitive sequences to the chromosomes. The restriction fragment length polymorphism (RFLP) marker, R2676, from the chromosome 8 of O. sativa and O. officinalis, was used as a probe to somatic hybrid on chromosomes for comparative karyotypic analysis between O. glaberrima and O. officinalis. The results showed that R2676 was located on the short arm of chromosome 7 in O. officinalis and chromosome 4 in O. glaberrima. The percentage distances from the centromere to hybridization sites were 91.56±5.62 and 86.20±3.17. Our results revealed that the relative length of O. officinalis chromosome 8 does not follow conventional chromosome length in descending order of number. C 0 t-1 DNA of A genome signals were detected in the end of the short arm of O. officinalis chromosome 8, indicating that the highly and moderately repetitive DNA sequences in this region were considerably similar between C and A genomes. However, the fluorescence intensity on the chromosomes of C 0 t-1 DNA of A genome was less than that of its own C genome from O. officinalis, which would be one of the causes for the fact that highly and moderately repetitive DNA sequences were amplified in O. officinalis. No homology signal of C 0 t-1 DNA from O. sativa was detected in the end of the long arm of O. glaberrima, indicating that repetitive DNA sequences of A genome in two cultivated rice were lost in the evolutional history. In this paper, using comparative karyotypic analysis of RFLP combined C 0 t-1 DNA signal bands, the evolutionary mechanism of genome in genus Oryza was also discussed.  相似文献   

8.
High-precision genetic mapping was used to define the regions that contain centromere functions on each natural chromosome in Arabidopsis thaliana. These regions exhibited dramatic recombinational repression and contained complex DNA surrounding large arrays of 180-base pair repeats. Unexpectedly, the DNA within the centromeres was not merely structural but also encoded several expressed genes. The regions flanking the centromeres were densely populated by repetitive elements yet experienced normal levels of recombination. The genetically defined centromeres were well conserved among Arabidopsis ecotypes but displayed limited sequence homology between different chromosomes, excluding repetitive DNA. This investigation provides a platform for dissecting the role of individual sequences in centromeres in higher eukaryotes.  相似文献   

9.
Z1, Z2, Z3, Z4, Z5 and Z6 are alien addition lines to wheat involving Thinopyrum intermedium chromosomes. We have characterized the Thinopyrum intermedium chromosomes or segments in these lines using multi-color florescence in situ hybridization. The probes used included total genomic DNA of Pseudoroegneria stipfolia (St) and cloned probes of highly tandem repetitive DNA pSc119. 2 and pAs1. Disomic addition lines Z1, Z2 and Z6 have the same single pair of alien chromo-somes carrying the resistant gene(s) to barley yellow dwarf virus (BYDV). This alien chromosome is a St/E translocation; within the long arm, there is a big insertion of an E-genome chromosomalsegment (30%). Disomic addition line Z3 carries one pair of St/E Robertsonian translocation chromosomes ; on the short arm (E) there is a nuclear organizer region, which expresses in some cells. In Z5, the added chromosome is one pair of translocated chromosomes. Chromosomes 2D, 3D and 3Stwere involved in the translocation with great possibility〔2IS · 3DL (0. 47) - 3StL (0. 53)〕. The St segment is responsible for resistance to leaf and stem rusts. Addition line Z4 also carries the translo cated chromosome found in Z5, but in addition carries one pair of 7AS (0. 64) - 7StS (0. 36) · 7StL translocation chromosomes. The 7St fragment bears the stripe rust resistance, and replaces the normal 7A. All of the translocations in Z1, Z2, Z6 and Z3 existed in one of their parents, the wheat Th. intermedium partial amphiploid, Zhong 5. The two wheat-Th. intermedium translocations in Z4 and Z5 occurred during the backcrossing of Zhong 5 to the other wheat varieties in the development of the addition lines. Spontaneous homoeologous translocations showed a close genome relationship between wheat and Th. intermedium. This paper also demonstrated the potential of highly repetitive sequences DNA in verification and characterization of translocation chromosomes.  相似文献   

10.
The SpoIIIE protein of Bacillus subtilis is required for chromosome segregation during spore formation. The COOH-terminal cytoplasmic part of SpoIIIE was shown to be a DNA-dependent adenosine triphosphatase (ATPase) capable of tracking along DNA in the presence of ATP, and the NH(2)-terminal part of the protein was found to mediate its localization to the division septum. Thus, during sporulation, SpoIIIE appears to act as a DNA pump that actively moves one of the replicated pair of chromosomes into the prespore. The presence of SpoIIIE homologs in a broad range of bacteria suggests that this mechanism for active transport of DNA may be widespread.  相似文献   

11.
The univalent from the meiosis-metaphase spreads of F1 (Z2× wheat variety Wan7107) was identified to be Agropyrum intermedium 2Ai-2 chromosome by GISH. The 2Ai-2 chromosomes were microisolated and collected. After two rounds of PCR amplification, the PCR products were ranged from 150 - 3 000 bp,with predominant fragments at about 200 - 2 000 bp. Using Ag.intermediumgenomic DNA as a probe, Southern blotting analysis confirmed the products originated from Ag. intermediumgenome. The products were purified, ligated to pUC18 and then transformed into competence E.coli DH5α to produce a 2Ai-2 chromosome DNA library. The microcloning experiments produced approximately 5×105 clones, the size range of the cloned inserts was 200- 1 500 bp, with an average of 580bp. Using Ag. intermediumgenomic DNA as a probe, dot blotting results showed that 56% clones are unique/low copy sequences, 44% are repetitive sequences in the library. Four Ag. intermedium clones were screened from the library by RFLP, and three clones(Mag065, Mag088, Mag139)belong to low/single sequences, one clone(Mag104)was repetitive sequence, and GISH results indicated that Mag104 was Ag.intermedium species-specific repetitive DNA sequence.  相似文献   

12.
荧光原位杂交是一种原位杂交新技术,具有快速,灵敏,准确和有效等特点,它采用生物示记探针,能够将特定的DNA或RNA序列直接定位于染色体上,该文就荧光原位杂交技术在作物遗传育种研究中的应用进行综述,主要包括以下方面:1)检测重复DNA序列及多拷贝基因家族;2)鉴定异源多倍体物种中的异源染色体或染色体片段;(3)检测和定位低拷贝或单拷贝DNA序列。随着一些新技术的发展,FISH技术将会在作物育种的更多  相似文献   

13.
Pot1, the putative telomere end-binding protein in fission yeast and humans   总被引:1,自引:0,他引:1  
Baumann P  Cech TR 《Science (New York, N.Y.)》2001,292(5519):1171-1175
Telomere proteins from ciliated protozoa bind to the single-stranded G-rich DNA extensions at the ends of macronuclear chromosomes. We have now identified homologous proteins in fission yeast and in humans. These Pot1 (protection of telomeres) proteins each bind the G-rich strand of their own telomeric repeat sequence, consistent with a direct role in protecting chromosome ends. Deletion of the fission yeast pot1+ gene has an immediate effect on chromosome stability, causing rapid loss of telomeric DNA and chromosome circularization. It now appears that the protein that caps the ends of chromosomes is widely dispersed throughout the eukaryotic kingdom.  相似文献   

14.
甘蓝2号染色体的高分辨率5S rDNA荧光原位杂交   总被引:1,自引:0,他引:1  
 【目的】羽衣甘蓝5S rDNA 的染色体定位和拷贝数分析,为进一步利用FISH进行2号染色体基因定位和细胞遗传图谱构建奠定基础。【方法】以羽衣甘蓝为材料,采用荧光原位杂交技术将DIG标记的5S rDNA探针定位于不同分辨率的绒毡层细胞中期染色体、粗线期染色体以及伸长DNA纤维上。【结果】在中期染色体和粗线期染色体上,都同时获得3个杂交信号位点(a、b、c),且位于2号染色体的长臂近着丝粒区域,其信号强度为b>a>c;而在伸长DNA纤维上,出现了3种不同长度的念珠状长链(a、b、c), 其物理大小分别为257、359和134 kb,这3种长链分别与3个信号位点形成一一对应关系。【结论】在羽衣甘蓝2号染色体上存在3个串联重复位点,粗略估算出3个5S rDNA位点的拷贝数分别为510、712和266。  相似文献   

15.
Designing protein molecules that will assemble into various kinds of ordered materials represents an important challenge in nanotechnology. We report the crystal structure of a 12-subunit protein cage that self-assembles by design to form a tetrahedral structure roughly 16 nanometers in diameter. The strategy of fusing together oligomeric protein domains can be generalized to produce other kinds of cages or extended materials.  相似文献   

16.
One of the rewards of having a Drosophila melanogaster whole-genome sequence will be the potential to understand the molecular bases for structural features of chromosomes that have been a long-standing puzzle. Analysis of 2.6 megabases of sequence from the tip of the X chromosome of Drosophila identifies 273 genes. Cloned DNAs from the characteristic bulbous structure at the tip of the X chromosome in the region of the broad complex display an unusual pattern of in situ hybridization. Sequence analysis revealed that this region comprises 154 kilobases of DNA flanked by 1.2-kilobases of inverted repeats, each composed of a 350-base pair satellite related element. Thus, some aspects of chromosome structure appear to be revealed directly within the DNA sequence itself.  相似文献   

17.
Precision spectroscopy at ultraviolet and shorter wavelengths has been hindered by the poor access of narrow-band lasers to that spectral region. We demonstrate high-accuracy quantum interference metrology on atomic transitions with the use of an amplified train of phase-controlled pulses from a femtosecond frequency comb laser. The peak power of these pulses allows for efficient harmonic upconversion, paving the way for extension of frequency comb metrology in atoms and ions to the extreme ultraviolet and soft x-ray spectral regions. A proof-of-principle experiment was performed on a deep-ultraviolet (2 x 212.55 nanometers) two-photon transition in krypton; relative to measurement with single nanosecond laser pulses, the accuracy of the absolute transition frequency and isotope shifts was improved by more than an order of magnitude.  相似文献   

18.
Chromosome organization by a nucleoid-associated protein in live bacteria   总被引:1,自引:0,他引:1  
Wang W  Li GW  Chen C  Xie XS  Zhuang X 《Science (New York, N.Y.)》2011,333(6048):1445-1449
  相似文献   

19.
A genomic clone consisting of the Moloney leukemia proviral genome with moderately repetitive mouse sequences was microinjected into the pronucleus of a mouse zygote. An animal was derived that carried multiple copies of proviral DNA in a tandem array. No evidence for homologous recombination was obtained. The viral genome was expressed in this animal and was transmitted as a single unit to its offspring. Subsequent breeding studies revealed that the proviral DNA had integrated on an X chromosome.  相似文献   

20.
Repetitive DNA sequences form a large portion of eukaryote genomes. Using wheat ( Triticum )as a model, the classification, features and functions of repetitive DNA sequences in the Tritieeae grass tribe is reviewed as well as the role of these sequences in genome differentiation, control and regulation of homologous chromosome synapsis and pairing. Transposable elements, as an important portion of dispersed repetitives,may play an essential role in gene mutation of the host. Dynamic models for change of copy number and sequences of the repetitive family are also presented after the models of Charlesworth et al. Application of repetitive DNA sequences in the study of evolution, chromosome fingerprinting and marker assisted gene transfer and breeding are described by taking wheat as an example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号