共查询到20条相似文献,搜索用时 15 毫秒
1.
The expansion of atrazine‐resistant Chenopodium album (common lambsquarters) since the 1980s has forced New Zealand's maize‐growers to use an additional postemergence herbicide application. The frequent use of dicamba for this has selected for a common lambsquarters population with reduced sensitivity to dicamba. Initial greenhouse experiments with seeds that had been collected from the plants that survived field applications of dicamba showed that these plants could tolerate ≤1.2 kg ha?1, fourfold the recommended rate. These dicamba‐resistant plants were morphologically distinct from the susceptible population. The leaves of the resistant plants were less dentate and a lighter shade of green. The resistant plants were shorter, had a lower biomass and growth rate and flowered ≤19 days earlier than the susceptible plants. When grown together in various density ratios, the average biomass of both the susceptible and the resistant plants increased as the number of susceptible plants decreased in the mixture. The field experiments demonstrated that the resistant population tolerated dicamba at ≤2.4 kg ha?1, eightfold the recommended rate. Postemergence applications of bromoxynil, pyridate, nicosulfuron and mesotrione effectively controlled both populations. Nicosulfuron and mesotrione provided long‐term residual control, with nicosulfuron being more effective on the grass weeds. High rates of dicamba damaged the maize plants, resulting in an increased weed cover and reduced grain yield. The number of viable common lambsquarters seeds in the soil seed bank at the end of the growing season declined in the treatments in which common lambsquarters was controlled effectively. 相似文献
2.
Chenopodium album became a problem weed in sugar beet production, due to resistance to metamitron, a key herbicide in this crop. Dispersal of the seeds from resistant biotypes may occur due to spread by wind, animals, agricultural machinery or manure. This study examined the effect of ensiling, digestion by cattle and storage in slurry and farmyard manure on the germination and viability of the seeds of one susceptible and three resistant C. album populations. After 4 weeks in a maize silo, seed viability of C. album populations was reduced drastically to 0–5%. Incubation for 24 h in the rumen followed by a post‐ruminal digestion in vitro of intact seeds only resulted in a small reduction in viability in one C. album population. Storage in a slurry cellar for 16 weeks reduced the viability of intact seeds of the C. album populations to 25–60%. Only 0–1% of the seeds remained viable after storage in a farmyard manure heap for 4 weeks. An accelerated ageing experiment showed seed persistence to be population specific and less related to seed weight. Keeping a fresh maize silo closed for at least 4 weeks and heaping farmyard manure are excellent preventive measures to limit the spread of resistant C. album seeds between fields. 相似文献
3.
DNA sequence analysis of the psbA gene encoding the D1 protein of photosystem II (PS II), the target site of PS II-inhibiting herbicides, identified a point mutation (Asn266 to Thr) in a bromoxynil-resistant Senecio vulgaris L. population collected from peppermint fields in Oregon. Although this mutation has been previously reported in Synechocystis, this is the first report of this particular point mutation in a higher plant exhibiting resistance to PS II-inhibiting herbicides. The resistant population displayed high-level resistance to bromoxynil and terbacil (R/S ratio 10.1 and 9.3, respectively) and low-level resistance to metribuzin and hexazinone (R/S ratio 4.2 and 2.6, respectively) when compared with the susceptible population. However, the population was not resistant to the triazine herbicides atrazine and simazine or to the urea herbicide diuron. A chlorophyll fluorescence assay confirmed the resistance levels and patterns of cross-resistance of the whole-plant studies. The resistant S. vulgaris plants produced fewer seeds. Differences in cross-resistance patterns to PS II-inhibiting herbicides and the difference in fitness cost could be exploited in a weed management program. 相似文献
4.
BACKGROUND: Resistance to photosystem II inhibitors—triazines (atrazine) and triazinones (metamitron, metribuzin)—in Chenopodium album L. is caused by the serine 264 to glycine mutation in the D1 protein. This mutation has been detected in C. album collections from Belgium with unsatisfactory metamitron efficacy in the field and was confirmed in greenhouse resistance bioassays. Incomplete herbicide efficacy in practice can also be caused by reduced uptake due to environmental conditions. Hence, for reliable differentiation and resistance identification, a rapid method for mutation detection in the target gene psbA is required. RESULTS: Dose–response curves obtained in herbicide greenhouse assays with metamitron‐resistant and ‐susceptible reference biotypes showed that a dose of 2 L ha?1 metamitron was suitable for discrimination. A psbA PCR‐RFLP was developed, based on the presence of a FspBI restriction enzyme recognition site, covering D1 codon 264 in susceptible genotypes. A paper‐based DNA extraction allowed direct processing of leaf samples already in the field. In order to detect the mutation even in mixed seed samples, a nested PCR‐RFLP was also developed. CONCLUSION: The method allows exhaustive surveys screening C. album leaf or seed samples for the occurrence of the D1 Ser264Gly mutation to confirm or disprove metamitron resistance in the case of unsatisfactory control. Copyright © 2010 Society of Chemical Industry 相似文献
5.
Triazine resistance is reported to be due to chloroplast herbicide target insensitivity in most species, and this is most often caused by a Ser(264)-Gly mutation at the D1 protein. In order to ascertain whether this mutation is really predominant amongst resistant plants, and also for gene flow studies, a rapid test is needed that allows the testing of large quantities of plants. Here a bidirectional allele-specific PCR (polymerase chain reaction) identification is proposed. The designed primers were shown to be universal in the three grass and three broadleaf species examined. 相似文献
6.
7.
8.
Jewess PJ Higgins J Berry KJ Moss SR Boogaard AB Khambay BP 《Pest management science》2002,58(3):234-242
The main mode of herbicidal activity of 2-hydroxy-3-alkyl-1,4-naphthoquinones is shown to be inhibition of photosystem II (PSII). The herbicidal and in vitro activities have been measured and correlated with their (Log)octanol/water partition coefficients (Log Ko/w). The length of the 3-n-alkyl substituent for optimal activity differed between herbicidal and in vitro activity. The maximum in vitro activity was given by the nonyl to dodecyl homologues (Log Ko/w between 6.54 and 8.12), whereas herbicidal activity peaked with the n-hexyl compound (Log Ko/w = 4.95). The effect of chain branching was also investigated using isomeric pentyl analogues substituted at position 3. All exhibited similar levels of in vitro activities but herbicidal activities differed, albeit moderately, with the exception of one analogue that was much less phytotoxic. Other modes of action were also investigated using two representative compounds. They did not show any activity on photosystem I or mitochondrial complex I, or generate toxic oxygen radicals by redox cycling reactions. Only moderate activity was found against mitochondrial complex III from plants, in contrast to much higher corresponding activity using an insect enzyme. 相似文献
9.
A population of Bromus tectorum infesting an olive grove at Córdoba (Spain) survived simazine use rates of 3.0 kg a.i. ha−1 over two consecutive years. Non‐tillage olive monoculture and two annual simazine applications had been carried out for 10 years. The resistant biotype showed a higher ED50 value (7.3 kg a.i. ha−1) than that of the susceptible control (0.1 kg a.i. ha−1), a 73‐fold increase in herbicide tolerance. The use of fluorescence, Hill reaction, absorption, translocation and metabolism assays showed that simazine resistance in this biotype was caused by a modification of the herbicide target site, since chloroplasts from the resistant biotype of B. tectorum were more than 300 times less sensitive to simazine than those from the susceptible biotype. In addition, non‐treated resistant plants of B. tectorum displayed a significant reduction in the QA to QB electron transfer rate when compared with the susceptible biotype, a characteristic that has been linked to several mutations in the protein D1 conferring resistance to PS II inhibiting herbicides. Resistant plants showed cross‐resistance to other groups of triazine herbicides with the hierarchy of resistance level being methoxy‐s‐triazines ≥chloro‐s‐triazines > methylthio‐s‐triazines > cis‐triazines. The results indicate a naturally occurring target‐site point mutation is responsible for conferring resistance to triazine herbicides. This represents the first documented report of target site triazine resistance in this downy brome biotype. 相似文献
10.
11.
Clayton T Larue Michael Goley Lei Shi Artem G Evdokimov Oscar C Sparks Christine Ellis Andrew M Wollacott Timothy J Rydel Coralie E Halls Brook Van Scoyoc Xiaoran Fu Jeffrey R Nageotte Adewale M Adio Meiying Zheng Eric J Sturman Graeme S Garvey Marguerite J Varagona 《Pest management science》2019,75(8):2086-2094
12.
13.
Fabbri BJ Duff SM Remsen EE Chen YC Anderson JC CaJacob CA 《Pest management science》2005,61(7):682-690
The carboxyterminal processing protease of D1 protein (CtpA) is predicted to be an excellent target for a general broad-spectrum herbicide. The gene for spinach CtpA has been expressed in Escherichia coli. The expressed protein that was found mainly in inclusion bodies has been purified and refolded on a nickel-chelate column. Active recombinant CtpA was recovered. Two assays for CtpA activity were developed, a medium-throughput HPLC assay using a fluorescent substrate and a high-throughput assay based on fluorescence polarization capable of application in a high-throughput 96-well plate format. This high-throughput assay was developed to screen chemistry for CtpA inhibitors. Native spinach CtpA was partially purified and the native and recombinant enzymes were compared kinetically for their K(m) and V(max) values using different peptide substrates. Native CtpA partially purified from spinach was shown to have similar kinetic properties to recombinant CtpA. Antibodies developed against the recombinant protein were used to estimate the in planta abundance of the native enzyme in spinach. Since only a small proportion of the recombinant protein is refolded during isolation and it appears that only a small proportion of this enzyme is active, size-exclusion chromatography and light scattering experiments were performed on rCtpA in order to gain insight into its structure and the reasons why most of the protein is not active. The use of rCtpA to screen for herbicidal compounds and the more general question of how good a herbicide target the enzyme is are discussed. 相似文献
14.
Vijay Singh Luke Etheredge Josh McGinty Gaylon Morgan Muthukumar Bagavathiannan 《Pest management science》2020,76(11):3685-3692
15.
通过田间接虫、室内生测以及田间植株喷施草甘膦试验,在吉林省公主岭市综合评价了转cry1Ab/cry2Aj和G10evo-epsps基因抗虫耐除草剂复合性状玉米‘双抗12-5’对亚洲玉米螟[Ostrinia furnacalis(Guenée)]的抗性以及对草甘膦的耐受性,为‘双抗12-5’在吉林省产业化应用提供基础科学数据。结果表明,与非转基因对照‘郑单958’相比,‘双抗12-5’全生育期对亚洲玉米螟都具有良好的抗性,达到高抗水平;取食‘双抗12-5’心叶、雄穗及花丝等组织7d后的亚洲玉米螟幼虫存活率为4%~12%,而取食‘郑单958’各个组织的亚洲玉米螟幼虫存活率均高于96%。‘双抗12-5’在喷施推荐剂量(1 230g/hm2)及在2倍推荐剂量(2 460g/hm2)草甘膦情况下,4周内均生长正常,受害率为0;对照‘郑单958’植株第一周即表现出明显的药害症状,逐渐枯萎死亡,受害率达到100%。综上所述,‘双抗12-5’在吉林省表现出良好的抗虫性和除草剂耐受性。 相似文献
16.
BACKGROUND: Herbicide mixtures are commonly proposed to delay the selection of herbicide resistance in susceptible populations (called the SM strategy). However, in practice, herbicide mixtures are often used when resistance to one of the two active ingredients has already been detected in the targeted population (called the RM strategy). It is doubtful whether such a practice can select against resistance, as the corresponding selection pressure is still exerted. As a consequence, the effect of mixtures on the evolution of an already detected resistance to one of the herbicides in the combination remains largely unexplored. In the present work, a simple model was developed to explore further the necessary and sufficient conditions under which a binary RM strategy might stabilise or even reduce resistance frequency. RESULTS: Covering the hypothetical largest range of parameters, 39% of 9000 random simulations attest that the RM strategy might theoretically reduce resistance frequency. When strong enough, high genetic cost of resistance, negative cross‐resistance between the herbicides associated in the mixture and reduced selection differential between resistant and susceptible plants can counterbalance the resistance advantage to one of the two applied herbicides. However, the required conditions for an RM strategy to ensure resistance containment in natural conditions seldom overlap with experimental parameter estimates given in the literature. CONCLUSION: It is concluded that the sufficient conditions for an RM strategy to be effective would rarely be encountered. As a consequence, the strategy of formulating mixtures with herbicides for which resistance has already been detected should be avoided. Copyright © 2008 Society of Chemical Industry 相似文献
17.
18.
Ford L Baldwin 《Pest management science》2000,56(7):584-585
This communication discusses the current situation in the USA with regard to the growing of transgenic crops, with particular reference to soybeans, corn, cotton and rice. High costs of production and low prices require and greater production efficiency and transgenic crops help to achieve this goal, particularly with soybeans, cotton and rice. Copyright © 2000 Society of Chemical Industry 相似文献
19.
Cytochrome P450s (P450s) have been at the center of herbicide metabolism research as a result of their ability to endow selectivity in crops and resistance in weeds. In the last 20 years, ≈30 P450s from diverse plant species have been revealed to possess herbicide‐metabolizing function, some of which were demonstrated to play a key role in plant herbicide sensitivity. Recent research even demonstrated that some P450s from crops and weeds metabolize numerous herbicides from various chemical backbones, which highlights the importance of P450s in the current agricultural systems. However, due to the enormous number of plant P450s and the complexity of their function, expression and regulation, it remains a challenge to fully explore the potential of P450‐mediated herbicide metabolism in crop improvement and herbicide resistance mitigation. Differences in the substrate specificity of each herbicide‐metabolizing P450 are now evident. Comparisons of the substrate specificity and protein structures of P450s will be beneficial for the discovery of selective herbicides and may lead to the development of crops with higher herbicide tolerance by transgenics or genome‐editing technologies. Furthermore, the knowledge will help design sound management strategies for weed resistance including the prediction of cross‐resistance patterns. Overcoming the ambiguity of P450 function in plant xenobiotic pathways will unlock the full potential of this enzyme family in advancing global agriculture and food security. © 2020 Society of Chemical Industry 相似文献
20.
Herbicide safeners selectively protect crop plants from herbicide damage without reducing activity in target weed species. This paper provides an outline of the discovery and uses of these compounds, before reviewing literature devoted to defining the biochemical and physiological mechanisms involved in safener activity. Emphasis is placed on the effects of safeners on herbicide metabolism and their interactions with enzyme systems, such as cytochrome P450 mono-oxygenases and glutathione-S-transferases. Attention is drawn to the potential wide-ranging applications of safeners and, in particular, their use as powerful research tools with which to identify and manipulate those mechanisms which contribute to herbicide selectivity and resistance. © 1999 Society of Chemical Industry 相似文献