共查询到18条相似文献,搜索用时 93 毫秒
1.
采摘机器人基于支持向量机苹果识别方法 总被引:16,自引:2,他引:14
针对目前苹果采摘机器人果实识别过程误差大、处理时间长等问题,应用支持向量机(SVM)方法对苹果果实进行识别.首先采用矢量中值滤波法对苹果彩色图像进行预处理,然后运用区域生长算法和颜色特征相结合的方法进行图像分割,最后分别对苹果彩色图像的颜色特征、几何形状特征进行提取,并用支持向量机的模式识别方法识别苹果果实.实验结果表明:支持向量机识别方法的识别性能优于神经网络方法;综合颜色特征和形状特征的支持向量机识别方法对苹果果实识别的正确率高于只用颜色特征或形状特征的正确率. 相似文献
2.
为了实现果树挂果期的精准管理,针对树上苹果早期估产问题,以Gala苹果为研究对象,开展了对定果后的果树进行产量估测的研究,提出了一种图像处理结合支持向量机的树上苹果早期估产方法。首先在苹果园内获取定果后的果树树冠图像,此时的树上苹果颜色为绿色(本文称此时期为果树青果期);采用分析图像各颜色分量值分布图法,确定在YCb Cr颜色空间中,以Cb≤100与Cr≥120作为分割树冠图像中苹果的条件;从果树树冠图像中提取果实个数、果实面积、果实树叶比、受遮挡果实个数比例及受遮挡果实面积比例;以上述5个特征参数作为输入,实际产量为输出,利用支持向量机方法建立树上苹果早期估产模型。本文利用训练集(含50个样本)训练模型,预测产量与实际产量的决定系数R2达到了0.724 2,均方根误差RMSE为1.71 kg,平均绝对百分比误差MAPE为9%,平均预测误差MFE为0.21。利用测试集(含15个样本)测试模型,得到RMSE为2.45 kg,MAPE为13%。结果表明该模型不仅具有较好的预测精度与无偏性,且具有较好的鲁棒性,所采用的树上苹果早期估产方法可行。 相似文献
3.
4.
基于压缩感知理论的苹果病害识别方法 总被引:2,自引:0,他引:2
为实现自然场景下低分辨率苹果果实病害的智能识别,提出了一种基于压缩感知理论的苹果病害识别方法。以轮纹病、炭疽病和新轮纹病3种常见的苹果果实病害为研究对象,提取病斑的8个纹理特征参数组成训练特征矩阵。利用压缩感知理论,求解待测样本特征向量在特征矩阵上的稀疏表示系数向量,通过对系数向量的分析实现待测样本的分类。设计灰度关联分析和支持向量机识别模型与本文方法进行识别效果对比,平均正确识别率分别为86.67%、90%和90%。实验结果表明,基于压缩感知理论的识别方法能够对苹果病害进行有效识别。 相似文献
5.
为提高在近色背景下果实识别的准确性,减少非结构化因素对识别的影响,提出了基于近红外像机和可见光像机组合捕获多源图像进行融合的方法。首先对已配准的多源图像分别进行非下采样轮廓波变换(NSCT),得到高频系数与低频系数;对高频系数采用压缩融合,并通过CoSaMp恢复融合的高频系数;对低频系数进行小波分解,对分解的高频子带采用绝对值最大法进行融合;低频子带则采用基于几何距离和能量距离加权的融合方法,再通过小波逆变换得到融合的低频系数;最后对融合后的高、低频系数进行NSCT重构得到融合图像。试验结果表明,所设计方法有效地保留了图像的边缘轮廓,突出了图像的细节信息,在客观定量评价指标上均优于其他传统方法,其中与小波变换-非下采样轮廓波变换(DWT-NSCT)方法相比,最大提升达到15.59%。 相似文献
6.
基于可见光机器视觉的棉花伪异性纤维识别方法 总被引:1,自引:0,他引:1
为提高皮棉质量和皮棉中异纤的检测精度,提出了一种基于机器视觉的棉花伪异性纤维识别方法。皮棉经过开松装置被制成薄棉层,检测通道两侧的相机对棉层进行拍摄,并将采集到的棉层及异纤和伪异纤图像保存到工控机,通过图像分块及阈值分割等算法,提取伪异纤目标区域,统计获取区域的数个颜色、形状和纹理特征,基于特征数据,分别使用BP神经网络、一对一有向无环图策略线性核函数支持向量机和径向基核函数支持向量机对两大类棉花杂质进行分类识别。实验结果表明,99.15%的伪异纤目标可被准确识别,径向基核函数支持向量机在棉花异纤和伪异纤分类识别中,总分类正确率为95.60%,能够满足在线检测的要求。 相似文献
7.
苹果霉心病可见/近红外透射能量光谱识别方法 总被引:1,自引:0,他引:1
针对苹果霉心病从外表无法识别的难题,提出基于可见/近红外透射能量光谱进行快速无损识别的模型和方法。在200~1 100 nm波段内采集了200个苹果的透射能量光谱数据,随机选取140个样品作为训练集,剩余60个样品作为测试集。用平滑法和多元散射校正对光谱数据进行预处理。基于全光谱、连续投影算法(SPA)提取的12个特征波长、主成分分析(PCA)提取的9个主成分,分别建立了偏最小二乘判别法、误差反向传播人工神经网络和支持向量机(SVM)识别模型。实验结果说明,应用PCA-SVM建立的模型识别性能最优,该模型对测试集和训练集中霉心病果和健康果的识别正确率分别为99.3%和96.7%。基于SPA和PCA所建模型的输入变量数仅相当于基于全光谱所建模型输入变量数的0.99%和0.74%,极大降低了模型的复杂度。研究结果表明,该方法是可行的且具有较高识别准确度,为苹果在线内部品质分级和便携式苹果霉心病检测仪的研究提供了技术依据。 相似文献
8.
9.
为提高现有苹果目标检测模型在硬件资源受限制条件下的性能和适应性,实现在保持较高检测精度的同时,减轻模型计算量,降低检测耗时,减少模型计算和存储资源占用的目的,本研究通过改进轻量级的MobileNetV3网络,结合关键点预测的目标检测网络(CenterNet),构建了用于苹果检测的轻量级无锚点深度学习网络模型(M-CenterNet),并通过与CenterNet和单次多重检测器(Single Shot Multibox Detector,SSD)网络比较了模型的检测精度、模型容量和运行速度等方面的综合性能。对模型的测试结果表明,本研究模型的平均精度、误检率和漏检率分别为88.9%、10.9%和5.8%;模型体积和帧率分别为14.2MB和8.1fps;在不同光照方向、不同远近距离、不同受遮挡程度和不同果实数量等条件下有较好的果实检测效果和适应能力。在检测精度相当的情况下,所提网络模型体积仅为CenterNet网络的1/4;相比于SSD网络,所提网络模型的AP提升了3.9%,模型体积降低了84.3%;本网络模型在CPU环境中的运行速度比CenterNet和SSD网络提高了近1倍。研究结果可为非结构环境下果园作业平台的轻量化果实目标检测模型研究提供新的思路。 相似文献
10.
11.
基于随机森林算法的自然光照条件下绿色苹果识别 总被引:6,自引:0,他引:6
果实识别是自动化采摘系统中的重要环节,能否快速、准确地识别出果实直接影响采摘机器人的实时性和可靠性。为了实现自然光照条件下绿色苹果的识别,本文采集了果实生长期苹果树图像,并利用随机森林算法实现了绿色苹果果实的分类和识别。针对果树背景颜色和纹理特征的复杂性,尤其是绿色果实和叶片在很多特征上的相似性,论文基于RGB颜色空间进行了Otsu阈值分割和滤波处理,去除枝干等背景,得到仅剩果实和叶片的图像。然后,分别提取叶片和苹果的灰度及纹理特征构成训练集合,建立了绿色苹果随机森林识别模型,并使用像素模板验证数据集,对模型进行预测试验,正确率为90%。最后,选择10幅自然光照条件下不同的果树图像作为检测对象,使用该模型进行果实识别并使用霍夫变换绘制果实轮廓,平均识别正确率为88%。结果表明,该方法具有较高的鲁棒性、稳定性、准确性,能够用于自然光照条件下绿色果实的快速识别。 相似文献
12.
13.
为精准化管理果园,针对存在裸露土壤、遮蔽物、果树冠层阴影和杂草等复杂环境下难以提取导航线问题,通过无人机搭载多光谱相机获取苹果园影像数据后提取果树像元并进行全局果树行导航线提取。通过处理多光谱影像数据得到正射影像图(DOM)、数字表面模型(DSM)图像,选取并计算易于区分杂草与苹果树的归一化差异绿度指数(NDGI)、比值植被指数(RVI)分布图,构建DSM、NDGI、RVI融合图像后,综合利用过绿植被(EXG)指数和归一化差异冠层阴影指数(NDCSI)以阈值分割法剔除融合图像中土壤、遮蔽物、阴影等像元,降低非植被像元对果树提取的干扰。对比使用支持向量机(SVM)法、随机森林(RF)法和最大似然(MLC)法分别提取最终融合图像和普通正射影像中的苹果树像元,并计算混淆矩阵评价各识别精度。试验表明,MLC法对融合图像中果树的识别效果最优,其用户精度、制图精度、总体分类精度、Kappa系数分别为88.57%、93.93%、93.00%、0.8824;相对于普通正射影像,本文构建的最终融合图像使3种方法的识别精度均得到有效提升。其中,融合图像对RF法的用户精度提升幅度最大,为27.12个百分点;对SVM法的制图精度提升幅度最大,为9.03个百分点;对3种方法的总体分类精度提升幅度最低为13个百分点;对SVM法的Kappa系数提升幅度最大,为22.55%,且对其余两种方法的提升也均在20%以上。将本文得到的苹果树像元提取结果图像做降噪、二值化、形态学转换等处理后,以感兴趣区域划分法提取各果树行特征点,并以最小二乘法拟合各行特征点得到导航线,其平均角度偏差为0.5975°,10次测试整体平均用时为0.4023s。所提方法为复杂环境中果树像元和果树行导航线提取提供了重要依据。 相似文献
14.
苹果采摘机器人果实识别与定位方法 总被引:14,自引:3,他引:14
提出了利用归一化的红绿色差(R-G)/(R+G)分割苹果的方法.对不同光照情况下拍摄的苹果图像进行了识别,并对识别后的图像进行预处理后,获得苹果的轮廓图像.对轮廓图像采用随机圆环法进行果实圆心、半径提取.通过建立基于面积特征与极线几何相结合的匹配策略实现双目视觉下的果实定位,对于搜索区域内面积相似的果实,通过计算垂直投影的互相关函数最大值的方法,得到排序基准线,然后根据顺序一致性原则进行匹配.实验结果表明:识别算法可以较好地消除阴影、裸露土壤等影响,识别率达到92%.采用随机圆环法,可以准确地提取果实的圆心、半径.在60~150 cm的距离范围内,测量误差小于2 cm. 相似文献
15.
苹果树疏花是果园生产管理中的重要环节。准确高效地识别苹果中心花和边花,是研发智能疏花机器人的前提。针对苹果疏花作业中的实际需求,提出了一种基于CRV-YOLO的苹果中心花和边花识别方法。本文基于YOLO v5s模型进行了如下改进:将C-CoTCSP结构融入Backbone,更好地学习上下文信息并提高了模型特征提取能力,提高了模型对外形相似和位置关系不明显的中心花和边花的检测性能。在Backbone中添加改进RFB结构,扩大特征提取感受野并对分支贡献度进行加权,更好地利用了不同尺度特征。采用VariFocal Loss损失函数,提高了模型对遮挡等场景下难识别样本检测能力。在3个品种1 837幅图像数据集上进行了实验,结果表明,CRV-YOLO的精确率、召回率和平均精度均值分别为95.6%、92.9%和96.9%,与原模型相比,分别提高3.7、4.3、3.9个百分点,模型受光照变化和苹果品种影响较小。与Faster R-CNN、SSD、YOLOX、YOLO v7模型相比,CRV-YOLO的精确率、平均精度均值、模型内存占用量和复杂度性能最优,召回率接近最优。研究成果可为苹果智能疏花提供技术... 相似文献
16.
为提高苹果生产领域实体识别的准确性,提出一种新的Transformer优化模型。首先,为解决苹果生产数据集的缺失,基于苹果栽培领域园艺专家的知识经验,创建以苹果病虫害为主的产业数据集。通过字向量与词向量的拼接,提高文本语义表征的准确性;随后,为防止位置信息缺失,引入具有方向和距离感知的注意力机制,平均集成BiLSTM的上下文长距离依赖特征;最后,结合条件随机场(Conditional random fields, CRF)约束上下文标注结果,最终得到Transformer优化模型。实验结果表明,所提方法在苹果病虫命名实体识别中的F1值可达92.66%,可为农业命名实体的准确智能识别提供技术手段。 相似文献
17.
对苦痘病进行持续、准确、量化的无损检测,以及育种专家对新品种苹果的抗苦痘病表型研究,都需要苦痘病准确识别技术的支持。针对磕碰伤对苦痘病识别产生干扰,降低了识别准确率问题,基于苹果CT图像,提出了一种苹果苦痘病和磕碰伤识别方法。首先,采用最大类间方差法、区域标记、中值滤波等方法,对337帧苹果CT图像进行图像分割和伤病区域定位;其次,对伤病区域进行特征提取,提取其形状特征、纹理特征和位置特征共18种特征信息;然后,利用多元逐步回归和类距离可分离性判据2种方法分别选取特征信息,将2种方法选出的相同特征作为本文的选用特征信息;最后,分别使用遗传算法优化的支持向量机和默认参数的支持向量机,对苹果苦痘病和磕碰伤进行识别。识别结果表明,经过遗传算法优化的支持向量机的总体识别准确率高于93%,默认参数的支持向量机算法的总体识别准确率高于84%。遗传算法优化后的支持向量机的识别准确率明显优于默认参数的支持向量机的识别准确率。 相似文献
18.
苹果采摘机器人目标果实快速跟踪识别方法 总被引:10,自引:0,他引:10
为了减少苹果采摘机器人采摘过程处理时间,对苹果采摘机器人目标果实的快速跟踪识别方法进行了研究。对基于R-G颜色特征的OTSU动态阈值分割方法进行首帧采集图像分割,采用图像中心原则确定要采摘的目标果实;利用所采集图像之间的信息关联性,在不断缩小图像处理区域的同时,采用经过加速优化改进的去均值归一化积相关模板匹配算法来跟踪识别后帧图像的目标果实,并进行不同阈值分割方法实现效果,不同灰度、亮度和对比度的匹配识别以及新旧方法识别时间对比试验,从而验证了所采用和设计方法的有效性;其中所设计跟踪识别方法的识别时间相比于原方法,减少36%。 相似文献