首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
在高光谱影像作物分类中,为了充分利用高光谱遥感影像完整的光谱信息,同时避免高维数据带来的Hughes现象,本文从栈式自编码网络的数据降维与CNN网络的分类优势出发,首先分析了此种网络在训练过程中的共性,以自编码网络优化过程中分类器的选取作为切入点,构建了可用于高光谱影像分类的融合网络架构.相较于传统方法,本文方法仅通过...  相似文献   

2.
梁海红 《南方农机》2022,(14):38-41
为快速、精准地对农作物信息进行分类和提取,笔者以某研究区农作物作为研究对象,对农作物分类展开研究。利用SVM和RF分类方法,对降维和一阶导数处理后的无人机高光谱遥感影像中的农作物进行分类,并比较了SVM和RF分类结果的精准性。研究结果表明,通过对高光谱影像农作物进行分类,利用RF分类法获得的分类结果精度较高,可以实现对农作物的有效提取,能够为我国农作物生长情况监测、产量估计和病虫害防治提供参考。  相似文献   

3.
基于无人机高光谱影像的水稻叶片磷素含量估算   总被引:1,自引:0,他引:1       下载免费PDF全文
为快速获取水稻叶片磷素含量信息,采用无人机搭载高光谱成像仪获取水稻冠层高光谱影像,并采样检测叶片磷素含量(质量分数)(Leaf phosphorus content, LPC).分析了水稻LPC在无人机高光谱影像上的光谱特征,使用连续投影算法提取对磷素敏感的特征波长,通过任意波段组合构建并筛选与磷素高度相关的光谱指数,...  相似文献   

4.
为了探明作物叶片像素提取的内在机理,设计适用于高光谱和多光谱影像的自动叶片提取方法,以实测高光谱和模拟多光谱影像为基础,通过特征转换、图像分割、边缘检测、基于梯度的断点连接4个步骤,最终实现了作物叶片的快速、准确、自动化提取。结果表明,EVI对作物叶片增强效果最好,NDVI次之,基于红边的植被指数效果最差。在叶片提取过程中,本方法所涉及的5个精度评价指标平均值均在0.94以上,分布于0.9478~0.9896,叶片提取精度极高。该方法相较于大津法(OTSU)、标记分水岭(Marker-watershed)等经典方法具有明显的优势,其提取精度分别提高了29%~98%,与全卷积神经网络(FCN)或随机森林(RF)基本相当。通过运用特征转化,局部自适应阈值分割和边缘检测相结合,可以实现基于高光谱、多光谱影像的叶片像素快速、准确、自动化提取;该方法可避免繁琐的样本标记,且对高光谱和多光谱影像的空间分辨率及尺寸要求较低,其提取结果可直接作为深度学习的标记样本或叶片尺度的表型参数反演的基础数据,具有推广价值。  相似文献   

5.
枸杞产地的快速、准确鉴别,对规范枸杞交易市场、推动不同产地枸杞差异化、品牌化战略发展具有重要意义。本文以2018-2019年宁夏、新疆两地四产区的宁杞7号夏果干果为研究对象,利用可见/近红外高光谱成像系统,对图像进行Hue Saturation Value(HSV)色彩空间变换和纹理特征提取。配合人工测定的百粒重、果形指数(L/D)等枸杞果形参数指标,采用最小显著差异法(LSD)比较不同产地的差异性。在R 3.6.2环境支持下,对数据进行决策树(Decision Tree,DT)、随机森林(Random Forest,RF)、支持向量机(Support Vector Machine,SVM)、多元逻辑回归(Multinomial Logistic Regression, MLR)等分类器模型训练并建立产地识别模型,开展基于“高光谱成像+计算机视觉”的枸杞产地识别技术研究。结果表明:枸杞百粒重新疆明显高于宁夏,果形指数宁夏高于新疆,宁夏枸杞纹理更深更复杂但色泽较暗;4种枸杞产地识别模型中DT模型表现最稳定,且果形指数参与建模后的识别精度更高。  相似文献   

6.
叶绿素含量是评价植物生长状况以及光合作用能力的重要指标。通过叶绿素测定仪实地测定表征紫丁香叶片的叶绿素含量的SPAD(soil plant analysis development)值,利用高光谱图像技术和机器学习算法反演推算紫丁香叶片叶绿素的含量。针对数据采集时噪声信息的干扰、相邻波段间相关性强、冗余信息多的问题,利用空洞卷积去噪自动编码器(Atrous Convolutional Denoising Auto Encoder,Atrous-CDAE)将原始高光谱数据由204维减少到51维,并减少噪声干扰。结合1DCNN建立紫丁香叶片叶绿素含量的预测模型,并与原始数据和其他4种数据处理方法进行比较。结果表明:相比于原始高光谱数据和其他数据处理方法,经Atrous-CDAE处理后的数据预测结果最佳,预测集中决定系数R2为0.972 3,均方根误差RMSE为1.326 6。利用Atrous-CDAE处理的数据与其他经典预测模型组合均取得较优的预测结果,表明Atrous-CDAE可有效地提取数据潜在表征。对其他数据结合本文所提1DCNN模型进行预测,其R2均在0.94以上,RMSE均在2以下,表明该预测模型具有一定的适应性。  相似文献   

7.
水稻稻谷氮含量直接影响其营养状况和作物品质,本文基于高光谱特征与植株氮含量间关系开展稻谷氮含量估算研究。获取了水稻拔节期、扬花期和完熟期无人机高光谱遥感影像,在获取窄波段归一化差值植被指数(N-NDVI)与水稻植株氮含量敏感波段中心波长以及极大值区域Ω的基础上,通过构建内接矩形自动确定了水稻植株氮含量估算的最优敏感波段宽度,并建立了植株氮含量与稻谷氮含量的相关关系;基于最优波宽构建N-NDVI实现了稻谷氮含量估算,并进行了精度验证。结果表明,利用内接矩形自动筛选出的N-NDVI植株氮含量最优敏感波段宽度在各时期水稻植株氮含量和稻谷氮含量反演中均取得较高精度。在稻谷氮含量反演精度验证中,稻谷氮含量实测值和稻谷氮含量预测值之间的决定系数R2为0.410 9~0.610 6,归一化均方根误差NRMSE为11.33%~16.85%,平均相对误差MRE为9.53%~13.24%,各生育期预测精度从大到小排序为完熟期、拔节期、扬花期。在完熟期,敏感波段中心波长为629.85/701.93 nm,对应高光谱最优波宽±6 nm构建的N-NDVI估算稻谷氮含量的精度最高(R2=0.590 0,NRMSE为14.06%,MRE为11.59%)。本文提出的稻谷氮含量反演方法具有一定可行性,为禾本科谷类作物预测籽粒氮含量提供了参考。  相似文献   

8.
为实现对柑橘叶片病虫药害种类的快速精准识别,针对多种类柑橘病叶设计一种融合注意力机制(Attention mechanism)的双向门控循环单元-循环神经网络(Attention-bidirectional gate recurrent unit-recurrent nural network, Att-BiGRU-RNN)分类模型。该模型在编解码模块分别采用BiGRU和RNN结构,能够利用高光谱数据前后波段光谱信息的关联性,有效提取光谱信息的深层特征;根据不同波段光谱信息的差异性引入注意力机制动态分配权重信息,提高重要光谱特征对分类模型的贡献率,提升模型的分类准确率。获取6类柑橘叶片高光谱信息,构建实验样本集,利用Att-BiGRU-RNN、VGG16、SVM和XGBoost分别建立柑橘病叶分类模型,Att-BiGRU-RNN模型总体分类准确率(Overall accuracy, OA)平均可达98.21%,相较于其他3种模型分别提高4.71、10.95、3.89个百分点,对光谱曲线重合度高的除草剂危害和煤烟病叶片的分类准确率有显著提升。实验结果表明,深度学习方法可有效利用高光谱不同...  相似文献   

9.
吕翔 《南方农机》2022,(14):149-152
在监测和管理林业资源的过程中准确的树种信息能够发挥非常重要的作用,及时了解树种及其生产情况能够帮助相关人员更好地开展林业建设。为了探索在树种分类识别中无人机高光谱影像的应用,笔者结合研究实例,探讨树种分类识别中应用无人机高光谱影像的方法和结果。仿真结果表明:与仅利用光谱特征分类相比,在分类特征中融入数理统计特征、植被指数特征以及纹理特征,能够极大地提升单个树种的分类精度;相比于SVM和MLC分类器,RF分类器拥有更好的分类效果和更高的分类精度,能够有效地适用于研究区树种分类;在树种分类识别中应用无人机高光谱影像,能够取得非常准确的识别结果。  相似文献   

10.
监测地膜覆盖农田的分布对准确评估由其导致的区域气候和生态环境变化有着重要作用,基于DeepLabv3+网络,通过学习面向地膜语义分割的通道注意力和空间注意力特征,提出一种适用于判断农田是否覆膜的改进深度语义分割模型,实现对无人机多光谱遥感影像中地膜农田的有效分割。以内蒙古自治区河套灌区西部解放闸灌区中沙壕渠灌域2018—2019年4块实验田的无人机多光谱遥感影像为研究数据,与可见光遥感影像的识别结果进行对比,同时考虑不同年份地膜农田表观的变化,设计了2组实验方案,分别用于验证模型的泛化性能和增强模型的分类精度。结果表明,改进的DeepLabv3+语义分割模型对多光谱遥感影像的识别效果比可见光高7.1个百分点。同时考虑地膜农田表观变化的深度语义分割模型具有更高的分类精度,其平均像素精度超出未考虑地膜农田表观变化时7.7个百分点,表明训练数据的多样性有助于提高地膜农田的识别精度。其次,改进的DeepLabv3+语义分割模型能够自适应学习地膜注意力,在2组实验中,分类精度均优于原始的DeepLabv3+模型,表明注意力机制能够增加深度语义分割模型的自适应性,从而提升分类精度。本文提出的方法能够从复杂的场景中精准识别地膜农田。  相似文献   

11.
针对高光谱图像(Hyperspectral image,HSI)分类研究中小样本学习时,无法达到理想分类效果的问题,以多注意力机制融合、编译图神经网络与卷积神经网络有机结合提出了一种新的高光谱图像分类方法。设计了一种基于混合注意力机制的网络(Multiple mixed attention convolutional neural network,MCNN)与编译图神经网络(Compiled graph neural network,CGNN),在学习样本有限的情况下,其能有效保留HSI的光谱与空间信息。引入的图编码器与图解码器可以有效地映射不规则的HSI地物类别特征信息。设计的多注意力机制可以重点关注一些重要的空间像素特征。研究了不同训练样本下对不同算法学习示例分类的影响,在公共数据集Botswana (BS)的实验表明,本文方法比CEGCN(CNN-enhanced graph convolutional network)、WFCG(Weighted feature fusion of convolutional neural network)算法总体分类精度(Overall classification accuracy,OA)分别高2.72、3.86个百分点。同样在IndianPines(IP)数据集上仅用3%训练样本数据的实验结果显示,本研究方法比CEGCN与WFCG算法的OA分别高0.44、1.42个百分点。说明本研究提出的方法不仅对HSI具有良好的空间与光谱信息感知能力,而且在微小学习数据下仍然表现出强有力的分类准确性。  相似文献   

12.
植物病害是造成农作物减产的主要原因之一。针对传统的人工诊断方法存在成本高、效率低等问题,构建了一个自然复杂环境下的葡萄病害数据集,该数据集中的图像由农民在实际农业生产中拍摄,同时提出了一个新的网络模型MANet,该模型可以准确地识别复杂环境下的葡萄病害。在MANet中嵌入倒残差模块来构建网络,这极大降低了模型参数量和计算成本。同时,将注意力机制SENet模块添加到MANet中,提高了模型对病害特征的表示能力,使模型更加注意关键特征,抑制不必要的特征,从而减少图像中复杂背景的影响。此外,设计了一个多尺度特征融合模块(Multi-scale convolution)用来提取和融合病害图像的多尺度特征,这进一步提高了模型对不同病害的识别精度。实验结果表明,与其他先进模型相比,本文模型表现出了优越的性能,该模型在自建复杂背景病害数据集上的平均识别准确率为87.93%,优于其他模型,模型参数量为2.20×106。同时,为了进一步验证该模型的鲁棒性,还在公开农作物病害数据集上进行了测试,该模型依然表现出较好的识别效果,平均识别准确率为99.65%,高于其他模型。因此,本文模型...  相似文献   

13.
细粒度图像识别任务中,在整体相似度极大而局部细节不同的图片中提取具有关注度的区域,并对其中的特征加以学习是至关重要的任务。针对目前研究中存在的人工标注判别区域的成本太高、模型构建中需引入大量额外的网络结构,在训练和推理阶段会引入额外的计算开销等问题,研究优化后提出多层和区域特征融合模型。模型基于注意力机制进行构建,模拟人类观察原理,提升对有价值的局部细节的关注能力,提高在经典数据集上的识别效果。本模型主要分为带有注意力权重的卷积神经网络多层融合和基于区域特征之间依赖性的区域融合两个部分。整体主要以注意力机制为主,注重特征提取时全面考虑图像细节特征和抽象特征以及对于不同区域的组成与各个区域之间的依赖关系,在兼顾整体的情况下同时发挥局部细节的影响力。试验结果表明:在部分经典数据集上具有良好的准确率,Oxford Flowers数据集准确率为95.69%,同时在AID(航拍图像)数据集上具有96.96%的准确率,此前没有任何模型在该数据集上有过相关研究和模型训练。  相似文献   

14.
科学进行粮食产量预测及其影响因素分析对作出粮食生产决策及保障粮食安全有重要意义。对重庆市1997—2021年粮食数据进行收集、整理、分析,发现各特征与重庆市粮食产量间不是简单线性关系,因此使用非线性模型拟合粮食产量与其影响因素之间的函数关系,训练三种核函数的高斯过程回归(GPR)模型并进行组合预测,试验结果显示所得的组合模型具有很好的泛化能力。以2020—2021年数据为测试集,组合预测模型对2020年和2021年数据预测的绝对百分比误差分别为0.074 4%和0.632 4%。但GPR不易获得粮食产量与其影响因素之间的函数关系,导致使用GPR模型进行影响因素重要性分析很困难,进而借助多元函数泰勒公式及偏最小二乘回归(PLSR)对重庆市粮食产量进行影响因素分析。通过PLSR模型发现对重庆市粮食产量影响较大的因素是粮食播种面积、农用机械总动力、劳动力投入和成灾面积;农用机械总动力的增加降低了粮食播种面积减少等带来的负面影响。最后提出保护耕地面积、发展农业科技创新、鼓励返乡创业就业以及加强气候监测等建议来保障重庆市粮食安全。  相似文献   

15.
基于NDWI和卷积神经网络的冬小麦产量估测方法   总被引:1,自引:0,他引:1       下载免费PDF全文
为进一步提高冬小麦单产估测的效率和准确性,利于宏观指导农业生产、制定冬小麦整个生长期的精准管理决策,针对目前已有的县域冬小麦单产估测方法存在时效性差、准确度低、成本高等问题,以中分辨率成像光谱仪(Moderate resolution imaging spectroradiometer,MODIS)为数据源,分别提取不...  相似文献   

16.
针对番茄叶片型病害在早晚期具有类内差异大、类间差异小的特点,常规神经网络对此类病害的分类效果不佳的问题,提出了基于Res2Net和双线性注意力的番茄病害时期识别方法,通过多尺度特征和注意力机制,提高网络的细粒度表征能力。首先,提出EFCA通道注意力模块,在不降维的基础上,使用二维离散余弦变换代替全局平均池化,以减少常规通道注意力获取时的信息丢失。其次,在外积之后加入最大池化和concat操作,避免双线性融合后因维度过高导致的特征冗余。在7种不同种类和14种不同程度病害番茄叶面型病害数据集实验中,本文方法分类准确度分别为98.66%和86.89%。  相似文献   

17.
耿磊  黄亚龙  郭永敏 《农业机械学报》2022,53(16):304-310,369
不同品种苹果之间往往存在较大的价格差异,为了防止从采购到销售过程中因苹果品种分类不当产生经济损失,提出了一种基于融合注意力机制的自动识别和分类模型EBm-Net(针对苹果类型)。该模型通过融合通道注意力和空间注意力机制充分提取了苹果表面的形状轮廓特征和颜色纹理特征,从而进一步增加苹果类型之间的特征距离。同时,从特征图和类别概率统计图2方面证明了EBm-Net在苹果品种分类方法上的有效性。实验结果表明,EBm-Net网络模型在红富士、乔纳金、秦冠、小国光、金冠、澳洲青苹、嘎啦上的分类准确率分别为96.25%、96.25%、100%、92.50%、98.75%、100%和93.75%,7种苹果类型的总体分类准确率高达96.78%。因此,将视觉图像与深度学习相结合对苹果品种进行分类和识别是可行的,为苹果品种的实时检测提供了一种新的方法。  相似文献   

18.
为了提高数控机床热误差模型的精度与泛化性,提出了基于注意力机制的长短时记忆卷积神经网络(Long short term memory convolutional neural network based on attention mechanism, AM-CNN-LSTM)热误差模型。利用卷积神经网络提取高维数据空间状态特征的能力和长短时记忆网络提取长时间序列状态特征的能力,构建具有2个支路的热误差模型,分别提取特征后输入到注意力机制中进行特征重要性重构,建立原始数据与热误差的特征映射,最后通过全连接层进行热误差预测。采用G460L型数控机床进行实验数据采集,将不同季节采集到的温度数据和热误差作为模型输入,采用循环学习率与正则化优化方法对模型进行训练。与LSTM、ConvLSTM和CNN-LSTM热误差模型对比,结果表明,AM-CNN-LSTM模型对特征还原能力最强,残差波动范围最小,其残差范围较最大值下降62.09%,模型预测精度在2.4μm以内。  相似文献   

19.
为实现笼养蛋鸡声音的准确分类,实现蛋鸡健康、情绪、生产状态等信息的智能化、非接触式检测,提出了一种基于改进MobileNetV3的笼养蛋鸡声音分类识别方法。以欣华二号蛋鸡为研究对象,采集蛋鸡在笼养条件下发出的热应激声、惊吓声、产蛋声以及鸣唱声,经过声音预处理将一维声音信号转化为三维梅尔频谱图,建立了包括8 541幅梅尔频谱图的蛋鸡声音数据集。通过在MobileNetV3中引入高效通道注意力(Efficient channel attention,ECA)模块,提高了笼养蛋鸡声音分类准确率。试验结果表明,MobileNetV3-ECA模型准确率、召回率、精确率以及F1分数分别达到95.25%、95.16%、95.02%、95.08%,相比原始模型分别提高1.99、2.08、2.00、2.04个百分点。通过与分别引入坐标注意力(C oordinate attention,CA)、卷积块注意力模块(Convolutional block attention module,CBAM)的模型对比,引入ECA模块后模型准确率分别提高2.11、2.03个百分点,其他指标同样有更明显的提高。与ShuffleNetV2、DesNet121和EfficientNetV2模型相比,MobileNetV3-ECA准确率分别提高1.99、2.03、2.50个百分点。本文提出的基于MobileNetV3-ECA的蛋鸡声音分类识别方法,能够有效且准确地实现对包括热应激声在内的不同种类蛋鸡声音分类识别,为蛋鸡规模化养殖中的自动化、智能化声音检测提供了算法支持,为禽舍巡检机器人功能优化提供了参考,同时为规模化笼养蛋鸡热应激预警开辟了思路。  相似文献   

20.
崔金荣  魏文钊  赵敏 《农业机械学报》2023,54(11):217-224,276
针对水稻病害识别方法准确度低、模型收敛速度缓慢的问题,本文提出了一种高性能的轻量级水稻病害识别模型,简称为CA(Coordinate attention)-MobileNetV3。通过微调的迁移学习策略完善了模型的训练,提升了模型收敛速度。首先创建10个种类的数据集,其中包含9种水稻病害和1种水稻健康叶片。其次使用CA模块,在通道注意力中嵌入空间坐标信息,提高模型的特征提取能力与泛化能力。最后,将改进后的MobileNetV3网络作为特征提取网络,并加入SVM多分类器,提高模型精度。实验结果表明,在本文构建的水稻病害数据集上,初始的MobileNetV3识别准确率仅为95.78%,F1值为95.36%;加入CA模块后识别准确率和F1值分别提高至96.73%和96.56%;再加入SVM多分类器,通过迁移学习后,改进模型的识别准确率和F1值分别达到97.12%和97.04%,参数量和耗时仅为2.99×106和0.91s,明显优于其他模型。本文提出的CA-MobileNetV3水稻病害识别模型能够有效识别水稻叶部病害,实现了轻量级、高性能、易部署的水稻病害分类识别算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号