共查询到19条相似文献,搜索用时 71 毫秒
1.
2.
为快速、精准地对农作物信息进行分类和提取,笔者以某研究区农作物作为研究对象,对农作物分类展开研究。利用SVM和RF分类方法,对降维和一阶导数处理后的无人机高光谱遥感影像中的农作物进行分类,并比较了SVM和RF分类结果的精准性。研究结果表明,通过对高光谱影像农作物进行分类,利用RF分类法获得的分类结果精度较高,可以实现对农作物的有效提取,能够为我国农作物生长情况监测、产量估计和病虫害防治提供参考。 相似文献
3.
4.
为了探明作物叶片像素提取的内在机理,设计适用于高光谱和多光谱影像的自动叶片提取方法,以实测高光谱和模拟多光谱影像为基础,通过特征转换、图像分割、边缘检测、基于梯度的断点连接4个步骤,最终实现了作物叶片的快速、准确、自动化提取。结果表明,EVI对作物叶片增强效果最好,NDVI次之,基于红边的植被指数效果最差。在叶片提取过程中,本方法所涉及的5个精度评价指标平均值均在0.94以上,分布于0.9478~0.9896,叶片提取精度极高。该方法相较于大津法(OTSU)、标记分水岭(Marker-watershed)等经典方法具有明显的优势,其提取精度分别提高了29%~98%,与全卷积神经网络(FCN)或随机森林(RF)基本相当。通过运用特征转化,局部自适应阈值分割和边缘检测相结合,可以实现基于高光谱、多光谱影像的叶片像素快速、准确、自动化提取;该方法可避免繁琐的样本标记,且对高光谱和多光谱影像的空间分辨率及尺寸要求较低,其提取结果可直接作为深度学习的标记样本或叶片尺度的表型参数反演的基础数据,具有推广价值。 相似文献
5.
叶绿素含量是评价植物生长状况以及光合作用能力的重要指标。通过叶绿素测定仪实地测定表征紫丁香叶片的叶绿素含量的SPAD(soil plant analysis development)值,利用高光谱图像技术和机器学习算法反演推算紫丁香叶片叶绿素的含量。针对数据采集时噪声信息的干扰、相邻波段间相关性强、冗余信息多的问题,利用空洞卷积去噪自动编码器(Atrous Convolutional Denoising Auto Encoder,Atrous-CDAE)将原始高光谱数据由204维减少到51维,并减少噪声干扰。结合1DCNN建立紫丁香叶片叶绿素含量的预测模型,并与原始数据和其他4种数据处理方法进行比较。结果表明:相比于原始高光谱数据和其他数据处理方法,经Atrous-CDAE处理后的数据预测结果最佳,预测集中决定系数R2为0.972 3,均方根误差RMSE为1.326 6。利用Atrous-CDAE处理的数据与其他经典预测模型组合均取得较优的预测结果,表明Atrous-CDAE可有效地提取数据潜在表征。对其他数据结合本文所提1DCNN模型进行预测,其R2均在0.94以上,RMSE均在2以下,表明该预测模型具有一定的适应性。 相似文献
6.
枸杞产地的快速、准确鉴别,对规范枸杞交易市场、推动不同产地枸杞差异化、品牌化战略发展具有重要意义。本文以2018-2019年宁夏、新疆两地四产区的宁杞7号夏果干果为研究对象,利用可见/近红外高光谱成像系统,对图像进行Hue Saturation Value(HSV)色彩空间变换和纹理特征提取。配合人工测定的百粒重、果形指数(L/D)等枸杞果形参数指标,采用最小显著差异法(LSD)比较不同产地的差异性。在R 3.6.2环境支持下,对数据进行决策树(Decision Tree,DT)、随机森林(Random Forest,RF)、支持向量机(Support Vector Machine,SVM)、多元逻辑回归(Multinomial Logistic Regression, MLR)等分类器模型训练并建立产地识别模型,开展基于“高光谱成像+计算机视觉”的枸杞产地识别技术研究。结果表明:枸杞百粒重新疆明显高于宁夏,果形指数宁夏高于新疆,宁夏枸杞纹理更深更复杂但色泽较暗;4种枸杞产地识别模型中DT模型表现最稳定,且果形指数参与建模后的识别精度更高。 相似文献
7.
为实现对柑橘叶片病虫药害种类的快速精准识别,针对多种类柑橘病叶设计一种融合注意力机制(Attention mechanism)的双向门控循环单元-循环神经网络(Attention-bidirectional gate recurrent unit-recurrent nural network, Att-BiGRU-RNN)分类模型。该模型在编解码模块分别采用BiGRU和RNN结构,能够利用高光谱数据前后波段光谱信息的关联性,有效提取光谱信息的深层特征;根据不同波段光谱信息的差异性引入注意力机制动态分配权重信息,提高重要光谱特征对分类模型的贡献率,提升模型的分类准确率。获取6类柑橘叶片高光谱信息,构建实验样本集,利用Att-BiGRU-RNN、VGG16、SVM和XGBoost分别建立柑橘病叶分类模型,Att-BiGRU-RNN模型总体分类准确率(Overall accuracy, OA)平均可达98.21%,相较于其他3种模型分别提高4.71、10.95、3.89个百分点,对光谱曲线重合度高的除草剂危害和煤烟病叶片的分类准确率有显著提升。实验结果表明,深度学习方法可有效利用高光谱不同... 相似文献
8.
在监测和管理林业资源的过程中准确的树种信息能够发挥非常重要的作用,及时了解树种及其生产情况能够帮助相关人员更好地开展林业建设。为了探索在树种分类识别中无人机高光谱影像的应用,笔者结合研究实例,探讨树种分类识别中应用无人机高光谱影像的方法和结果。仿真结果表明:与仅利用光谱特征分类相比,在分类特征中融入数理统计特征、植被指数特征以及纹理特征,能够极大地提升单个树种的分类精度;相比于SVM和MLC分类器,RF分类器拥有更好的分类效果和更高的分类精度,能够有效地适用于研究区树种分类;在树种分类识别中应用无人机高光谱影像,能够取得非常准确的识别结果。 相似文献
9.
基于树冠图像特征的苹果园神经网络估产模型 总被引:2,自引:0,他引:2
针对树上苹果产量的早期估测问题,提出了一种利用果树图像树冠树叶与果实的信息,通过BP(Back propagation)神经网络建立模型进行苹果估产的方法。首先在苹果园内分别获取果树在苹果半熟期、成熟期的数字图像,并在苹果收获时将每棵树上的苹果称量,得到实际产量;采用图像处理方法识别出树冠上的果实及树叶;提取果实区域及树叶区域与产量相关的信息为输入,以果树实际产量为输出,建立基于BP神经网络的半熟期与成熟期估产模型,拟合度R分别达到0.928 7、0.980 4。将模型用于待估产样本,得到半熟期样本估测产量与实际产量拟合度R为0.876 6,成熟期样本估测产量与实际产量拟合度R为0.960 6。结果表明该模型具有较好的预测精度与鲁棒性。 相似文献
10.
基于卷积注意力的无人机多光谱遥感影像地膜农田识别 总被引:1,自引:0,他引:1
监测地膜覆盖农田的分布对准确评估由其导致的区域气候和生态环境变化有着重要作用,基于DeepLabv3+网络,通过学习面向地膜语义分割的通道注意力和空间注意力特征,提出一种适用于判断农田是否覆膜的改进深度语义分割模型,实现对无人机多光谱遥感影像中地膜农田的有效分割。以内蒙古自治区河套灌区西部解放闸灌区中沙壕渠灌域2018—2019年4块实验田的无人机多光谱遥感影像为研究数据,与可见光遥感影像的识别结果进行对比,同时考虑不同年份地膜农田表观的变化,设计了2组实验方案,分别用于验证模型的泛化性能和增强模型的分类精度。结果表明,改进的DeepLabv3+语义分割模型对多光谱遥感影像的识别效果比可见光高7.1个百分点。同时考虑地膜农田表观变化的深度语义分割模型具有更高的分类精度,其平均像素精度超出未考虑地膜农田表观变化时7.7个百分点,表明训练数据的多样性有助于提高地膜农田的识别精度。其次,改进的DeepLabv3+语义分割模型能够自适应学习地膜注意力,在2组实验中,分类精度均优于原始的DeepLabv3+模型,表明注意力机制能够增加深度语义分割模型的自适应性,从而提升分类精度。本文提出的方法能够从复杂的场景中精准识别地膜农田。 相似文献
11.
12.
基于无人机高光谱遥感数据的冬小麦产量估算 总被引:4,自引:0,他引:4
为了准确和高效地预测作物产量,以冬小麦为研究对象,利用无人机遥感平台搭载高光谱相机,获取了冬小麦各生育期的无人机影像。根据高光谱具有较多的光谱信息且存在特有的红边区域的特点,选取了9种植被指数和5种红边参数。首先,分析植被指数和红边参数与产量的相关性,优选5种植被指数和2种红边参数用于构建产量估算模型;然后,构建了不同生育期的3种产量估算模型:单参数线性回归模型、基于植被指数并使用偏最小二乘回归方法模型、基于植被指数结合红边参数并使用偏最小二乘回归方法模型;最后利用3种模型分别估算冬小麦产量。结果表明:4个生育期内,大部分植被指数和红边参数与产量呈现极显著相关性;拔节期、挑旗期、开花期与灌浆期构建的单参数线性回归模型中表现最佳的参数分别为REP、Dr/Drmin、GNDVI与GNDVI;利用偏最小二乘回归方法提高了产量估算精度,以植被指数结合红边参数为因子构建的模型提高了产量估算效果(优于以植被指数为因子构建的产量模型)。本研究可为无人机高光谱估算作物产量提供参考。 相似文献
13.
针对高光谱图像(Hyperspectral image,HSI)分类研究中小样本学习时,无法达到理想分类效果的问题,以多注意力机制融合、编译图神经网络与卷积神经网络有机结合提出了一种新的高光谱图像分类方法。设计了一种基于混合注意力机制的网络(Multiple mixed attention convolutional neural network,MCNN)与编译图神经网络(Compiled graph neural network,CGNN),在学习样本有限的情况下,其能有效保留HSI的光谱与空间信息。引入的图编码器与图解码器可以有效地映射不规则的HSI地物类别特征信息。设计的多注意力机制可以重点关注一些重要的空间像素特征。研究了不同训练样本下对不同算法学习示例分类的影响,在公共数据集Botswana (BS)的实验表明,本文方法比CEGCN(CNN-enhanced graph convolutional network)、WFCG(Weighted feature fusion of convolutional neural network)算法总体分类精度(Overall classification accuracy,OA)分别高2.72、3.86个百分点。同样在IndianPines(IP)数据集上仅用3%训练样本数据的实验结果显示,本研究方法比CEGCN与WFCG算法的OA分别高0.44、1.42个百分点。说明本研究提出的方法不仅对HSI具有良好的空间与光谱信息感知能力,而且在微小学习数据下仍然表现出强有力的分类准确性。 相似文献
14.
为快速、准确地估测小麦产量,有效提高育种工作效率,本文以小麦品系为研究对象,收集小麦灌浆期无人机高光谱数据和产量数据。首先基于递归特征消除法筛选出特征波长作为模型输入变量,然后利用岭回归(Ridge regression,RR)、偏最小二乘回归(Partial least squares regression,PLS)、多元线性回归(Multiple linear regression,MLR)3种线性算法和随机森林(Random forest,RF)、梯度提升回归(Gradient boosting regression,GBR)、极限梯度提升(eXtreme gradient boosting,XGB)、高斯过程回归(Gaussian process regression,GPR)、支持向量回归(Support vector regression,SVR)、K最邻近算法(K-nearest neighbor,KNN)6种非线性算法构建单一算法产量估测模型并进行精度比较,最后基于Stacking算法构建多模型集成组合,筛选最佳集成模型。结果表明,基于不同算法的产量估测模型精度差异显著,非线性模型优于线性模型,基于GBR的产量估测模型在单一模型中表现最优,训练集R2为0.72,RMSE为534.49kg/hm2,NRMSE为11.10%,测试集R2为0.60,RMSE为628.73kg/hm2,NRMSE为13.88%。基于Stacking算法构建的集成模型性能与初级模型和次级模型的选择密切相关,以KNN、RR、SVR为初级模型组合,GBR为次级模型的集成模型有效提高了估测精度,相比单一模型GBR,训练集R2提高1.39%,测试集R2提高3.33%。本研究可为基于高光谱技术的小麦品系产量估测提供应用参考。 相似文献
15.
为在田间管理中对作物产量进行估测,通过两年大田试验收集了大豆生殖生长期的高光谱数据及产量数据,基于各生育期一阶微分光谱反射率计算了7个光谱指数:比值指数(Ratio index,RI)、差值指数(Difference index,DI)、归一化光谱指数(Normalized difference vegetation index,NDVI)、土壤调整光谱指数(Soil-adjusted iegetation index,SAVI)、三角光谱指数(Triangular vegetation index,TVI)、改进红边归一光谱指数(Modified normalized difference index,mNDI)和改进红边比值光谱指数(Modified simple ratio,mSR),使用相关矩阵法将光谱指数与大豆产量数据进行相关性分析并提取最佳波长组合,随后将计算结果作为与大豆产量相关的最佳光谱指数,最后将各生育期筛选出的与大豆产量相关系数最高的5个光谱指数作为模型输入变量,利用支持向量机(Support vector machine,SVM)、随机森林(Random forest,RF)和反向神经网络(Back propagation neural network,BPNN)构建大豆产量估算模型并进行验证。结果表明,各生育期(全花期(R2)、全荚期(R4)和鼓粒期(R6))计算的光谱指数与产量的相关系数均高于0.6,相关性较好,其中全荚期的光谱指数FDmSR与大豆产量的相关系数最高,达到0.717;大豆产量最优估算模型的方法是输入变量为全荚期构建的一阶微分光谱指数和RF组合的建模方法,模型验证集R2为0.85,RMSE和MRE分别为272.80kg/hm2和5.12%。本研究成果可为基于高光谱遥感技术的作物产量估测提供理论依据和应用参考。 相似文献
16.
为了提高冬小麦单产估测精度,改善估产模型存在的高产低估和低产高估等现象,以陕西省关中平原为研究区域,选取旬尺度条件植被温度指数(VTCI)、叶面积指数(LAI)和光合有效辐射吸收比率(FPAR)为遥感特征参数,结合卷积神经网络(CNN)局部特征提取能力和基于自注意力机制的Transformer网络的全局信息提取能力,构建CNN-Transformer深度学习模型,用于估测关中平原冬小麦产量。与Transformer模型(R2为0.64,RMSE为465.40kg/hm2,MAPE为8.04%)相比,CNN-Transformer模型具有更高的冬小麦单产估测精度(R2为0.70,RMSE为420.39kg/hm2,MAPE为7.65%),能够从遥感多参数中提取更多与产量相关的信息,且对于Transformer模型存在的高产低估和低产高估现象均有所改善。基于5折交叉验证法和留一法进一步验证了CNN-Transformer模型的鲁棒性和泛化能力。此外,基于CNN-Transformer模型捕获冬小麦生长过程的累积效应,分析逐步累积旬尺度输入参数对产量估测的影响,评估模型对于冬小麦不同生长阶段的累积过程的表征能力。结果表明,模型能有效捕捉冬小麦生长的关键时期,3月下旬至5月上旬是冬小麦生长的关键时期。 相似文献
17.
叶绿素荧光参数Fv/Fm在植物逆境胁迫研究中具有重要意义,当前获取方法需要对植物进行暗适应处理,难以实现实时测量。为实现Fv/Fm的实时获取,本文以4种水分胁迫水平下的辣椒为研究对象,基于高光谱成像及特征波段筛选方法对Fv/Fm进行预测。采用中值滤波对Fv/Fm图像去噪,并基于二维坐标变换实现高光谱图像与叶绿素荧光图像的匹配。对比标准正态变换(SNV)、多元散射校正(MSC)和Savitzky-Golay卷积平滑(SG)3种光谱预处理算法,并基于连续投影(SPA)算法筛选特征波长。基于效果最优的SG预处理算法,分别以偏最小二乘回归(PLSR)、分析误差反向传播(BP)神经网络、径向基函数(RBF)神经网络对比建模精度,其中BP算法建立的模型精度相对较高,其测试集决定系数为0.918、均方根误差为0.011。研究表明,SG-SPA-BP的建模方法在实现预测精度的同时降低了模型复杂度,为基于高光谱图像对Fv/Fm图像的实时准确预测提供了方法。 相似文献
18.
奶粉市场是食品掺假行为频发领域,其中婴幼儿配方奶粉价格高,其质量是消费者、生产企业和执法部门关注的重点。近红外高光谱成像(Near infrared-hyperspectral imaging, NIR-HSI)技术结合化学计量学和机器学习算法可以检测奶粉中单一掺假物含量。基于NIR-HSI技术研究了不同品牌婴幼儿奶粉中多掺假物(三聚氰胺、香兰素和淀粉)的定量预测。对基于像素点预处理后的高光谱图像划分感兴趣区域(Region of interest, ROI),提取ROI平均光谱。基于经典的过滤式特征选择算法拉普拉斯分数(Laplacian score)(无监督)和ReliefF(有监督)挑选建模关键变量,建立偏最小二乘回归模型(Partial least squares, PLS)。开发包含自定义选择层的一维卷积神经网络模型(One-dimensional convolutional neural networks, 1DCNN)。自定义层根据权重系数绝对值,可确定重要波长变量。Laplacian score-PLS模型对预测集中奶粉、三聚氰胺、香兰素和淀粉质量分数预测结果均方根误差分别为0.1110%、0.0570%、0.0349%和0.3481%。ReliefF-PLS模型对预测集中奶粉、三聚氰胺、香兰素和淀粉预测结果均方根误差分别为0.1998%、0.0540%、0.0455%和0.1823%。1DCNN模型对预测集中奶粉、三聚氰胺、香兰素和淀粉质量分数预测结果均方根误差分别为0.8561%、0.0911%、00644%和0.2942%。对Laplacian score、ReliefF和自定义选择层挑选出的前15个重要波长进行对比分析,不同特征选择方法挑选的特征波长子集有所区别,但都选择 1210、1474、1524、1680nm等附近波长。基于ReliefF-PLS模型的可视化结果表明了其良好的预测能力。 相似文献
19.
果树测产是果园管理的重要环节之一,为提升苹果果园原位测产的准确性,本研究提出一种包含改进型YOLOv5果实检测算法与产量拟合网络的产量测定方法。利用无人机及树莓派摄像头采集摘袋后不同着色时间的苹果果园原位图像,形成样本数据集;通过更换深度可分离卷积和添加注意力机制模块对YOLOv5算法进行改进,解决网络中存在的特征提取时无注意力偏好问题和参数冗余问题,从而提升检测准确度,降低网络参数带来的计算负担;将图片作为输入得到估测果实数量以及边界框面总积。以上述检测结果作为输入、实际产量作为输出,训练产量拟合网络,得到最终测产模型。测产试验结果表明,改进型YOLOv5果实检测算法可以在提高轻量化程度的同时提升识别准确率,与改进前相比,检测速度最大可提升15.37%,平均 最高达到96.79%;在不同数据集下的测试结果表明,光照条件、着色时间以及背景有无白布均对算法准确率有一定影响;产量拟合网络可以较好地预测出果树产量,在训练集和测试集的决定系数 分别为0.7967和0.7982,均方根误差 分别为1.5317和1.4021 ㎏,不同产量样本的预测精度基本稳定;果树测产模型在背景有白布和无白布的条件下,相对误差范围分别在7%以内和13%以内。本研究提出的基于轻量化改进YOLOv5的果树产量测定方法具有良好的精度和有效性,基本可以满足自然环境下树上苹果的测产要求,为现代果园环境下的智能农业装备提供技术参考。 相似文献