共查询到20条相似文献,搜索用时 15 毫秒
1.
利用高密度SNP 遗传图谱定位小麦穗部性状基因 总被引:2,自引:2,他引:2
小麦穗部性状之间相关性密切, 其中穗粒数和千粒重是重要的产量构成要素, 挖掘与穗部性状相关联的基因位点对分子标记辅助育种及解释基因效应具有重要意义。本研究以RIL群体(山农01-35×藁城9411) 173个F8:9株系为材料, 利用90 k小麦SNP基因芯片、DArT芯片技术及传统的分子标记技术构建的高密度遗传图谱, 在5个环境下进行穗部相关性状QTL定位。检测到位于1B、4B、5B、6A染色体上7个控制千粒重的加性QTL, 解释表型变异率6.00%~36.30%, 加性效应均来自大粒母本山农01-35; 检测到8个控制穗长的加性QTL, 解释表型变异率14.34%~25.44%; 3个控制穗粒数的加性QTL; 5个控制可育小穗数的加性QTL; 3个控制不育小穗数的加性QTL, 贡献率为8.70%~37.70%; 4个控制总小穗数的加性QTL; 6个控制小穗密度的加性QTL。通过基因型与环境互作分析, 检测到32个加性QTL, 解释表型变异率0.05%~1.05%。在4B染色体区段EX_C101685–RAC875_C27536检测到控制粒重、穗长、穗粒数、可育小穗数、不育小穗数、总小穗数的一因多效QTL,其贡献率为5.40%~37.70%, 该位点在多个环境中被检测到, 是稳定主效QTL。在6A染色体wPt-0959-TaGw2-CAPS区间上检测到控制粒重、总小穗数的QTL。研究结果为穗部性状的分子标记开发、基因精细定位和功能基因克隆奠定了基础。 相似文献
2.
小麦作为目前全球范围内种植最为普遍的粮食作物之一,在提供人类所需的热量与蛋白质方面发挥着至关重要的作用。然而,随着耕地面积的不断缩减以及气候变化的日益加剧,全球粮食安全正面临着前所未有的严峻挑战。选育优良小麦品种成为提升小麦产量的关键所在,是保障世界粮食安全的重要策略。影响小麦产量的主要因素包括每穗粒数、粒重和单位面积穗数,而这三要素均与穗部性状相关,一直以来受到研究者的高度关注。随着测序技术的不断革新,小麦基因克隆与功能研究领域迎来了一系列新的突破。具体而言,诸如 RNA-Seq(BSR-seq)和外显子组捕获测序等基因定位技术,以其高效且精确的特性,迅速成为关键基因定位的有力手段。同时,单核苷酸多态性芯片在基因分型和育种工作中得到了广泛应用,为研究者提供了丰富的遗传信息,基于 SNP 数据的全基因组关联分析正日益成为连接遗传位点与发育性状的重要桥梁。研究人员通过将基因共表达网络或数量性状位点分析与全基因组关联分析相结合,进一步提升了识别与表型相关候选基因的准确性和效率。这一系列的进步不仅推动了小麦遗传研究的深入发展,也为小麦育种和农业生产提供了新的思路和策略。对小麦穗部调控相关基因及穗部性状相关的数量性状位点进行分类与总结,旨在为小麦穗部性状遗传改良和育种奠定基础。 相似文献
3.
4.
基于SNP标记的玉米株高及穗位高QTL定位 总被引:8,自引:3,他引:8
为进一步弄清玉米株高和穗位高的遗传机理,为育种生产提供服务,本研究以K22×CI7、K22×Dan3402个F2群体为作图群体,利用覆盖玉米10条染色体的SNP标记构建了2个连锁图谱。并将这2个F2群体衍生的分别含237和218个家系的F2:3群体用于田间性状的鉴定。用复合区间作图模型对2个群体的株高、穗位高表型进行QTL定位分析,结果显示,在武汉和南宁两种环境条件下共定位到21个株高QTL和27个穗位高QTL;单个QTL表型变异贡献率的变幅为4.9%~17.9%;株高和穗位高QTL的作用方式以加性和部分显性为主;第7染色体上可能存在控制株高和穗位高的主效QTL。 相似文献
5.
小麦穗部性状与产量密切相关,挖掘穗部性状基因及其关联分子标记具有重要意义。本研究以周8425B?小偃81衍生的RIL群体(F8)为材料,利用90k芯片标记构建的高密度遗传图谱对3个环境下的穗长、小穗数、不育小穗数、穗粒数、千粒重进行QTL定位。共检测到19条染色体上的71个QTL,变异解释率(PVE)范围为2.10%~45.25%,其中37个位点为主效QTL(PVE10%)。QSl.nafu-6A.2(穗长)、QSl.nafu-7A(穗长)、QSsn.nafu-2A.1(不育小穗数)、QSsn.nafu-2D(不育小穗数)和QGns.nafu-2B(穗粒数)在多个环境中被检测到,且LOD10,PVE20%。位于同一个基因簇中的QSl.nafu-6A.2(穗长)、QGns.nafu-6A(穗粒数)和QTgw.nafu-6A(千粒重)在多个环境中被检测到,且与已报道的相关位点位置相同或相近,在分子标记辅助育种中具有较大参考价值。 相似文献
6.
小麦籽粒产量及穗部相关性状的QTL定位 总被引:5,自引:7,他引:5
由小麦品种花培3号和豫麦57杂交获得DH群体168个株系,种植于3个环境中,利用305个SSR标记对籽粒产量和穗部相关性状(穗长、穗粒数、总小穗数、可育小穗数、小穗着生密度、千粒重和粒径)进行了QTL定位。利用基于混合线性模型的QTLNetwork 2.0软件,共检测到27个加性效应和13对上位效应位点,其中 8个加性效应位点具有环境互作效应。相关性高的性状间有一些共同的QTL位点,表现出一因多效或紧密连锁效应。5D染色体区段Xwmc215–Xgdm63,检测到控制籽粒产量、穗粒数、总小穗数、可育小穗数和小穗着生密度5个性状的QTL位点,各位点的遗传贡献率较大且遗传效应方向相同,增效等位基因均来源于豫麦57,适用于分子标记辅助育种和聚合育种。控制千粒重与穗粒数的QTL位于染色体不同区段,有利于实现穗粒数与粒重的遗传重组。 相似文献
7.
用YC2(高杆)×YF1(矮杆)和YC1(高杆)×YF1(矮杆)组合衍生的2个F2代群体, 对蓖麻株高性状进行相关、回归和QTL定位分析。结果表明, 株高与主穗位高、主茎节长和主茎茎粗之间显著正相关, 但与主茎节数不相关;主穗位高与主茎节数、主茎节长和主茎茎粗之间显著正相关;主茎节数与主茎节长之间显著负相关。利用QTLNetwork 2.0软件在YC2×YF1的F2群体中检测到株高、主穗位高、主茎节数、主茎节长和主茎茎粗的5、4、6、3和2个QTL, 分别解释了45.9%、45.3%、66.1%、55.4%和12.6%的总变异。在YC1×YF1的F2群体中检测到3、4、5、1和2个上述5性状的QTL, 分别解释了26.0%、25.5%、35.4%、37.4%和7.6%的总变异。证明QTL间的“一因多效”和连锁是株高、主穗位高和主茎节长之间高度相关的遗传基础, 加性效应是株高、主穗位高和主茎节长的主要遗传组分, 互作效应是主茎节数和主茎茎粗的主要遗传组分。建议育种上将主穗位高和主茎节长作为株高早期选择和预测的间接指标,并将多节数和短节间作为高产育种的主攻方向。 相似文献
8.
小麦穗部性状与单株产量密切相关。本研究以小麦骨干亲本燕大1817与优良品系北农6号衍生的269个重组自交系为材料,通过在北京和河北石家庄的2年田间试验数据,利用本实验室已构建的高密度SNP和SSR遗传连锁图谱进行穗长、穗粒数和穗粒重QTL定位。采用完备复合区间作图法共检测到29个穗部性状加性效应QTL,其中10个穗长QTL分布于1B、2D、3A、3B、4A、5A、5B、6A和7D染色体上,解释的表型变异率为2.96%~9.63%,QSl.cau-4A.2在所有5个环境中均能被检测到,解释的表型变异为5.89%~9.62%,另有7个QTL能在2个或2个以上环境中被检测到;8个穗粒数相关QTL分布于1A、3A、3D、4A和5B染色体上,解释的表型变异为4.06%~11.17%,为单个环境QTL。11个与穗粒重相关QTL分布于1A、1B、2A、2D、3A、4D、5A、5B和6B染色体上,解释的表型变异为2.79%~16.12%,其中QGws.cau-1B、QGws.cau-3A和QGws.cau-6B.2在2个或者2个以上环境中能被检测到。另外,鉴定出6个分布于1A、2D、3A、4A和5B染色体上的QTL富集区段。 相似文献
10.
水稻穗部性状的QTL分析 总被引:2,自引:1,他引:2
水稻穗部性状与产量关系密切。以粳稻品种日本晴和一个大穗籼稻材料H71D为亲本构建F2群体,于2011和2012年分别以172个单株和138个单株,对穗长、一次枝梗数、二次枝梗数、总粒数、穗着粒密度等5个穗部性状进行QTL定位。以LOD≥3为阈值,两年共检测到38个QTL,其中2011年21个,2012年17个,2年重复检测到的QTL为4个,占总数的10.5%。5个性状之间大都具有显著的表型相关性,相关性较强的性状之间具有较多相同或紧密连锁的QTL,效应值较大的QTL易于在不同群体和不同环境中被重复检测到。检测到的QTL为进一步进行元分析和精细定位打下了基础,也为通过分子标记辅助选择提高产量提供了有用信息。 相似文献
11.
12.
旗叶是小麦主要的光合器官,叶绿素既是旗叶最主要的光合色素,也是品种选育中重要的表型指标,因此挖掘和利用旗叶叶绿素含量有关的主效基因/位点,对于培育高产稳产小麦新品种意义重大。以旗叶叶绿素含量差异较大双亲构建的双单倍体群体(DH群体)为材料,利用小麦90K SNP芯片对5个环境旗叶叶绿素含量进行QTL分析,共定位到20个旗叶叶绿素含量有关的遗传位点,表型贡献率为4.10%~27.16%;其中3个QTL(Qchl.saw-2D.1、Qchl.saw-4D.2和Qchl.saw-6A)能在多个环境条件下检测到; Qchl.saw-2D.1的遗传效应最高,该位点与2D染色体上已报道的其他叶绿素位点不同,初步确定是1个新的主效QTL。并进一步将Qchl.saw-2D.1紧密连锁的SNP标记开发为KASP标记,通过在含有共同亲本金麦919的RIL群体中验证其效应,发现在多个环境条件下具有Qchl.saw-2D.1有利等位基因的家系叶绿素含量显著或极显著高于其他家系。对Qchl.saw-2D.1、Qchl.saw-4D.2和Qchl.saw-6A所在功能区段进行基因注释,筛选到12个与叶绿素相关的候... 相似文献
13.
小麦株高相关性状与SNP标记全基因组关联分析 总被引:4,自引:0,他引:4
株高是影响小麦产量和控制倒伏的重要因素,研究小麦株高相关性状的遗传机制对高产育种具有指导意义。以205份中国冬麦区小麦品种(系)为材料,利用分布于小麦全基因组的24 355个单核苷酸多态性(SNP)标记对株高相关性状进行关联分析。共发现38个与株高相关性状显著关联(P0.0001)的SNP,分布在1B、2A、2B、3A、3B、3D、4A、4B、5A和6D染色体上。其中,11个位点至少在2个环境中稳定表达,可用于开发CAPS标记。同时,发掘了一批株高性状相关基因的优异等位变异,如降低株高的等位变异Bob White_c48009_52,平均降低株高12.9 cm;控制穗下节间长的等位变异BS00039422_51-C和IAAV1698-A,分别调控穗下节间长5.9 cm和6.6 cm。本研究发掘的控制小麦株高基因位点为在分子水平上研究小麦株高复杂性状提供了有价值的参考。 相似文献
14.
本研究以热带玉米骨干自交系T32和QR273为亲本构建的150份F2、F2∶3分离家系为材料,利用简化基因组测序技术(GBS)对F2单株的基因型鉴定,同时分别在甘肃张掖和贵州贵阳两环境条件下对F2∶3家系的穗长、穗粗、穗行数、行粒数和秃尖长等5个穗部相关性状进行表型评价,采用完备区间作图法进行QTL定位。结果表明,两个环境下共检测到46个穗部相关性状QTL,分布于10条染色体上,可分别解释表型变异范围为1.89%~17.18%,可解释穗部性状表型变异大于10%的QTL有6个。结合公共数据库,利用生物信息学分析策略,预测出6个控制穗部性状变异的候选基因(Zm00001d041072,Zm00001d053048,Zm00001d011355,Zm00001d041073,Zm00001d030086,Zm00001d030088),这些基因所编码的蛋白具有植物生长发育、激素合成、营养成分转运和其他许多生物学功能,可作为后续基因图位克隆和分子辅助育种的候选靶标。 相似文献
15.
小麦穗部性状和株高的QTL定位 总被引:1,自引:0,他引:1
《分子植物育种》2015,(1)
穗粒数是小麦的重要产量性状之一,减少基部不育小穗数是提高小麦穗粒数的重要途径。利用EMS诱变小麦品系山农1186获得基部2-4个小穗不育突变体M7652。本研究利用M7652与山农1186回交获得的BC3F2群体及其衍生的BC3F2:3株系(MS)群体,M7652与泰农18杂交获得的F2群体及其衍生的F2:3株系(MT)群体为材料,进行遗传作图和QTL定位。通过SSR标记检测构建了分别覆盖38.9 c M、73.1 c M的两个4B染色体的遗传连锁图。对两个群体的穗部性状和株高进行QTL分析表明,MS回交群体在3个环境下都检测到6个QTL,包括5个控制穗部性状和1个株高性状的QTL位点,其贡献率为18.22%~47.23%,且位于染色体的相同区段,形成一个QTL簇;MT群体在1个环境中检测到4个控制穗部性状、1个控制株高的QTL位点,其贡献率为1.51%~39.15%,形成一个QTL簇。利用MS和MT群体检测到的QTL簇在染色体上的位置相同,都覆盖swes24标记,这个区域与增加小麦穗粒数、降低株高有关,为小麦穗粒数、株高的精细定位、基因克隆奠定了基础。 相似文献
16.
生育期是决定小麦品种适应性的重要农艺性状,探索其遗传机制及效应对于小麦品种的选育和推广具有重要意义。本研究以扬麦158和密穗小麦杂交构建的240个重组自交家系(recombinant inbred line, RIL)为材料,于2~4个环境下对该群体主要生育期性状进行鉴定。利用已构建的高密度遗传图谱,共检测到52个生育期相关QTL,分布在2A、2D、3D、4B、4D、5A、5B、5D、6A、6B、7A、7B和7D染色体上。QJS/BS/HS/FS/MS.nau-5D.2、QJS/BS/HS/FS/MS.nau-2D.1和QJS/BS/HS/FS/MS.nau-7B.1均在多年被重复检测到,分别解释4.56%~46.86%、1.32%~33.40%和2.37%~13.27%的表型变异。QBS/HS.nau-2A.3、QHS/FS.nau-5B.2、QFS.nau-2A.5、QBS.nau-6A.2、QJS.nau-4D.2、 QJS.nau-6A.3、 QBS.nau-2A.2、 QBS/HS.nau-6A.1、 QFS.nau-7A.2、 QMS.nau-3D、 QMS.nau-4D.... 相似文献
17.
玉米株高、穗位高和雄穗分枝数是影响玉米抗倒伏性、耐密性、植株透光率及生产潜力的重要株型性状。因此,本研究以自交系T32和黄C为亲本组配了F2和F2:3群体,利用完备区间作图法对株高、穗位高和雄穗分枝数进行QTL检测和效应值分析。结果表明,F2:3家系在三个环境中共检测到10个QTL位点,单一环境下单个QTL的表型贡献率介于5.84%~11.03%之间。其中,株高受部分加性效应(A)、显性效应(D)、部分显性效应(PD)和超显性效应(OD)的调控;穗位高受到部分显性效应(PD)、显性效应(D)和超显性效应(OD)的调控;雄穗分枝数受到加性效应(A)、部分显性效应(PD)和超显性效应(OD)的调控。两个环境条件下调控株高和穗位高表达的QTL,分别位于Bin3.06(bnlg1350~phi102228)和Bin4.05~Bin4.06(umc2391~umc2283)同时调控株高和穗位高。三个环境条件下调控穗位高和雄穗分枝数表达的QTL,分别位于Bin8.05(umc1121~bnlg1782)调控穗位高、Bin8.07(bnlg1065~bnlg1823)调控雄穗分枝数。通过在不同环境条件下稳定检测到的株高、穗位高和雄穗分枝数QTL位点,以期为玉米相关性状的遗传研究、精细定位及基因克隆提供有益参考。 相似文献
18.
花生出仁率、株高等性状都对产量有重要影响, 鉴定出仁率和株高相关的主效QTL, 分析QTL的加性、上位性及其与环境的互作效应以及出仁率与株高之间的遗传关系, 有助于加快花生分子育种研究进程。本研究以远杂9102×徐州68-4构建的RIL群体为材料, 在4个环境中调查出仁率和株高等表型性状, 相关性分析结果表明, 4个环境中, 出仁率与株高均存在极显著负相关。利用前期构建的高密度遗传图谱, 通过QTLNetwork 2.0软件对出仁率和株高进行QTL定位分析, 检测到13个具加性效应的出仁率QTL, 8个具加性效应的株高QTL, 其中, 2个与出仁率相关的主效QTL (qSPA05.2和qSPA09.1)和1个与株高相关的主效QTL (qPHA09.1)至少能在3个环境下被重复检测到。还检测到11对上位性QTL, 包括出仁率6对和株高5对, 与环境之间均存在互作效应。比较QTL在连锁群上的位置发现, 在A09染色体Ad91I24-AGGS2492区间同时检测到稳定的出仁率主效QTL (qSPA09.1)和株高主效QTL (qPHA09.1)。通过条件QTL排除该位点株高的效应后, 出仁率加性效应贡献率从14.37%下降到5.50%, 表明qSPA09.1和qPHA09.1为同一位点, 同时控制株高和出仁率。 相似文献
19.
小麦品种扬麦16赤霉病抗扩展QTL定位及分析 总被引:1,自引:0,他引:1
扬麦系列品种赤霉病抗性在世界范围内得到重视,但其抗性遗传机制尚不清楚。扬麦16是近年来大面积推广的抗赤霉病品种,本研究以扬麦16与中麦895杂交构建的174个双单倍体(doublehaploidlines,DH)系为材料,于2017—2019年连续3年对该群体采用单花滴注进行赤霉病抗扩展鉴定。利用660KSNP芯片构建高密度遗传图谱,共检测到6个抗性QTL,分别位于2DL、3BL、4BS、4DS、5BL和6AS染色体上。除4BS位点外,其他5个抗性等位基因均来源于扬麦16。QFhb.yaas-4DS和QFhb.yaas-6AS均在多年被检测到,可解释8.8%~15.0%的表型变异;QFhb.yaas-2DL、QFhb.yaas-3BL仅在1年被检测到,分别解释10.5%和14.7%的表型变异;QFhb.yaas-5BL和来源于中麦895的QFhb.yaas-4BS仅在1年被检测到且效应仅为6.4%和8.3%。QTL效应分析结果表明,相较于单个位点,多个抗性QTL的聚合可显著降低赤霉病严重度。扬麦16抗赤霉病QTL将为揭示扬麦品种抗性遗传机制及开发相应分子标记奠定基础。 相似文献
20.
采用中SNP160K芯片对丰收24×通交83-611 F2群体252个植株及其亲本进行基因分型,构建了一张由5861个SNP标记组成的全长为3661.46 cM的高密度遗传连锁图谱。利用完备区间作图法(ICIM)定位到7个株高QTL,每个QTL可解释2.56%~10.41%的株高变异。qPH-6-1具有最高的表型变异贡献率和显性效应,可解释10.41%的株高变异,加性效应和显性效应分别为–1.72和18.94; qPH-18-1贡献率次之,可解释9.64%的株高变异,但具有最高的加性效应,达-12.42。在F2群体中筛选出11个qPH-6-1和qPH-18-1基因型为Q6Q6/Q18Q18的单株,平均株高167.00 cm;筛选出16个基因型为q6q6/q18q18的植株,平均株高为91.25 cm。在qPH-18-1定位区间内外增加23个SNP标记,将定位区间由766.97kb缩小至66.03kb,包含8个基因,结合基因注释和相对表达量差异分析,推测Glyma.18G279800和Glyma.18G280200可能与大豆的株高相关。本研究为大豆株型的改良提供了分子参考依据和遗传基础。 相似文献