共查询到17条相似文献,搜索用时 78 毫秒
1.
为解决机器视觉对早期玉米苗带在多环境变量下导航线提取耗时长、准确率低的问题,该研究提出了一种基于中值点Hough变换作物行检测的导航线提取算法。首先,改进了传统的2G-R-B算法,再结合中值滤波、最大类间方差法和形态学操作实现土壤背景与玉米苗带的分割。其次,通过均值法提取玉米苗带特征点,然后采用中值点Hough变换拟合垄间两侧玉米苗列线,最后将检测出的双侧玉米苗列线为导航基准线,利用夹角正切公式提取导航线。试验结果表明:改进的灰度化算法能够正确分割玉米苗带与土壤,处理一幅640×480像素彩色图像平均耗时小于160 ms,基于中值点Hough变换检测玉米苗列再提取导航线的最大误差为0.53°,相比于传统Hough变换时间上平均快62.9 ms,比最小二乘法平均精确度提高了7.12°,在农田早期玉米苗带多环境变量影响因素下导航线提取准确率均达92%以上,具有较强的可靠性和准确性。 相似文献
2.
玉米行间导航线实时提取 总被引:3,自引:7,他引:3
针对高地隙植保机底盘玉米田间植保作业压苗严重的现象,该研究提出了基于车轮正前方可行走动态感兴趣区域(Region of Interest,ROI)的玉米行导航线实时提取算法。首先将获取的玉米苗带图像进行像素归一化,采用过绿算法和最大类间方差法分割玉米与背景,并通过形态学处理对图像进行增强和去噪;然后对视频第1帧图像应用垂直投影法确定静态ROI区域,并在静态ROI区域内利用特征点聚类算法拟合作物行识别线,基于已识别的玉米行识别线更新和优化动态ROI区域,实现动态ROI区域的动态迁移;最后在动态ROI区域内采用最小二乘法获取高地隙植保机底盘玉米行间导航线。试验表明,该算法具有较好的抗干扰性能,能够很好地适应较为复杂的田间环境,导航线提取准确率为96%,处理一帧分辨率为1 920像素×1 080像素图像平均耗时97.56 ms,该研究提出的算法能够为高地隙植保机车轮沿玉米垄间行走提供可靠、实时的导航路径。 相似文献
3.
针对基于机器视觉的自动导航系统现有导航线提取算法易受外界环境干扰和处理速度较慢等问题,该文提出一种基于图像扫描滤波的导航线提取方法。首先获取不同农作物的彩色图像,使用2G-R-B算法对彩色图片进行灰度化处理,得到作物行和土壤背景对比性良好的图片。使用Otsu方法对图像进行分割,得到二值化的图像后,再采用腐蚀-中值滤波-膨胀的滤波方法对图像进行去噪处理。然后使用该文提出的扫描滤波导航线提取算法,将图像分成左右两部分,使用等面积三角形对两部分分别进行扫描后,再对扫描的结果进行滤波,从而提取作物行,得到导航线。试验结果表明,采用该方法处理一幅640×320像素的图像只需要76ms,可满足农机具实时导航的要求;与传统导航线提取算法相比,该算法计算速度快,适应能力强。 相似文献
4.
基于图像处理的玉米收割机导航路线检测方法 总被引:1,自引:9,他引:1
快速精准的检测出导航路线并对田端做出准确判断是收割机视觉导航的前提。为解决玉米收割机导航作业过程中因玉米列阴影、玉米田端的杂草等因素对检测精度干扰的问题,该文通过分析视觉导航图像的颜色特征去除阴影干扰,对玉米收割机提取导航作业路径和判断田端提出了检测算法。为减少计算量,设定关注区域作为非第一帧图像的处理范围;为去除玉米列阴影对检测结果造成的干扰,强调关注区域内G(绿色)分量并减弱R(红色)或B(蓝色)分量;为加快处理速度,采用跳行累计G分量的方式确定候补点。在关注区域内对图像中去除阴影干扰后的G分量垂直累计值查找候补点,对图像上半部分收敛性好的候补点通过方差计算确定出已知点,再利用过已知点Hough变换拟合出玉米列边界所在的导航线。最后采用R分量的连续突变判断收割机是否到达田端。田间试验表明:目标直线的平均检测时间为50.13 ms/帧,对田端的检测准确可靠,满足玉米收割的作业要求。该研究成果也适用于高粱等其它高杆作物的机械化收获应用。 相似文献
5.
基于良序集和垄行结构的农机视觉导航参数提取算法 总被引:2,自引:3,他引:2
根据田间作物垄行间杂草离散的特点,基于图像矩阵,运用像素子集的良序性,结合垄宽先验知识得到垄行轨迹中心。同时,系统选择图像的绿色成分为目标特征空间,滤掉了非绿色的背景噪声,为寻找垄行子集奠定了基础。在摄像头参数结构的可线性化映射区(图像中间约1/3区域),考虑移动平台的速度和系统图像采样间隔,在系统处理速度大于平台移动速率条件下,建立了单目视觉导航系统的动态方程。试验结果表明:航向角和位置参数平均误差分别约为1°和1 mm。该算法设计简洁,实现容易,可有效避免杂草等噪声的影响,对光照也有一定的适应性。 相似文献
6.
为满足智能农业机器人路径规划中障碍物检测的需求,针对传统双目视觉中用于障碍物检测算法的局限性,提出基于点云图的障碍物距离与尺寸的检测方法。该方法以双目视觉中以立体匹配得到的点云图为对象,通过设置有效空间,对不同区域处点云密度的统计,找到点云密度随距离的衰减曲线。远距离障碍物由于相机分辨率的不足,点云密度会随距离下降,通过密度补偿算法进行补偿,经二次设置有效空间后锁定障碍物位置,将目标点云分别投影于俯视栅格图和正视图中,获得其距离和尺寸信息。试验表明:该方法能有效还原障碍物信息,最大测距范围为28 m,平均误差为2.43%;最大尺寸检测范围为10 m,长度和高度平均误差均小于3%。该文基于点云图的栅格化表示和密度补偿算法,通过设置有效空间将点云投影得到障碍物距离和尺寸,不同环境下的精度测试和距离检测验证了可靠性和鲁棒性。 相似文献
7.
8.
基于多学科技术融合的智能农机控制平台研究综述 总被引:1,自引:8,他引:1
农业机械的自动化和智能化包含内容广泛,有农机定位与导航,动态路径规划,机器视觉和远程监控等,牵涉到大量的工程技术学科,包括导航、图像、模型与策略、执行器以及数据链等。农机定位与导航一般采用基于农机运动学模型结合GPS(global positioning system)/IMU(inertial measurement unit)组合导航信息,在导航路径规划算法指引下实现农机轨迹跟踪的方法。建立的农机运动学模型精度,GPS数据的连续性以及惯导器件误差系数漂移等因素都会影响该方法的有效性。路径跟踪通常采用各种现代控制理论与方法,而面对复杂的田间作业环境变化,农机的自主避障以及动态路径规划能力也会影响轨迹跟踪精度。机器视觉的稳定性和目标特征信息分离度影响着农机环境感知能力,目前目标识别主要采用hough变换,hough变换的全局检测特性决定了该算法运算量较大,需要探究改进特征提取算法。远程监控农机作业是智能农机发展的一个方向,构建无线导航,控制和视频数据传输网络有助于提高农机的智能化水平,可以采用分布式哈希表(distributed hash table)来研究网络覆盖和互联技术。该文融合多个学科,从高精度定位与导航技术、复杂环境及工况下农机运动精确自主控制技术、稳定清晰的机器视觉感知技术和基于4G网络和新一代物联网的高覆盖数据传输技术几个方面,论述了智能农机在光机电液多个学科领域内的研究现状,并指出采用北斗地基增强网络和网络RTK(real-time kinematic)技术、惯导定位误差精确建模与补偿、环境感知与自主避障、立体结构自组网技术以及多机协作是现代农业机械的发展方向。以期为现代化智能农业机械的设计提供参考。 相似文献
9.
中国南方水田环境复杂,不同生长阶段秧苗的形态各异,且田中常出现浮萍及蓝藻,其颜色与秧苗颜色极其相似,因此常用的作物特征提取算法难以应用在水田上。针对这些问题,该文提出一种基于SUSAN角点的秧苗列中心线方法。运用归一化的Ex G(excess green index)提取秧苗的灰度化特征,运用自适应的SUSAN(smallest univalue segment assimilating nucleus)算子提取秧苗特征角点;最后运用扫描窗口近邻法进行聚类,采用基于已知点的Hough变换(known point Hough transform)提取秧苗列中心线。经试验验证,此算法在图像中存在浮萍、蓝藻和秧苗倒影的情况下有较高的鲁棒性。在各种情况下均成功提取秧苗的列中心线,且每幅真彩色图像(分辨率:1280×960)处理时间不超过563 ms,满足视觉导航的实时性要求。 相似文献
10.
针对Harris角点检测算法中角点响应函数(corner response function,CRF)系数阈值与非极大值抑制系数阈值需要人为设定所造成的可变性和随机性等问题,该文提出一种通过计算图像每个像素的自相关矩阵行列式值,构造特征角点图像进行自适应阈值分割的改进Harris角点检测算法.该算法首先通过计算原图像经过方向滤波和低通滤波后各像素的自相关矩阵行列式值,以此构造特征角点图像;然后采用OTSU算法计算特征角点图像分割阈值,从而筛选出预选区域;最后结合改进的非极大值抑制方法提取有效角点.通过5组角点检测对比试验结果数据分析,不同类型图像的角点检测准确率均有提高,高分二号遥感影像的角点检测准确率提高27.06个百分点,可以初步得出,该算法相比传统Harris角点检测算法不但能够自动计算角点检测的最佳阈值,而且能够更准确地定位角点和去除边缘伪角点,从而提高了角点检测的精确度,该研究可为农业遥感影像数据检测提供参考. 相似文献
11.
红枣收获机视觉导航路径检测 总被引:1,自引:6,他引:1
针对新疆地区骏枣与灰枣枣园的收获作业,该研究提出一种红枣收获机枣树行视觉导航路径检测算法。通过枣园图像固定区域中B分量垂直累计直方图的标准差d与最小值f的关系对枣园种类进行自动判断。针对灰枣枣园,首先采用色差法与OTSU法对图像进行灰度化与二值化处理,然后进行面积去噪与补洞处理,在处理区域内从上向下逐行扫描,将每行像素上像素值为0的像素点坐标平均值作为该行候补点的坐标,并将所有候补点坐标的平均值作为Hough变换的已知点坐标,最后基于过已知点的Hough变换拟合导航路径;针对骏枣枣园,在处理区域内通过垂直累计R分量的方法确定扫描区间,然后在扫描区间内从上到下逐行扫描,将每行像素上R分量值最小的像素点作为该行的候补点,并将所有候补点的坐标平均值作为Hough变换的已知点,最后使用过已知点的Hough变换拟合导航路径。试验结果表明:对于灰枣枣园与骏枣枣园,该算法的路径检测准确率平均值分别为94%和93%,处理1帧图像平均耗时分别为0.042和0.046 s,检测准确性与实时性满足红枣收获机作业要求,能够自动判别枣园种类进行作业,可为实现红枣收获机自动驾驶提供理论依据。 相似文献
12.
13.
机器视觉导航是智慧农业的重要部分,无作物田垄的导航线检测是旱地移栽导航的关键。针对无作物田垄颜色信息相近、纹理差距小,传统图像处理方法适用性差、准确率低,语义分割算法检测速度慢、实时性差的问题,该研究提出一种基于改进DeepLabV3+的田垄分割模型。首先对传统DeepLabV3+网络进行轻量化设计,用MobileNetV2网络代替主干网络Xception,以提高算法的检测速度和实时性;接着引入CBAM(convolutional block attention module,CBAM)注意力机制,使模型能够更好地处理垄面边界信息;然后利用垄面边界信息获得导航特征点,对于断垄情况,导航特征点会出现偏差,因此利用四分位数对导航特征点异常值进行筛选,并采用最小二乘法进行导航线拟合。模型评估结果显示,改进后模型的平均像素精确度和平均交并比分别为96.27%和93.18%,平均检测帧率为84.21帧/s,优于PSPNet、U-Net、HRNet、Segformer以及DeepLabV3+网络。在不同田垄环境下,最大角度误差为1.2°,最大像素误差为9,能够有效从不同场景中获取导航线。研究结果可为农业机器人的无作物田垄导航提供参考。 相似文献
14.
自然条件的限制使得丘陵山区农产品和物资的田间转运难以实现高安全性的机械化作业。为此,该文研制了一种在丘陵山区田间道路上自主行驶的转运车及其视觉导航系统。该系统采用RTK-GNSS(real-timekinematic-global navigationsatellitesystem,实时动态-全球卫星导航系统)进行路网信息采集、实时定位和路径规划,利用机器视觉进行田间道路识别并提取路径跟踪线;田间道路非路口区域由机器视觉系统进行导航,路口区域采用RTK-GNSS实时定位进行导航。全局路径规划中对A*算法估价函数进行改进,将路口节点处的道路曲率及道路起伏信息引入代价函数。图像处理中强化道路上的阴影处理和信息融合,实现道路与背景的准确分割;然后将道路区域分块求取形心点,拟合后生成道路的虚拟中线作为局部路径的导航线。路径规划仿真表明,改进的A*算法能融合丘陵山地道路起伏变化的特征,规划的路径更合理。转运车自主行驶测试表明,在直线路径、多曲率复杂路径以及地形起伏路径3种工况下,自主行驶轨迹与实际道路中线的平均偏差分别为0.031、0.069和0.092 m,最大偏差分别为0.133、0.195和0.212 m;转运车沿道路中线自主行驶的平均相对误差分别为5.16%、11.5%和15.3%,满足田间道路转运车自主行驶的安全要求。 相似文献
15.
16.
基于垄线平行特征的视觉导航多垄线识别 总被引:1,自引:10,他引:1
为有效快速地识别农田多条垄线以实现农业机器人视觉导航与定位,提出一种基于机器视觉的田间多垄线识别与定位方法。使用VC++ 6.0开发了农业机器人视觉导航定位图像处理软件。该方法通过图像预处理获得各垄行所在区域,使用垂直投影法提取出导航定位点。根据摄像机标定原理与透视变换原理,计算出各导航定位点世界坐标。然后结合垄线基本平行的特征,使用改进的基于Hough变换的农田多垄线识别算法,实现多垄线的识别与定位。使用多幅农田图像进行试验并在室内进行了模拟试验。处理一幅320×240的农田图像约耗时219.4 ms,室内试验各垄线导航距与导航角的平均误差分别为2.33 mm与0.3°。结果表明,该方法能有效识别与定位农田的多条垄线,同时算法的实时性也能满足 要求。 相似文献
17.
基于颜色特征的绿色作物图像分割算法 总被引:5,自引:13,他引:5
绿色作物的识别是农业机械视觉系统的重要研究内容之一,该文采用RGB颜色系统,基于统计分析提出了一种绿色作物图像分割方法。从简单物体光照颜色模型方面,分析了RGB颜色空间中作物绿色“恒量”(Gvalue>Rvalue and Gvalue>Bvalue)的存在性,构建了作物图像分割相对错误率评估模型。并与传统颜色索引方法Excess Green (ExG)+auto-threshold进行了对比分析。试验结果表明,在正常光照条件下:1)采用的算法对田间不同作物-土壤组图像分割的相对错误率均有显著影响;其中,相对ExG+auto-threshold算法,采用RGB算法的结果图像中大多能保留油菜、大豆和甘蔗的形态学特征;2)采用的算法、光照变化以及算法与光照变化的交互作用均对室外美人蕉图像分割的相对错误率有显著影响;其中,相对ExG+auto-threshold算法,采用RGB算法的结果图像中大多能去除背景噪声。单因子方差分析进一步表明,光照变化对采用ExG+auto-threshold算法分割图像的阈值有显著影响。该文提出的RGB算法相对传统的ExG+auto-threshold绿色索引,对于早期生长的绿色作物是一种有效、简单的图像分割方法,对作物-土壤、光照变化不敏感。 相似文献