首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 61 毫秒
1.
基于Snake模型与角点检测的双果重叠苹果目标分割方法   总被引:1,自引:4,他引:1  
为了实现重叠苹果目标的精确分割,提出了一种Snake模型与角点检测相结合的重叠苹果目标分割方法。该方法首先利用Snake模型得到重叠苹果目标的轮廓,接着采用提出的基于距离测度的角点检测算法寻找重叠苹果目标的角点,针对距离扰动产生伪角点的问题,采用3级db1小波变换得到不含细节信号的近似距离信号,并通过Spline样条内插算法使其恢复到原始信号的长度,从而去除伪角点,最后提出了一种基于长轴分割准则的分割点选取方法并实现了重叠苹果目标的分割。为了验证算法的有效性,利用20幅重叠苹果目标进行了试验,并与人工计算得到的分割线进行了对比,试验结果表明,利用文中算法分割重叠苹果目标的最大误差为13.27°,最小误差为1.20°,平均误差为6.41°,表明Snake模型与角点检测算法相结合对重叠苹果目标具有较好的分割性能,将该方法应用于重叠苹果目标的分割是可行的。  相似文献   

2.
改进Faster-RCNN自然环境下识别刺梨果实   总被引:16,自引:12,他引:4  
为了实现自然环境下刺梨果实的快速准确识别,根据刺梨果实的特点,该文提出了一种基于改进的Faster RCNN刺梨果实识别方法。该文卷积神经网络采用双线性插值方法,选用FasterRCNN的交替优化训练方式(alternating optimization),将卷积神经网络中的感兴趣区域池化(ROI pooling)改进为感兴趣区域校准(ROI align)的区域特征聚集方式,使得检测结果中的目标矩形框更加精确。通过比较Faster RCNN框架下的VGG16、VGG_CNN_M1024以及ZF 3种网络模型训练的精度-召回率,最终选择VGG16网络模型,该网络模型对11类刺梨果实的识别精度分别为94.00%、90.85%、83.74%、98.55%、96.42%、98.43%、89.18%、90.61%、100.00%、88.47%和90.91%,平均识别精度为92.01%。通过对300幅自然环境下随机拍摄的未参与识别模型训练的刺梨果实图像进行检测,并选择以召回率、准确率以及F1值作为识别模型性能评价的3个指标。检测结果表明:改进算法训练出来的识别模型对刺梨果实的11种形态的召回率最低为81.40%,最高达96.93%;准确率最低为85.63%,最高达95.53%;F1值最低为87.50%,最高达94.99%。检测的平均速度能够达到0.2 s/幅。该文算法对自然条件下刺梨果实的识别具有较高的正确率和实时性。  相似文献   

3.
基于对比度受限直方图均衡化的水下海参图像增强方法   总被引:2,自引:3,他引:2  
针对水下图像受到水下复杂光照的影响导致图像对比度差的现象,采用对比度受限自适应直方图均衡化方法(contrast-limited adaptive histogram equalization,CLAHE)对水下海参图像进行增强处理,算法首先将原始图像分割成若干个子区域并且大小相同,再选取特定值对每个子区域的直方图进行截取,并将截取下的像素均匀分配到每个灰度级,最终得到限定对比度直方图。并通过研究算法中的相关参数,得到适用于水下海参图像增强的参数值,取得了更好的增强效果。通过评价函数均方差(mean squared error,MSE),峰值信噪比(peak signal to noise rate,PSNR)和信息熵(information entropy)对比CLAHE方法和其他一些方法,结果显示CLAHE算法在水下海参图像提高质量和保持图像细节方面表现出更好的性能,为以后水下机器人的识别定位提供了方便。  相似文献   

4.
单位面积麦穗数是估算小麦产量的重要指标,对于作物表型参数计算、产量预测和大田管理都具有重要的意义。目前的研究均未以单位面积麦穗图像为研究对象,为准确获取单位面积麦穗数,该研究提出了基于改进YOLOX的单位面积麦穗检测方法,利用采样框直接实现单位面积麦穗计数。首先,设计了一种简单的单位面积采样框,通过训练角点检测网络识别采样框,以提取单位面积小麦区域;其次,针对麦穗检测中存在的目标密集和相互遮挡问题,在麦穗检测网络的特征融合层,采用上下文信息进行特征重组的上采样方法(Content-Aware ReAssembly of Features,CARAFE)代替YOLOX-m模型中的上采样算法,同时结合迭代注意力特征融合模块(iterative Attentional Feature Fusion,iAFF),增加对麦穗空间信息和语义信息的提取。试验结果表明,改进的YOLOX-m模型明显改善了对密集麦穗和遮挡麦穗的检测效果,其精确率、召回率、平均精确度和F1值分别为96.83%、91.29%、92.29%和93.97%,与SSD、CenterNet和原YOLOX-m模型相比,平均精确度分别提升了10.26、8.2和1.14个百分点。该研究方法能够直接对复杂大田场景下的单位面积麦穗进行准确检测和计数,为实际生产小麦产量预测中的麦穗智能化计数提供了一种方法参考。  相似文献   

5.
基于改进YOLO-V4网络的浅海生物检测模型   总被引:4,自引:4,他引:0  
海洋生物智能检测是海洋牧场战略的一部分,而利用水下机器人在复杂的海洋环境中快速、准确地检测海洋生物是关键问题.由于海底环境复杂、亮度分布不均匀、海洋生物与其生存环境的区分性差、生物被遮蔽或半隐蔽等原因,准确识别海洋生物是一个巨大的挑战.随着卷积神经网络的发展,基于深度学习的目标检测算法成为主流,出现了如Efficien...  相似文献   

6.
针对现有目标检测算法检测茶叶杂质精度低、速度慢的问题,该研究提出了一种基于改进YOLOv5的茶叶杂质检测算法。采用K-Means聚类算法对杂质真实框聚类,以获取适合茶叶杂质特征的锚框尺寸;通过在主干特征提取网络CSPDarkNet中引入前馈卷积注意力机制(Convolutional Block Attention Module,CBAM),将茶叶杂质输入特征图依次经过通道注意力模块和空间注意力模块,获得特征图通道维度和空间维度的关键特征;在颈部网络中添加空间金字塔池化(Spatial Pyramid Pooling,SPP)模块,融合并提取不同感受野的关键特征信息;将普通卷积替换成深度可分离卷积,增大小目标预测特征图的置信度损失权重,构建了轻量化的改进YOLOv5网络结构模型;分别制作了铁观音茶叶中混合有稻谷、瓜子壳、竹片和茶梗4种杂质的数据集并进行茶叶杂质检测试验。结果表明,改进的YOLOv5比常规YOLOv5在茶叶杂质检测中具有更高的置信度分数,且定位更为准确,未出现漏检现象。改进YOLOv5的多类别平均精度(Mean Average Precision,mAP)和每秒传输帧数(Frame Per Second,FPS)达到96.05%和62帧/s,均优于主流的目标检测算法,验证了改进算法的高效性和鲁棒性。该研究成果可为提升茶叶制作过程中小目标杂质检测精度与检测速度奠定基础。  相似文献   

7.
该研究旨在解决桑蚕养殖过程中对蚕虫计数的难题,特别是针对蚕虫目标小、分布密集且易被遮挡的特点,通过改进的目标检测算法,实现对蚕虫数量的高效、准确检测与计数,以支持蚕虫的科学喂养与健康成长管理。本文提出了一种基于YOLOv8模型改进的蚕虫检测与计数新方法(SDM-YOLO)。该方法的核心创新包括:1) 引入RCS-OSA模块作为残差模块,替代原YOLOv8中的C2f模块,以增强网络的多尺度特征提取能力并融合不同感受野的信息,提升对密集分布蚕虫的识别能力;2) 改造检测头为动态预测头(dynamic prediction head),结合尺寸、空间和通道三个维度的特征信息,提高蚕虫识别的精确度,减少误检;3) 优化损失函数,采用EIOU LOSS作为边界框回归的损失函数,以改善密集场景下蚕虫目标的漏检问题。经过试验验证,SDM-YOLO方法在多个评估指标上均表现出色。具体而言,该方法在精确度上达到了88.2%,召回率为87.2%,平均准确度mAP@0.5为93.2%,而mAP@0.5:0.95也达到了74.7%。这些结果充分证明了与一阶段检测模型YOLO系列相比,SDM-YOLO在蚕虫检测与计数方面具有比较明显的优势。  相似文献   

8.
基于凸壳的重叠苹果目标分割与重建算法   总被引:1,自引:14,他引:1  
重叠苹果目标的分割与定位是影响苹果采摘机器人采摘效率的关键因素之一。为了实现重叠苹果目标的分割与重建,在利用K-means聚类分割算法的基础上,该文提出一种基于凸壳的重叠苹果目标分割方法。通过计算目标凸包与目标相减后的凹区域,将重叠苹果轮廓上的凹点检测转换为凹区域上的凸点检测问题,降低了凹点检测的复杂度。利用相关分割准则实现了凹点匹配并进行目标分割,对分割得到的非完整目标利用Spline插值技术进行目标重建。为了验证算法的有效性,分别利用仿真目标与自然场景下的重叠苹果目标进行了测试,利用该方法得到的苹果目标平均定位误差为14.15%,平均目标重合度为85.08%,表明基于凸壳技术的重叠苹果目标分割方法具有较好的分割性能,将该方法应用于重叠目标分割与重建是有效可行的。  相似文献   

9.
疏果期苹果目标检测是实现疏果机械化、自动化需要解决的关键问题。为实现疏果期苹果目标准确检测,该研究以YOLOv7为基础网络,融合窗口多头自注意力机制(Swin Transformer Block),设计了一种适用于近景色小目标检测的深度学习网络。首先在YOLOv7模型的小目标检测层中添加Swin Transformer Block,保留更多小尺度目标特征信息,将预测框与真实框方向之间的差异考虑到模型训练中,提高模型检测精度,将YOLOv7中的损失函数CIoU替换为SIoU。最后利用Grad-CAM方法产生目标检测热力图,进行有效特征可视化,理解模型关注区域。经测试,该文模型的检测均值平均精度为95.2%,检测准确率为92.7%,召回率为91.0%,模型所占内存为81 MB,与原始模型相比,均值平均精度、准确率、召回率分别提高了2.3、0.9、1.3个百分点。该文模型对疏果期苹果具有更好的检测效果和鲁棒性,可为苹果幼果生长监测、机械疏果等研究提供技术支持。  相似文献   

10.
茶叶的产量和品质深受病虫害的影响。茶尺蠖是一种常见的茶叶害虫,精确检测茶尺蠖对茶叶病虫害防治有重要意义。由于茶尺蠖和茶树枝、枯死茶叶的颜色、纹理相近,茶尺蠖的体积小、形态多变、被遮挡等问题,现有方法检测茶尺蠖的精度不高。该研究提出一种基于深度学习的复杂背景图像中茶尺蠖检测方法,该方法使用YOLOv5为基线网络,利用卷积核组增强对茶尺蠖的特征提取,在不增加计算量的条件下减少复杂背景对茶尺蠖检测结果的干扰;使用注意力模块关注茶尺蠖整体,根据茶尺蠖的大小和形状自适应调节感受野,降低因目标大小形状不一导致的漏检;使用Focal loss损失函数减少前景和背景的类不平衡对检测结果的影响。试验结果表明,所提方法用于复杂背景图像中茶尺蠖的检测,可以达到0.94的召回率,0.96的精确度和92.89%的平均精度均值。与基线网络相比,该方法的平均精度均值提高了6.44个百分点。使用相同的数据集和预处理的对比分析表明,该方法优于SSD、Faster RCNN和YOLOv4等其他经典深度学习方法,平均精度均值比SSD、Faster RCNN、YOLOv4分别高17.18个百分点、6.52个百分点和4.78个百分点。该方法可实现对茶尺蠖的智能检测,减少人力成本,有助于实现精准施药,提高茶叶的产量和品质。  相似文献   

11.
为实现花椒簇的快速准确检测,该研究提出了一种基于改进YOLOv5s的花椒簇检测模型。首先,使用MBConv(MobileNetV3 block convolution,MBConv)模块和基于ReLU的轻量级自注意力机制优化了EfficientViT网络,用其代替YOLOv5s的主干,减少模型的参数量、增强模型对重要特征的表达能力。其次,在模型的训练过程中采用了OTA(optimal transport assignment)标签分配策略,优化训练中的标签分配结果。最后,使用WIoU损失函数对原损失函数CIoU进行替换,提高锚框的质量。试验结果表明,改进YOLOv5s模型的平均准确度均值(mean average precision,mAP)为97.3%、参数量为5.9 M、检测速度为131.6帧/s。相较于YOLOv5s模型,mAP提升1.9个百分点、参数量降低15.7%、检测速度提高14.5%。结果表明,该研究提出的改进YOLOv5s模型准确度高、参数量低、检测速度快,可实现对花椒簇的有效检测。  相似文献   

12.
为解决莲田环境下不同成熟期莲蓬的视觉感知问题,该研究提出了一种改进YOLOv5s的莲蓬成熟期检测方法。首先,通过在主干特征网络中引入BoT(bottleneck transformer)自注意力机制模块,构建融合整体与局部混合特征的映射结构,增强不同成熟期莲蓬的区分度;其次,采用高效交并比损失函数EIoU(efficient IoU)提高了边界框回归定位精度,提升模型的检测精度;再者,采用K-means++聚类算法优化初始锚框尺寸的计算方法,提高网络的收敛速度。试验结果表明,改进后YOLOv5s模型在测试集下的精确率P、召回率R、平均精度均值mAP分别为98.95%、97.00%、98.30%,平均检测时间为6.4ms,模型尺寸为13.4M。与YOLOv3、 YOLOv3-tiny、 YOLOv4-tiny、 YOLOv5s、YOLOv7检测模型对比,平均精度均值mAP分别提升0.2、1.8、1.5、0.5、0.9个百分点。基于建立的模型,该研究搭建了莲蓬成熟期视觉检测试验平台,将改进YOLOv5s模型部署在移动控制器Raspberry Pi 4B中,对4种距离范围下获取的莲蓬场景图像...  相似文献   

13.
利用改进Faster-RCNN识别小麦条锈病和黄矮病   总被引:1,自引:1,他引:0  
条锈病和黄矮病是严重威胁小麦生产的重大病害,病害的早期识别对病害防控具有重要意义。现有病害识别模型对相似表型症状识别困难,对早期病害的识别准确度低。为此,该研究构建了一种改进的快速区域卷积神经网络(Faster Regions with CNN Features,Faster-RCNN)的病害识别方法。该方法采用卷积核拆解和下采样延迟策略优化了深度残差网络(Deep Residual Neural Network,ResNet-50),用优化后的ResNet-50作为主干特征提取网络以增强所提取特征的表达力,同时简化模型的参数;并采用ROI (Region of Interest)Align改进ROI迟化层以降低特征量化误差,提升识别的精度。在自建的涵盖200余种不同发病时期、不同抗感性的小麦叶部图像数据集上进行试验,结果表明:改进的Faster-RCNN识别方法比其他SSD (Single Shot Multi-Box Detector)、YOLO(You Only Look Once)和Faster-RCNN网络模型的平均精度均值(mean Average Precision,mAP)分别提升了9.26个百分点、7.64个百分点和14.97个百分点。对小麦条锈病、黄矮病、健康小麦和其他黄化症状小麦识别的平均精度均值可达98.74%;对小麦条锈病和黄矮病轻、重症识别的平均精度均值可达91.06%。同时,模型损失函数值降低更快,整体性能表现更优。进一步开发小麦病害智能识别系统部署研究模型,使用微信小程序进行田间小麦病害的识别。在最大并发100的条件下,小程序平均返回时延为5.02 s,识别返回成功率为97.85%,对两种小麦病害及其细分轻重症识别的平均准确率为93.56%,能够有效满足实际应用需求,可用于指导病害的科学防控。  相似文献   

14.
番茄花果的协同识别是温室生产管理调控的重要决策依据,针对温室番茄栽培密度大,植株遮挡、重叠等因素导致的现有识别算法精度不足问题,该研究提出一种基于级联深度学习的番茄花果协同识别方法,引入图像组合增强与前端ViT分类网络,以提高模型对于小目标与密集图像检测性能。同时,通过先分类识别、再进行目标检测的级联网络,解决了传统检测模型因为图像压缩而导致的小目标模糊、有效信息丢失问题。最后,引入了包括大果和串果在内的不同类型番茄品种数据集,验证了该方法的可行性与有效性。经测试,研究提出的目标检测模型的平均识别率均值(mean average precision,mAP)为92.30%,检测速度为28.46帧/ s,其中分别对小花、成熟番茄和未成熟番茄识别平均准确率分别为87.92%、92.35%和96.62%。通过消融试验表明,与YOLOX、组合增强YOLOX相比,改进后的模型mAP提高了2.38~6.11个百分点,相比于现有YOLOV3、YOLOV4、YOLOV5主流检测模型,mAP提高了16.56~23.30个百分点。可视化结果表明,改进模型实现了对小目标的零漏检和对密集对象的无误检,从而达到了高精度的协同检测的目标。研究成果为温室种植环境下的番茄生长识别提供参考。  相似文献   

15.
鱼体语义分割是实现鱼体三维建模和语义点云、计算鱼体生长信息的基础。为了提高真实复杂环境下鱼体语义分割精度,该研究提出了SA-Mask R-CNN模型,即融合SimAM注意力机制的Mask R-CNN。在残差网络的每一层引入注意力机制,利用能量函数为每一个神经元分配三维权重,以加强对鱼体关键特征的提取;使用二次迁移学习方法对模型进行训练,即首先利用COCO数据集预训练模型在Open Images DatasetV6鱼类图像数据集完成第一次迁移学习,然后在自建数据集上完成第二次迁移学习,利用具有相似特征空间的2个数据集进行迁移学习,在一定程度上缓解了图像质量不佳的情况下鱼体语义分割精度不高的问题。在具有真实养殖环境特点的自建数据集上进行性能测试,结果表明,SA-Mask R-CNN网络结合二次迁移学习方法的交并比达93.82%,综合评价指标达96.04%,分割效果优于SegNet和U-Net++,较引入SENet和CBAM(Convolutional Block Attention Module, CBAM)注意力模块的Mask R-CNN交并比分别提升了2.46和1.0个百分点,综合评价指标分别提升了2.57和0.92个百分点,模型参数量分别减小了4.7和5 MB。研究结果可为鱼体点云计算提供参考。  相似文献   

16.
为提高小麦病害检测精度,实现将模型方便快速部署到移动端,该研究提出了一种基于改进YOLOv8的轻量化小麦病害检测方法。首先,使用PP-LCNet模型替换YOLOv8网络结构的骨干网络,并在骨干网络层引入深度可分离卷积(depthwise separable convolution, DepthSepConv)结构,减少模型参数量,提升模型检测性能;其次,在颈部网络部分添加全局注意力机制(global attention mechanism, GAM)模块,强化特征中语义信息和位置信息,提高模型特征融合能力;然后,引入轻量级通用上采样内容感知重组(content-aware reassembly of features,CARAFE)模块,提高模型对重要特征的提取能力;最后,使用Wise-IoU(weighted interpolation of sequential evidence for intersection over union)边界损失函数代替原损失函数,提升网络边界框回归性能和对小目标病害的检测效果。试验结果表明,对于大田环境下所采集的小麦病害数据集,改进后模型的参数量及...  相似文献   

17.
为解决农田复杂作业环境下拖拉机驾驶员因光照、背景及遮挡造成的关键点漏检、误检等难识别问题,该研究提出了一种基于改进YOLO-Pose的复杂环境下驾驶员关键点检测方法。首先,在主干网络的顶层C3模块中嵌入Swin Transformer编码器,提高遮挡状况下关键点的检测效率。其次,采用高效层聚合网络RepGFPN作为颈部网络,通过融合高层语义信息和低层空间信息,增强多尺度检测能力,同时在颈部网络采用金字塔卷积替换标准3×3卷积,在减少模型参数量的同时有效地捕获不同层级的特征信息。最后,嵌入坐标注意力机制优化关键点解耦头,增强预测过程对关键点空间位置的敏感程度。试验结果表明,改进后算法mAP0.5(目标关键点相似度Loks阈值取0.5时平均精度均值)为89.59%,mAP0.5:0.95(目标关键点相似度Loks阈值取0.5,0.55,···,0.95时的平均精度均值)为62.58%,相比于基线模型分别提高了4.24和4.15个百分点,单张图像平均检测时间为21.9 ms,与当前主流关键点检测网络Hou...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号