首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 499 毫秒
1.
The relevance of fixed in certain soils and its categorisation has made it necessary to re-examine N behaviour. A replicate factorial experiment was designed to investigate the influence of soil type, soil moisture and fertiliser source and rate on fixation dynamics with particular attention to the distribution between weakly and strongly fixed pools. Fixation of was <20% of added N for all soils except River Estate. The percentage of added N present as fixed was greater for the low application rate. Soil moisture did not significantly influence weakly fixed . However, the dry soil treatment showed greater fertiliser 15N present as strongly fixed . Fertiliser 15N present as weakly and strongly fixed decreased and increased, respectively, at the second sampling, indicating movement between the pools. The importance of the weakly fixed fraction as a transitory pool between strongly fixed and available was observed.  相似文献   

2.
The aim of this paper was to assess biodiversity among different habitats of an organic farm and the relationships between some soil properties, nematode taxonomic diversity, and soil food web condition. Eight habitats were studied in the farm: ponds, ditches, a riparian corridor, hedgerows, and four agricultural fields (mustard, oats, fallow, and legumes). The undisturbed riparian corridor had higher soil and concentrations, and potentially mineralizable N and higher abundances of bacterivore nematodes and longer food webs. Canonical correlation analysis showed associations between habitats and nematode trophic groups: predatory and bacterial-feeding nematodes in the riparian corridor and hedgerows, omnivore nematodes in the ponds and ditches, and fungal-feeding nematodes in the legume field. Soil chemical and physical properties mirrored the aboveground farm patterns and were more similar among habitats that were or had been cultivated, compared to the riparian corridor. Soil food web indices, based on functional analysis of nematode faunal composition, reflected the aboveground landscape heterogeneity. Discriminant analysis indicated that soil food web indices separated the two most disturbed habitats (ponds and tailwater ditches) from the two least disturbed habitats (the riparian corridor and hedgerows). The indices correlated with soil functioning as inferred by soil properties. Abundance of nematode taxa was not associated with aboveground landscape patterns. The complexity of the soil food web may have been influenced by (1) environmental factors that differed between years, (2) different time periods since disturbance in the various habitats, and (3) movement of nutrients and organisms by water flow between habitats in the farmscale.  相似文献   

3.
A 3-month field experiment comparing nitrogen (N) losses from and the agronomic efficiency of various N fertilizers was conducted on a sandy loam (Typic Hapludand) soil at Ruakura AgResearch farm, Hamilton, New Zealand during October to December 2003. Three replicates of seven treatments: urea, urea + the urease inhibitor N-(n-butyl) thiophosphoric triamide (trade name Agrotain), urea + Agrotain + elemental sulphur (S), urea + double inhibitor [DI; i.e., Agrotain + dicyandiamide (DCD)], diammonium phosphate (DAP), DAP + S, each applied at 150 kg N ha−1, and control (no N). After fertilizer application, soil ammonium () and nitrate () concentrations (7.5-cm soil depth), ammonia (NH3) volatilization, nitrate () leaching, nitrous oxide (N2O) emission, pasture dry matter, and N uptake were monitored at different timings. Urea applied with Agrotain or Agrotain + S delayed urea hydrolysis and released soil at a slower rate than urea alone or urea + DI. Urea applied with DI increased NH3 volatilization by 29% over urea alone, while urea + Agrotain and urea + Agrotain + S reduced NH3 volatilization by 45 and 48%, respectively. Ammonia volatilization losses from DAP were lower than those from urea with or without inhibitors. Total reduction in leaching losses for urea + DI and urea + Agrotain compared to urea alone were 89% and 47%, respectively. Application of S with urea + Agrotain reduced leaching losses by an additional 6%. Nitrous oxide emissions were higher from the DAP and urea alone treatments. Urea applied with DI and urea + Agrotain reduced N2O emissions by 37 and 5%, respectively, over urea alone. Compared to urea alone, total pasture production increased by 20, 17, and 15% for urea + Agrotain + S, urea + Agrotain, and urea + DI treatments, respectively, representing 86, 71, and 64% increases in N response efficiency. Total N uptake in urea + Agrotain, urea + Agrotain + S, and urea + DI increased by 29, 22, and 20%, respectively, compared to urea alone. These results suggest that the combination of both urease and nitrification inhibitors may have the most potential to reduce N losses and improve pasture production in intensively grazed systems.  相似文献   

4.
We have studied the effect of anaerobically digested (ADMSW) and composted municipal solid waste (CMSW) on mineralization and foodweb dynamics to verify the hypothesis that ADMSW would immobilize N right after addition to soil in contrast to addition with CMSW. Another hypothesis was that the mesofauna (enchytraeids and microarthropods) would stimulate N release from the decomposer community. We measured excretion of -N and urea-N from the mesofauna and hypothesized that enchytraeids would release urea. ADMSW and CMSW were amended to pots with sandy loam and barley. The pots were divided into treatments with or without mesofauna. Mesofauna, plant N and biomass, soil N and ergosterol (fungal biomass) were measured over a 113-day period of four equidistant samplings. Soil respiration, N mineralization and N release by the mesofauna were modelled from concurrent studies. ADMSW- and CMSW-treated soils initially (<20 days) immobilized N. The amendments did not increase plant growth substantially, and this was probably due to N-limitation in the early stages of plant growth. Enchytraeid abundance was about three times higher in ADMSW- than CMSW-treated soils, indicating that ADMSW contained more labile compounds, bacteria, and microfauna. The mesofauna did not affect N-content, but the cumulated -N excreted by the mesofauna was estimated to be substantial and about one-fifth of total plant N in ADMSW. An explanation for this discrepancy might be that in the absence of the mesofauna, other members of the detrivore and microbivore community performed the mesofauna’s function. Neither enchytraeids nor microarthropods excreted urea.  相似文献   

5.
A rhizobox with three compartments and soil slicing followed by quick freezing were used to study the spatiotemporal variations of nitrification of rhizospheric soil of Yangdao 6 (Indica) and Nongken 57 (Japonica). The results obtained revealed that ammonium () was the main N form in flooded paddy soil. A concentration gradient for was observed with the lowest concentration nearer to the root zone and the concentrations increased with increasing distance from the root zone. No concentration gradient was observed for nitrate (). The nitrification activities of both rice cultivars increased with the development of the incubation time. The nitrification activities were maximal in rhizospheric soil, followed by those in bulk soil and in the root zone. In the rhizosphere, nitrification activities decreased with increasing distance from the root zone. The maximal nitrification activity measured at 44, 51, and 58 days after sowing of Yangdao 6 and Nongken 57 rice cultivars was at a distance of 6 and 2 mm away from the root zone, respectively, and they were 0.88 and 0.73 mg kg−1 h−1, respectively. In this experiment, the nitrification activities were significantly and positively correlated with the ammonia-oxidizing bacteria (AOB) abundance (r=0.86, p<0.01). The nitrification activity, concentration, AOB abundance, dry matter and N accumulation and leaf reductase activity associated with Indica were always higher than those with Japonica. Therefore, nitrification in rhizosphere had more important significance for N nutrition, especially for the Indica rice cultivars.  相似文献   

6.
In this study, gross nitrogen (N) mineralisation rates were determined in six pasture soils (Fleming, Kairanga, Karapoti, Lismore, Templeton and Waikoikoi) from three different regions of New Zealand. The soils were kept under controlled soil water potential (–10 to –30 kPa) and temperature (12–20°C) conditions in a glasshouse. The gross N mineralisation rates ranged from 0.76 to 5.87 g N g–1 soil day–1 in the six soils and were positively correlated with the amount of amino acid-N (AA-N), ammonia-N (NH3-N), total hydrolysable-N (TH-N), microbial biomass-carbon (MB-C), microbial biomass-N (MB-N), protease activity and organic C and N. A stepwise regression was used to generate equations that could best describe gross N mineralisation rates. Microbial biomass-carbon and AA-N were included in the equation that best described the gross N mineralisation rate:
The total amounts of N mineralised over the 1-year period were equivalent to between 492 and 1,351 kg N ha–1 year–1. Assuming mineralisation continues at a steady state throughout the year, this represents between 12 and 26% of the total organic N mineralised per year in these pasture soils.  相似文献   

7.
In terrestrial ecosystems, gross nitrogen mineralisation is positively correlated to microbial biomass but negatively to soil organic matter C-to-N ratios; the influence of the microbial community structure is less well known. Here, we relate rates of gross N mineralisation to fungi-to-bacteria ratios in three natural forest types of contrasting N availability and in a long-term N-loading experiment in a boreal forest. We report, for the first time, a strong negative correlation between gross N mineralisation and the fungi-to-bacteria ratio ( = 0.91, P = 0.0005, N = 7). There was also a negative correlation between gross N mineralisation and the C-to-N ratio ( = 0.89, P = 0.001, N = 7), but a weaker positive correlation between gross N mineralisation and soil pH ( = 0.64, P = 0.019, N = 7). Our analysis suggests that soil fungi-to-bacteria and C-to-N ratios are interrelated and that they exert strong influences on soil N cycling in boreal forests.  相似文献   

8.
The chemical composition of precipitation in the city of Mersin on the Mediterranean coast of Turkey has been studied. Spatial and temporal variability of rainwater constituents have been determined from samples collected at two central and two suburban stations for the December 2003–May 2005 period. A total of 246 samples covering all precipitation events were analyzed to determine pH, conductivity, as well as major anion (Cl?, ${\text{NO}}_3^ - $ , ${\text{SO}}_4^{2 - } $ ); major cation (H+, Na+, K+, Ca2+, Mg2+, ${\text{NH}}_4^ + $ ) and formaldehyde (HCHO) concentrations. The pH varied within a range of 4.8–8.5, with only 8 out of 246 samples being acidic (pH?<?5.6), and the remaining highly alkaline samples being neutralized by either ${\text{NH}}_4^ + $ in rainwater, or by CaCO3 resulting from wet deposition of atmospheric dust. The volume weighted mean ΣAnion/ΣCation ratio was 0.49. The equivalent concentration of major ionic species followed the order: ${\text{Ca}}^{2 + } > {\text{HCO}}_3^ - > {\text{SO}}_4^{2 - } > {\text{Cl}}^ - > {\text{NH}}_4^ + > {\text{Na}}^ + > {\text{Mg}}^{2 + } > {\text{NO}}_3^ - > {\text{K}}^ + > {\text{H}}^ + $ . Formaldehyde concentrations varied in the range of 0.01–17.9 μM, and was found to be dependent on precipitation volume. Relatively higher ${\text{NH}}_4^ + $ , ${\text{SO}}_4^{2 - } $ , ${\text{NO}}_3^ - $ and HCHO concentrations, mainly of anthropogenic origin, measured near the city center suggest increased pollution from local anthropogenic sources, e.g., residential heating, industrial and/or traffic emissions. In general, the results of this study suggest local precipitation chemistry is more strongly influenced by natural (mineral dust and marine) sources compared to anthropogenic ones.  相似文献   

9.
Horticultural supplements containing oxytetracycline and gentamicin, two clinically relevant biocides, are widely marketed to prevent or control infections by bacterial phytopathogens. Despite their regular consumption in the world’s less developed countries, it is unknown whether exposure of tropical farmlands to these drugs results in an enrichment of resistant bacteria, resistance genes, and/or mobile genetic elements in the soil. These concerns were investigated under field conditions by repeatedly spraying recommended amounts of a commercial product containing oxytetracycline-HCl, and gentamicin- onto two coriander plots. Subsequent to five applications within 16 months, composite soil samples from control and treated sections were compared with respect to the abundance of resistant bacteria and the prevalence of conserved nucleotide sequences from tetracycline efflux proteins, tetracycline ribosomal protection proteins, four different families of gentamicin-modifying enzymes, and broad host range plasmids of the IncP-1 and IncQ incompatibility groups. The isolation frequency of oxytetracycline- and gentamicin-resistant bacteria and the detection rate of the aforementioned genes and elements were unrelated to application of the supplement. Despite the omnipresence of sequences from IncP-1 plasmids, conjugative plasmids conferring resistance to oxytetracycline or gentamicin were not captured in biparental matings. The widespread occurrence of resistant bacteria and resistance genes at the beginning of the trial emerges as a reasonable explanation for the lack of anticipated responses. Moreover, we assume that the biocides applied were inactivated by biotic and abiotic factors under tropical conditions.  相似文献   

10.
There is little information concerning N2O fluxes in the pasture soil that has received large amounts of nutrients, such as urine and dung, for several years. The aims of this study were to (1) experimentally quantify the relationship between mineral N input and N2O emissions from denitrification, (2) describe the time course of N2O fluxes resulting in N inputs, and (3) find whether there exists an upper limit of the amount of nitrogen escaping the soil in the form of N2O. The study site was a grassland used as a cattle overwintering area. It was amended with KNO3 and glucose corresponding to 10–1,500 kg N and C per hectare, covering the range of nutrient inputs occurring in real field conditions. Using manual permanent chambers, N2O fluxes from the soil were monitored for several days after the amendments. The peak N2O emissions were up to 94 mg N2O–N m−2 h−1, 5–8 h after amendment. No upper limit of N2O emissions was detected as the emissions were directly related to the dose of nutrients in the whole range of amendments used, but the fluxes reflected the soil and environmental conditions, too. Thus, in three different experiments performed during the season, the total cumulative losses of N2O–N ranged from 0.2 to 5.6% of the applied 500kg ha−1. Splitting of high nutrient doses lowered the rate of N2O fluxes after the first amendment, but the effect of splitting on the total amount of N2O–N released from the soil was insignificant, as the initial lower values of emissions in the split variants were compensated for by a longer duration of gas fluxes. The results suggest that the cattle-impacted soil has the potential to metabolize large inputs of mineral nitrogen over short periods (∼days). Also, the emission factors for did not exceed values reported in literature.  相似文献   

11.
Twelve monthly measurements were made of the δ18O of the water and of the dissolved sulfates in inlet streams and in outlet streams of lakes in three watersheds in the Adirondack Park region of New York. The average \(\delta ^{18} {\text{O}}_{{\text{H}}_{\text{2}} {\text{O}}}\) of the surface waters (streams and lakes) of the three watersheds was in the typical range of seasonally varying \(\delta ^{18} {\text{O}}_{{\text{H}}_{\text{2}} {\text{O}}}\) of precipitation water, whereas the \(\delta ^{18} {\text{O}}_{{\text{SO}}_{\text{4}}^{{\text{2 - }}} }\) of the surface waters was significantly lower than the typical range of seasonally varying \(\delta ^{18} {\text{O}}_{{\text{SO}}_{\text{4}}^{{\text{2 - }}} }\) in precipitation water. Two possible causes for the apparent alteration of δ18O of the sulfates during percolation of the water through various strata in the ground link between the atmosphere and the watershed lakes are: (1) bacterial redox cycling, in which the sulfate is reduced, allowing isotopic equilibration between the HS03 ? ion and associated water, and then catalytically reoxidized to sulfate; and (2) ion exchange, in which the soil strata, containing chemically fixed sulfates, behave as a “column” that is not in sulfate-ion equilibrium with sulfates in the atmospheric recharge water.  相似文献   

12.
A laboratory incubation trial and a field litterbag study were conducted to determine the rate and magnitude of mineralization of dairy manure N components in a south central Wisconsin silt loam. Dairy manure components (urine, feces, or bedding, each 15N-labeled and the other components left unlabeled) were incubated in soil at 11, 18, or 25°C. Samples were taken at 14, 21, 42, 84, and 168 days and analyzed for mineralized N ( and ) and 15N abundance in the inorganic and organic fraction (at day 168 only). In the field study, nylon mesh (38 μm) litterbags filled with 15N-labeled manure (2000) or unlabeled manure (2000 and 2002) were placed 7.5 cm below the surface and excavated at 7, 14, 21, 28, 35 (2000 only), 42, 56, 84, 98, and 126 days after burial and at corn (Zea mays L.) harvest, after 142 days in 2002 and 154 days in 2000. In the incubation study, 50−60% of applied urine N was mineralized showing the importance of this manure N component as a source of plant available N. About 14−19% of applied N was mineralized from the fecal and bedding components. In the litterbag experiment, approximately 70% of the dry mass and 67% of the N was mineralized from the litterbags with similar amounts measured using either labeled or unlabeled N. Rates of manure organic matter decomposition and N mineralization were best predicted using single exponential models for both years with most of the release occurring during the first 21 days.  相似文献   

13.
Widespread and ecologically important, biological soil crusts include those microbial communities living on the surface of the soil and those that live beneath semitranslucent rocks (a.k.a. hypolithic crusts). We examined the distribution, abundance, physiology, and potential soil N contributions of hypolithic, biological crusts in hyperarid ecosystems of the Baja California peninsula and islands in the midriff region of the Gulf of California, Mexico (Sonoran desert). Crusts were limited in distribution to areas with translucent quartz rocks less than 3 cm thick, were not found on areas of islands with seabird guano deposition, but covered as much as 1% (12,750 m2) of the surface area of one island. The percent of available rocks colonized by crusts was similar between the mainland (38%) and islands without seabird guano (26%). Carbon fixation rates in the field, which have not been previously reported, ranged between 0 and 1.23 μmol m−2 s−1, and in the lab ranged between 0.66 and 0.94 μmol m−2 s−1. Evidence of low rates of N fixation was inferred from δ 15N values of crust and soil. Hypolithic crusts were found to have minimal, if any, influence on soil salinity, pH, and , but may represent up to 14% of the biomass of primary producers on these islands and provide C and N to the belowground and possibly aboveground heterotrophic communities where crusts exist. The results of this study suggest a limited but potentially important contribution of hypolithic soil crusts to hyperarid ecosystems.  相似文献   

14.
Daily air and precipitation chemistry observations at six rural locations in eastern Canada were analyzed to obtain wet and dry deposition. Dry deposition was calculated from air concentrations using deposition velocities originating from a recent literature review and synthesis exercise involving land use types. Total annual deposition ranges for \({\text{SO}}_{\text{4}}^{\text{ = }} \) from 10 to 86 mmol m?2 and for \({\text{NO}}_{\text{3}}^{\text{ - }} \) excluding N02 contributions to dry deposition from 13 to 62 mmol m?2. Dry deposition accounts for an estimated 22 and 21% of the total \({\text{SO}}_{\text{4}}^{\text{ = }} \) and \({\text{NO}}_{\text{3}}^{\text{ - }} \) deposition, respectively. For \({\text{NO}}_{\text{3}}^{\text{ - }} \) , this fraction increases to 30% if N02 concentration to dry deposition is included. There is a marked seasonal variation in total \({\text{SO}}_{\text{4}}^{\text{ = }} \) deposition but not in that of \({\text{NO}}_{\text{3}}^{\text{ - }} \) . Both wet and dry deposition are episodic. 20% of daily events deliver between 47 and 70% of the deposition.  相似文献   

15.
Dissolved organic matter enhances the sorption of atrazine by soil   总被引:6,自引:0,他引:6  
The influence of dissolved organic matter (DOM) on the sorption of atrazine (2-chloro-4-ethylamino-6-isopylamino-1,3,5-triazine) by ten soils was investigated. Batch sorption isotherm techniques were used to evaluate the important physiochemical properties of soil determining the sorption of atrazine in the presence of DOM. The sorption of atrazine as a representative of nonionic organic contaminants (NOCs) by soil with and without DOM could be well described by the Linear and Freundlich models. The n values of the Freundlich model were generally near to 1, indicating that linear partitioning was the major mechanism of atrazine sorption by soil samples. The apparent distribution coefficient, value, for atrazine sorption in the presence of DOM initially increased and decreased thereafter as the DOM concentration increased in the equilibrium solution. DOM at relatively lower concentrations significantly enhanced the sorption of atrazine by soil, while it inhibited the atrazine sorption at higher concentrations. For all the soil samples, the maximum of was 1.1~3.1 times higher than its corresponding K d value for the control (without DOM). The maximum enhancement of the distribution coefficient () in the presence of DOM was negatively correlated with the content of soil organic carbon (SOC) and positively correlated with the clay content. The critical concentration of DOM, below which DOM would enhance atrazine sorption, was negatively correlated with SOC. The influence of DOM on atrazine sorption could be approximately considered as the net effect of the cumulative sorption and association of atrazine with DOM in solution. Results of this study provide an insight into the retention and mobility of a NOC in the soil environment.  相似文献   

16.
Four years of precipitation chemistry data for eastern North America were used to investigate seasonal and geographical variations in \({\text{SO}}_{\text{4}}^{\text{ = }} {\text{/NO}}_{\text{3}}^{\text{ - }} \) ratio. Several distinct regimes occur. One, in the region of heaviest acidic deposition extending from the states south of the Great Lakes across New England and southeastern Canada, has a very strong seasonal variation in the \({\text{SO}}_{\text{4}}^{\text{ = }} {\text{/NO}}_{\text{3}}^{\text{ - }} \) molar ratio in deposition. The ratio ranges from about 1.5 in summer to about 0.5 in winter. Another, in the smaller area of Texas and surrounding states, shows the reverse seasonal pattern. Yet another, in the high plains states, has a double maximum in the ratio in Spring and Fall. The remainder of the region has an irregular seasonal pattern. Insight into the cause of \({\text{SO}}_{\text{4}}^{\text{ = }} {\text{/NO}}_{\text{3}}^{\text{ - }} \) variations was obtained using a simple chemical transport box model. It showed that the chemical transformation of S02 and NOx in the atmosphere is a major factor. A comparison of model predictions and observations indicate that in the vicinity of mid-western American sources the molar ratio of amount of S02 oxidized in-cloud to that of N02 is O.5 in winter and 1.5 in summer.  相似文献   

17.
Regulation of amino acid biodegradation in soil as affected by depth   总被引:1,自引:0,他引:1  
Dissolved organic nitrogen (DON) and in particular free amino acids represent a key pool in the terrestrial soil C and N cycle. The factors controlling the rate of turnover of this pool in soil, however, remain poorly understood. We investigated the factors regulating the rate of amino acid turnover at different depths (up to 1.2 m) in five low-input, acid soil profiles. Within the root zone (0–60 cm), amino acids constituted 8% of the DON and represented only a small fraction of plant available N. In all the soil profiles, the rate of amino acid mineralisation decreased progressively with depth. The average half-life of the exogenously added amino acids in the soil was 5.8 h in topsoils (0–10 cm), falling to 20 h at a depth of 50 cm and to 33 h at 100 cm. Generally, the rate of amino acid mineralisation correlated positively with total soil C and N, soil microbial activity (basal soil respiration rate) and soil content. The relatively rapid rates of microbial amino acid assimilation in subsoils below the root zone (>60 cm) indicate that long-term transport of amino acids (e.g. from soil to freshwaters) will be low. Based upon the C-to-N ratio of the amino acid substrate and the microbial C assimilation efficiency, we estimate that approximately 40–60% of the amino acid-N will be excreted as . In conclusion, the rapid rate of free amino acid turnover and their low concentration in soil solution indicate that the formation of inorganic N ( and ) in soil is limited primarily by the rate of free amino acid appearance in soil and not by the rate of amino acid mineralisation.  相似文献   

18.
In the present study, a comparative assessment of 2,4,6-T (2,4,6-Trichlorophenol) degradation by different AOPs (Advanced Oxidation Processes – UV, UV/ H2O2, Fenton, UV/Fenton and UV/TiO2) in the laboratory scale is performed. The effects of different reactant concentrations and pH are assessed. 2,4,6-T removal, Total Organic Carbon mineralization (TOC) and dechlorination are monitored. Of all the AOPs, UV/Fenton process is more effective in degrading 2,4,6-T. The optimum conditions obtained for the best degradation with UV/Fenton are: pH?=?3, Fe+2 concentration of about 5 ppm, and peroxide concentration of 100 ppm for an initial 100 ppm of 2,4,6 T concentration at room temperature. In these conditions, a pseudo first-order rate constant is evaluated. The degradation rate of 2,4,6 T followed the order: $$ {{{\text{UV}}} \mathord{\left/ {\vphantom {{{\text{UV}}} {{\text{Feton}}}}} \right. \kern-\nulldelimiterspace} {{\text{Feton}}}} > {{{\text{UV}}} \mathord{\left/ {\vphantom {{{\text{UV}}} {{\text{TiO}}_{\text{2}} > {{{\text{UV}}} \mathord{\left/ {\vphantom {{{\text{UV}}} {{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} > {\text{Feton}}}}} \right. \kern-\nulldelimiterspace} {{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} > {\text{Feton}}}}}}} \right. \kern-\nulldelimiterspace} {{\text{TiO}}_{\text{2}} > {{{\text{UV}}} \mathord{\left/ {\vphantom {{{\text{UV}}} {{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} > {\text{Feton}}}}} \right. \kern-\nulldelimiterspace} {{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} > {\text{Feton}}}}}} > {\text{UV}} $$   相似文献   

19.
A field survey on the concentration of chemical species in particulate matter and gaseous compounds at two monitoring sites with different site classifications (urban and rural) was conducted over three years. Total (particulate matter + gaseous compounds) concentrations at the rural site were significantly lower than those at the urban site for all species (sulfur $\left( {{\text{SO}}^{{{\text{2 - }}}}_{{\text{4}}} {\left( {\text{p}} \right)}} \right.$ and SO2(g)), nitrate ${\text{(NO}}_{{{\text{3}}^{{\text{ - }}} }} {\left( {\text{p}} \right)}$ and HNO3(g)), ammonium ${\text{(NH}}_{{{\text{4}}^{{\text{ + }}} }} {\text{(p)}})$ and ammonia (NH3(g)), and chloride (Cl? (p) and HCl (g))), which is thought to reflect classification of the site. The difference in the sulfur concentration at the urban and rural sites was characterized by the difference in SO2 (g) concentration. Further, a clear seasonality was observed for the nitrate species. The HNO3 (g) concentration was high in the summer compared with other seasons at both the urban and rural sites. The ${\text{NH}}_4^ + \left( {\text{p}} \right)$ concentration levels were approximately the same as those of NH3 (g) at both sites. The molar ratios of the particulate matter concentration to the total concentration showed different characteristics; the nitrate, ammonium and ammonia, and chloride species showed a clear seasonal variation: low in summer and high in winter and the values were similar regardless of the site. On the other hand, the sulfur species showed constant values at both the urban and rural sites, however the concentrations were significantly different for the two sites. Ammonium accounted for the largest proportion of cations in the particulate matter, regardless of the site classification. In contrast, ${\text{SO}}_4^{2 - } \left( {\text{p}} \right)$ accounted for the largest proportion of anions at the rural site, whereas ${\text{NO}}_3^ - \left( {\text{p}} \right)$ was comparable to ${\text{SO}}_4^{2 - } \left( {\text{p}} \right)$ at the urban site. Ammonia accounted for the largest proportion of all chemical species at both sites. Seasonal analysis of the proportional distribution in particulate matter and gaseous compounds provides information on atmospheric conditions.  相似文献   

20.
Agricultural activities release variable products into air, soil and water ecosystems. The study was conducted to evaluate the impact of agriculture and concentrated livestock operations on stream and lake water quality in Grand Lake St. Marys watershed of north-western Ohio. Temporal water samples from the lake and the 6 feeding streams were collected bimonthly from January 2005 to May 2007, processed and measured for temperature, turbidity, pH, electrical conductivity (E C), ammonium $\left( {{\text{NH}}_{\text{4}}^{\text{ + }} } \right)$ , nitrate $\left( {{\text{NO}}_{\text{3}}^ - } \right)$ , dissolved phosphorus (P), ultra-violet (UV) light absorption, and dissolved oxygen (DO), employing standard methods of analysis. The measured data were normalized and integrated into a simple index (WQIndex) to evaluate overall water quality. Results showed that over 90% of the area in the watershed was under cropland with associated livestock operations. With a land area equal to 195 km2 represented by the six major tributaries, the average animal density was over 240 units km?2. As a result, land disposal of manure from confined feedings operations and direct deposit by grazing animals contributed to non-point sources of water pollution. While $\left( {{\text{NH}}_{\text{4}}^{\text{ + }} } \right)$ and P concentration, turbidity, and UV absorption peaked during the summer, the $\left( {{\text{NO}}_{\text{3}}^ - } \right)$ and DO concentration in both stream and lake water was lowest in the summer. Water sampled from the Coldwater, Beaver and Prairie creeks had higher turbidity, $\left( {{\text{NH}}_{\text{4}}^{\text{ + }} } \right)$ , and P than other creeks. However, DO concentration and UV absorption of water did not change significantly by the influence of streams. The WQIndex peaked in both streams and lake water with greater water quality degradation in Beaver and Coldwater creek than other creeks. A significant relationship of WQIndex with UV absorption and P accounted 84 to 90% of the variations in stream and lake water quality degradation. However, a strong linear relationship (r 2?=?0.81; p<0.01) between UV absorption and P concentration suggested a major contribution of P to the degradation of stream and lake water quality through algal blooming and associated eutrophication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号