首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Postharvest decay of pear fruit often originates at small wounds that occur during harvest and handling. Experiments were conducted to characterize the effect of timing of application of postharvest decay control materials, and to evaluate sequential postharvest applications of fungicides or fungicides and biocontrol agents. Fungicides and biocontrol agents were increasingly less effective when the period between harvest and application was prolonged. Thiabendazole (TBZ) applied to fruit without artificial wounding or inoculation effectively reduced decay when applied within 3 weeks or 6 weeks in 2 years of study. TBZ, fludioxonil, and pyrimethanil were effective in controlling decay at artificial wounds inoculated with Penicillium expansum up to 14 d after inoculation. Application of TBZ at harvest followed 3 weeks later by application of fludioxonil was superior to application of TBZ at harvest alone. Three yeast and one bacterial biocontrol agents reduced decay at pear wounds inoculated with P. expansum up to 14 d after inoculation with P. expansum, but were ineffective when applied at 28 d after inoculation. Of possible sequential arrangements of fungicide and biocontrol treatments, application of the most effective material promptly after harvest generally resulted in the highest level of decay control.  相似文献   

2.
Combinations of various heat treatments with individual fruit sealing, packaging in polyethylene liners or waxing were tested as means to control pathological and physiological spoilage of ‘Oroblanco’ fruit (Citrus grandis L.×C. paradisi Macf.). The following heat treatments were used: curing at 36°C for 72 h, hot water dip at 52°C for 2 min or ‘hot drench brushing’ at 52, 56 or 60°C for 10 s. The standard packinghouse treatment included waxing with addition of thiabendazole (TBZ) and 2,4- isopropyl ester. The fruit was stored for 2 weeks at 1°C (simulated low-temperature quarantine treatment), followed by 12–13 weeks at 11°C (simulated sea transportation to Japan) and 1 additional week at 20°C (simulated retail shelf-life period). The lowest weight loss and the highest firmness were observed with individually sealed fruit. Polyethylene liners were usually more efficient for weight loss control than waxing. However, the liner packaging enhanced the risk of postharvest disease development, if not accompanied by appropriate decay-controlling measures. Applying TBZ, hot water dip or curing controlled the development of postharvest pathogens, especially that of Penicillium molds. In another trial, both hot drench brushing at 56 or 60°C and hot water dip reduced decay incidence. Hot drench brushing at 60°C and hot water dip slowed fruit softening and reduced buttons abscission. In addition, the hot drench brushing at 60°C significantly delayed the loss of ‘Oroblanco’ green rind color, especially at the stylar and stem ends of the fruit. The hot dip at 52°C inhibited yellowing only when combined with individual seal-packaging.  相似文献   

3.
A manually operated high-pressure hot-water washing system consisting of a boiler, hot-water mixing tank, contact loop, heat exchanger, spray mixing tank, high-pressure hot-water washing manifold, low-pressure fresh water rinse manifold, and pressure pump was constructed and installed in a packingline. The system developed 20–50 °C washing water at pressures up to 980 kPa. ‘d’Anjou’ pears (Pyrus communis L.), shortly after harvest, and after storage for 3 and 4 months in regular air (RA) or for 4, 7 and 8 months in controlled atmosphere (CA) at −1 °C were washed through the packingline with different wetting agents (0.1% Silwet, 0.01 and 0.1% Defoamer, and water), water pressures (regular and high-pressure (210–980 kPa)), water temperatures (control (tap water, 4–22 °C), 40 °C, and 50 °C), and brushes (soft and firm), respectively. The effect of the washing conditions on fruit quality was investigated after 1 month of storage at −1 °C to simulate shipping condition, and then again after 1 week at 20 °C to simulate marketing condition. Hot-water caused severe heat scald. When nozzle temperature was 50 °C, the incidence of heat scald increased to over 50% for the fruit stored in RA for 3 months. Combined with hot-water, 540 kPa high-pressure washing increased the incidence of friction discoloration. There were lower incidences of friction discoloration and heat scald for fruit stored in CA for 7 months, in comparison to that in RA for 3 months. However, those fruit did not ripen properly as indicated by a high extractable juice content. Fruit washed at harvest had minor incidences of friction discoloration regardless of different brushes, water pressures, and wetting agents. Fruit washed after storages in either 4 months RA or 4 or 8 months CA suffered a high incidence of friction discoloration including scuffing symptoms and pressure marking. The firm brushes caused a higher incidence of friction discoloration mainly because of scuffing symptoms. However, no differences were found between different water pressures and wetting agents with respect to friction discoloration. Fruit stored for 4 months RA suffered 26–28% friction discoloration in comparison to 16–18% in CA stored fruit with firm brush washing. Extended CA storage increased friction discoloration even with soft brush washing. The results suggest that a washing system with high-pressure spray, <30 °C warm water, wetting agent Defoamer and rotating soft brushes were significantly effective in removing surface pests and decay control without causing internal or external damage of fruit.  相似文献   

4.
Strawberries at white ripening stage were heat treated at 45 °C for 3 h in an air oven and then stored at 20 °C for 72 h. Firmness, activity of enzymes associated to cell wall degradation, and expression of related genes were determined during the storage. Fruit firmness decreased during the incubation time, and after 24 h of storage the heat-treated fruit softened less than the control fruit. However, after 3 days at 20 °C no differences in firmness were detected between control and heat-treated fruit. Immediately after heat treatment application, the activity of endo-1,4-β-d-glucanase (EGase), β-xylosidase and β-galactosidase decreased, while polygalacturonase activity remained at a level similar to the control fruit. However, lower activities of all these enzymes, including polygalacturonase, were detected in heat-treated fruit after 24 h at 20 °C. The enzyme activity of β-xylosidase, β-galactosidase and polygalacturonase increased after 72 h up to similar or higher values than those of controls. However, endo-1,4-β-d-glucanase activity remained lower in heat-treated samples even after 72 h at 20 °C. The expression of genes encoding endoglucanase (FaCel1), β-xylosidase (FaXyl1), polygalacturonase (FaPG1) and expansin (FaExp2) was reduced immediately after treatment and during the following 4 h, and then increased after 24 h to levels similar to or higher than those of control fruit.

Therefore, the selected treatment (45 °C, 3 h in air) effectively reduced strawberry softening and caused a temporary reduction of both the expression of above-mentioned genes and the activity of a set of enzymes involved in cell wall disassembly.  相似文献   


5.
The yeast Pichia guilliermondii was examined for its ability to control Rhizopus nigricans on tomato fruit during storage, and in order to highlight the reason for biocontrol, a possible mode of action is discussed. Results showed that autoclaved yeast culture and culture filtrate had no effect on controlling the postharvest disease caused by R. nigricans, although inoculation of P. guilliermondii prior to R. nigricans resulted in enhanced biocontrol efficacy. Moreover, rapid colonization of the yeast on wound sites was observed during the initial 3 days at 20 °C, and then the population stabilized for the remaining 4 days. This phenomenon indicated that at room temperature, P. guilliermondii could acclimatize itself to the environment of tomato fruit wounds and occupy the living space quickly. The results indicate that P. guilliermondii did not produce an antifungal substance, however, competition for nutrients and space on wounds appeared to play a role in the activity of the biocontrol and could be one of the mechanisms. In addition, the fruit inoculated with P. guilliermondii demonstrated changes in peroxidase (POD), polyphenoloxidase (PPO), superoxide dismutase (SOD), catalase (CAT), phenylalanine ammonia-lyase (PAL), chitinase (CHI) and β-1,3-glucanase activities, all of which were correlated with the onset of induced resistance. This result suggests that tomato fruit is capable of responding to the yeast P. guilliermondii, which could activate defensive enzymes and thereby induce host disease resistance.  相似文献   

6.
Four expansin cDNA fragments, EjEXPA1, EjEXPA2, EjEXPA3 and EjEXPA4, were isolated and characterized from loquat (Eriobotrya japonica Lindl.) fruit. EjEXPA1 mRNA accumulated consistently with the increase in fruit firmness in 0 °C storage of ‘Luoyangqing’ (LYQ) fruit, where chilling injury with increased fruit firmness due to lignification was observed. EjEXPA1 mRNA levels were lower in fruit that underwent low temperature conditioning (LTC, 6 d at 5 °C then 4 d at 0 °C), and in 1-methylcyclopropene (1-MCP) treated fruit, in both cases where chilling injury was alleviated. Fruit of the ‘Baisha’ (BS) cultivar soften after harvest rather than increase in firmness, and high expression levels of EjEXPA1 and EjEXPA4 accompanied the softening of BS fruit stored at 20 °C; such mRNA accumulation was much lower when fruit were stored at 0 °C, where softening was significantly inhibited by the low temperature. Very low expression of EjEXPA2 and EjEXPA3 was observed during storage of both LYQ and BS fruit under the different storage conditions. Our results showed that of the four genes characterized, EjEXPA1 might be associated with chilling-induced lignification while both EjEXPA1 and EjEXPA4 were closely related to softening of loquat fruit during the postharvest period.  相似文献   

7.
A new strain of Metschnikowia pulcherrima (MACH1) was studied for its efficacy as a biocontrol agent against Botrytis cinerea, Penicillium expansum and Alternaria alternata on apples stored for 8 months at 1 °C. The results of two semi-commercial trials demonstrated the efficacy of the biocontrol strain MACH1. In order to understand the mechanism of action involved, the yeast strain was investigated for its competitive ability for iron against postharvest pathogens of apple. M. pulcherrima strain MACH1 was cultivated on PDA with different concentrations of iron (supplemented as FeCl3) against A. alternata and B. cinerea. The yeast strain MACH1 produced a wider pigmented inhibition zone against both pathogens in low iron amendments while less inhibition was measured with increased iron concentrations. At the coloured inhibition zone, B. cinerea and A. alternata conidia did not germinate and mycelial degeneration was observed. In addition, a high reduction in infection by both pathogens was recorded in apples treated with M. pulcherrima strain MACH1 supplemented with low iron amendments compared to higher iron concentrations. The same experiments were carried out in vivo and in vitro against P. expansum. M. pulcherrima strain MACH1 amended with low iron concentration (5 μg mL−1 FeCl3), showing modest lesion diameter reduction and no effect on P. expansum under increased iron and without iron amendments. This study illustrated that iron depletion by the yeast strain MACH1 under low iron conditions could reduce the growth of some postharvest pathogens in vitro and in vivo. Although, iron depletion seems to be a primary mode of action against the postharvest pathogens studied, other mechanisms of action cannot be excluded in the biocontrol employed by M. pulcherrima strain MACH1.  相似文献   

8.
Mume (Prunus mume Sieb. et Zucc.) fruit are harvested and consumed at the mature green stage and have a short storage life at ambient temperature. While cold temperature extends their storage life, improper refrigeration causes severe chilling injury (CI), with fruit suffering more severe CI at of 5–6 °C than at 1 °C. The objective of this research was to determine the involvement of reactive oxygen species (ROS) and antioxidant systems in fruit under chilling stress. ‘Nankou’ fruit were stored at 1 °C or 6 °C for 15 days. Hydrogen peroxide, a preventive ROS, decreased at a slower rate at 6 °C than 1 °C during storage. Malondialdehyde (MDA), an indicator of lipid peroxidation caused by ROS, increased during storage and the contents were higher in fruit stored at 6 °C than at 1 °C. On the other hand, fruit stored at 6 °C had a lower total antioxidant capacity (TAC) and lower activities of antioxidant-related enzymes including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) than at 1 °C. These results indicate that the fruit at 6 °C had more oxidative stress; thus the fruit had more severe CI symptoms than at 1 °C.  相似文献   

9.
Infection of citrus fruit by postharvest pathogens often occurs in the field prior to harvest; therefore, it could be advantageous to apply biocontrol agents before harvest, which would reduce initial infection and then remain active and control pathogens in storage and under commercial conditions. The objective of the present work was to evaluate the effectiveness of different formulations of Pantoea agglomerans applied preharvest for controlling postharvest diseases on citrus. Results confirmed the protective effect of the additive Fungicover (FC) on populations of P. agglomerans exposed to non-conducive field conditions. In general, when osmotic-adapted and lyophilised P. agglomerans cells were used in bacterial treatments, these treatments showed greater survival rates than treatments with non-osmotic-adapted or fresh cells under field conditions. However, this superiority was only found when Fungicover was also added to suspensions of bacterial treatments. Therefore, bacterial treatments with Fungicover had population levels of P. agglomerans cells 1.2 and 2.8 log CFU cm−2 higher than bacterial treatments without Fungicover during field experiments. These results allowed us to conclude that it is possible to improve environmental stress tolerance and ecological competence of P. agglomerans cells by integrating certain formulation strategies. Consequently, the improved formulation of P. agglomerans provided an effective control for orange fruit against natural postharvest pathogen infections and artificial infections of Penicillium digitatum with values of decay reduction higher than 50%. These latter results also demonstrated that it is possible to control postharvest pathogens using bacterial preharvest treatments.  相似文献   

10.
'Laiyang Chili’ and ‘Ya Li’ (Pyrus bertschneideri Reld) pears were treated with 3, 6, and 9% emulsions of commercial or refined (reduced -tocopherol levels) plant (soybean, corn, peanut, linseed, and cottonseed) oils at harvest an stored at 0°C for 6 months. Effects of oil treatments on ethylene production, respiration, fruit firmness, fruit color, soluble solid content (SSC), titratable acids (TA), internal browning (IB), and internal CO2, O2, and ethanol were studied. At the same concentration, oil treatments induced similar responses regardless of their sources or their -tocopherol concentrations. In both cultivars, ethylene production and respiration in fruit treated with 9% oils were lower in early storage and higher in late storage than that in the controls. Oils at 6% reduced IB, at 9% inhibited IB completely, and at 3% was not effective after 6 months at 0°C and 7 days at 20°C. Plant oil treatment maintained fruit color, firmness, SSC, and TA in a concentration-dependent manner during storage. In the first 4 months storage, 9% corn oil-treated fruit contained similar partial pressure of CO2 and O2 as the controls. After 5 months storage, oil-treated fruit contained higher partial pressure of CO2 and lower levels of O2 than the controls. When held at 20°C for 7 days, changes of internal CO2 and O2 were slower but partial pressure of CO2 were higher, and O2 were lower, in 9% corn oil-treated fruit than in the controls. Internal ethanol was not affected by oil treatment compared with control, either during storage or 7 days at 20°C. No off-flavor was detected in either oil-treated and control fruit by sensory evaluation.  相似文献   

11.
Three bunches of unripe ‘Williams’ banana fruit of different maturity, 173, 156 and 71 days from bunch emergence, were harvested. Fruit from the top, bottom and middle hands from each bunch were fumigated for 24 h with 1-methylcyclopropene (1-MCP) at 0, 5, 50 or 500 nl l−1 at 20oC. All fruit were then stored at 20oC in air containing 0.1 μl l−1 ethylene and the time taken for each fruit to ripen (green life) was noted. The green life of fruit treated with 500 nl l−1 1-MCP varied with fruit maturity. In the two most mature bunches it was 27.9±2.3 days, 4-fold longer than fruit fumigated with 0 nl l−1 1-MCP (6.7±0.6 days). In the least mature bunch, green life was 39.7±3.0 days, 1.5-fold longer than fruit fumigated with 0 nl l−1 1-MCP (25.7±2.5 days). Most fruit treated with 500 nl l−1 1-MCP showed an unacceptable uneven skin colouration when ripe. There was no significant effect on green life of 1-MCP at 50 nl l−1 and 5 nl l−1. Other fruit from these bunches were not exposed to 1-MCP and were held in ethylene-free air until ripe. In the two most mature bunches, these fruit had a significantly shorter green life (11.2±5.6 days in hand 1; 18.9±4.1 days in hands 4 and 6) than fruit that were fumigated with 500 nl l−1 1-MCP. In the least mature bunch, however, these fruit had a significantly longer green life (56.0±5.9 days) than 1-MCP treated fruit. Since the effectiveness of 1-MCP varied with fruit maturity and in any commercial consignment there is a mixture of fruit maturity, it is concluded that 1-MCP has limited commercial potential for the storage of unripe ‘Williams’ bananas.  相似文献   

12.
The objective in the present study was to investigate the survival and effectiveness of different biological agent Pantoea agglomerans formulations against Penicillium spp. with different preharvest treatments. Results indicated a high sensitivity of non-adapted and osmotic-adapted P. agglomerans cells to environmental conditions in the field, resulting in preharvest treatments which were ineffective against Penicillium spp. In the second part of this study, dry conditions and solar radiation were identified as important environmental conditions that seriously affect populations of P. agglomerans cells. Different formulation strategies were tested in order to improve the resistance of cells to unfavourable environmental conditions. Osmotic-adapted P. agglomerans cells in the presence of 25 g L−1 of NaCl in the production medium [osmotic-adapted treatment (P25)] or at water activities (aw) of 0.98 [osmotic-adapted treatment (P98)] had higher survival rates than non-adapted cells, when these cells were sprayed on oranges and stored in hermetically sealed chambers at a low RH of 43%. Among seven additives tested, the presence of 5% Fungicover in the bacterial suspension improved adherence and persistence of P. agglomerans cells on oranges exposed to unfavourable conditions. Therefore, while P. agglomerans cells sprayed alone had log values of 0.5 CFU cm−2, in combination with Fungicover the population level of P. agglomerans cells reached log values of 5 and 4.2 CFU cm−2, at 0 and 24 h after application. Lyophilised cells showed greater resistance to unfavourable environmental conditions than fresh cells. The present study has demonstrated that the formulation improvement can provide better performance of biocontrol agents under environmental conditions non-conducive for growth and survival.  相似文献   

13.
An antagonistic isolate Bacillus amyloliquefaciens HF-01, sodium bicarbonate (SBC) and hot water treatment (HW) were investigated individually and in combination against green and blue mold and sour rot caused by Penicillium digitatum, P. italicum and Geotrichum citri-aurantii respectively, in mandarin fruit. Populations of antagonists were stable in the presence of 1% or 2% SBC treatment, and spore germination of pathogens in potato dextrose broth was greatly controlled by the hot water treatment of 45 °C for 2 min. Individual application of sodium bicarbonate at low rates and hot water treatment, although reducing disease incidence after 8 weeks or 4 weeks of storage at 6 °C or 25 °C respectively, was not as effective as the fungicide treatment. The treatment comprising B. amyloliquefaciens combined with 2% SBC or/and HW (45 °C for 2 min) was as effective as the fungicide treatment and reduced decay to less than 80% compared to the control. B. amyloliquefaciens HF-01 alone or in combination with 2% SBC or/and HW significantly reduced postharvest decay without impairing fruit quality after storage at 25 °C for 4 weeks or at 6 °C for 8 weeks. These results suggest that the combination of B. amyloliquefaciens HF-01, SBC and HW could be a promising method for the control of postharvest decay on citrus while maintaining fruit quality after harvest.  相似文献   

14.
This article presents various experiments conducted under semi-controlled conditions to determine the effects of temperature on germination, phenology, growth and freezing in Chenopodium quinoa, a pseudocereal originating from the cold and dry Andean altiplano. Traditional landraces and recently released cultivars from distinct geographical origins were compared in order to look for local adaptation or breeding improvement with respect to low temperatures. Germination was evaluated in 10 cultivars at temperatures between 2 and 20 °C. Plant growth and development were examined in three cultivars over the growing cycle, under minimum temperature between 8 and 13 °C and maximum temperature between 20 and 28 °C. The thermal time concept was used to compare the various treatments and estimate the phyllochron, as well as the base temperature and optimum temperature for leaf appearance, time to flowering and leaf width growth. Two cultivars at the vegetative stage were compared for night freezing tolerance down to −6 °C, registering leaf exotherms and plant survival rate. The influence of plant water status and the possible protective or detrimental role of leaf epidermal vesicles were also examined. Low temperatures down to 2 °C delayed germination without impeding it totally. Base temperature for germination varied between −1.9 and +0.2 °C, with negative values in 9 cultivars out of 10. Thermal sensitivity in germination was not related to the geographic origin of the cultivars. Leaf appearance and time to flowering showed similar base temperatures near 1 °C. Phyllochron varied from 12.9 to 17.2 °C d with lower values in the two recently released varieties than in the traditional landrace. Leaf width increased from a base temperature around 6 °C up to an optimum temperature between 20 and 22.5 °C. Freezing experiments showed that no plant could survive after 4 h at −6 °C, while no serious effect was noted down to −3 °C. Leaf exotherms confirmed that ice nucleation occurred between −5 and −6 °C in most of the plants, the traditional landrace showing a lower freezing tolerance than the selected line. Low leaf water status delayed the freezing process, while leaf vesicles did not seem to play any protective or detrimental role towards leaf freezing. Implications of these results for quinoa crop adaptation to the Andean environment are discussed.  相似文献   

15.
The influence of aqueous 1-methylcyclopropene (1-MCP) concentration, immersion duration, and solution longevity on the ripening of early ripening-stage tomato (Solanum lycopersicum L.) has been investigated. Tomato fruit at the breaker-turning stage were fully immersed in aqueous 1-MCP at 50, 200, 400 and 600 μg L−1 for 1 min, quickly dried, and then stored at 20 °C. Ethylene production, respiration, surface color development, and rate of accumulation of lycopene and polygalacturonase (PG) activity were suppressed and/or delayed in fruit exposed to aqueous 1-MCP. Suppression of ripening was concentration dependent, with maximum inhibition in response to 1 min immersion occurring at concentrations of 400 and 600 μg L−1. Climacteric ethylene peaks were delayed approximately 6, 7, and 9 d and respiration was strongly suppressed in fruit treated with aqueous 1-MCP at 200, 400, and 600 μg L−1, respectively, compared with control fruit. Fruit firmness, lycopene content, PG activity, and surface hue of fruit treated at the three higher levels remained strongly suppressed compared with control. Skin hue values and pericarp lycopene content in response to treatment at the subthreshold 50 μg L−1 provided evidence for differential ripening suppression in external versus internal tissues. Maximum delay of softening and surface color development in response to 50 μg L−1 aqueous 1-MCP occurred following immersion periods of between 6 and 12 min. Factors affecting fruit penetration by aqueous 1-MCP and mechanisms contributing to recovery from 1-MCP-induced ripening inhibition are discussed.  相似文献   

16.
The role of phospholipase A2 (PLA2) activity in development of postharvest peel pitting in mature ‘Fallglo’ tangerines [Bower citrus hybrid (Citrus reticulata Blanco × C. reticulata Blanco × C. paradisi Macf.) × Temple (C. reticulata Blanco × Citrus sinensis L.)] and ‘Navel’ oranges (Citrus sinensis L. Osbeck) was investigated. Changes in RH from 30% to 90% followed by fruit waxing increased electrolyte leakage and PLA2 activity in flavedo, and induced pitting. Treatment with an aqueous dip of aristolochic acid (AT), a specific inhibitor of secretory phospholipase A2 (sPLA2) activity, immediately before transfer from 30% to 90% RH storage, markedly reduced peel pitting symptoms. Five genes encoding various phospholipase As isolated from citrus (three patatin-like and two sPLA2-like sequences) differentially accumulated in healthy areas, areas with developing lesions and necrotic lesions of disordered fruit. Other PLA2, phospholipase C, and phospholipase D inhibitors also reduced peel pitting; however, PLA2 inhibitors were the most effective in preventing the disorder. In addition, phospholipase inhibitors promoted fruit decay, suggesting that innate resistance is impacted by phospholipase action. Together, the results provide evidence for involvement of phospholipase activity in development of postharvest peel pitting symptoms in citrus fruit.  相似文献   

17.
The effect of delays of 1, 5, 10 or 15 d after harvest in establishing a static controlled atmosphere (SCA) or dynamic controlled atmosphere (DCA) on the quality of ‘Hass’ avocados (Persea americana Mill.) was investigated. Fruit were stored at 5 °C in SCA (5% O2/5% CO2) or DCA (<3% O2/0.5% CO2) for 6 weeks and compared with fruit stored in air. In addition, to determine whether increasing the CO2 in the DCA would affect the fruit quality, DCA-stored fruit were compared with fruit held in a DCA with 5% CO2 (DCA + CO2) established 1 d after harvest. The quality of fruit was assessed at the end of storage and after ripening at 20 °C. DCA-stored fruit ripened in 4.6 d compared with 7.2 d for SCA-stored fruit, or 4.8 d for air-stored fruit. In addition, the incidences of stem end rot (SER), body rot (BR) and vascular browning (VB) were lower in DCA-stored fruit (35%, 29% and 29%, respectively) than in SCA-stored fruit (57%, 52% and 49%, respectively), or air-stored fruit (76%, 88% and 95%, respectively). Delaying the establishment of both SCA and DCA for 15 d resulted in significantly more advanced skin colour at the end of storage (average rating score 11.9) compared with other delay periods (4.6–5.1). There was no significant effect of delay on the time to ripen, skin colour when ripe or any ripe fruit disorder incidence. The incidence of diffuse flesh discolouration (DFD) was not only <1% when averaged over all delays but only occurred at >0.5% incidence in the 15 d delay treatment in DCA (4.8%) and not in SCA. The incidence of diffuse flesh discolouration was 62% in air-stored fruit. Inclusion of 5% CO2 in DCA retarded fruit ripening from 4.7 to 6.9 d and increased the incidence of rots at the end of storage from 5% to 14%, and increased the incidence in ripe fruit of SER from 30% to 56% and of BR from 27% to 55%. It is concluded that fruit quality was better after CA storage than after air storage, and that DCA storage was better than SCA. The effect of DCA is to independently reduce the time to ripen after storage and the incidence of rots when ripe. Delaying the application of SCA or DCA did not affect the expression of rots, but may increase the incidence of DFD. Inclusion of CO2 at 5% in CA retarded fruit ripening but stimulated rot expression and should not be used for CA storage of New Zealand grown ‘Hass’ avocados.  相似文献   

18.
Treatment of peppers with hot water (53°C) for 4 min was found to be effective in alleviating chilling injury and reducing decay after 14 and 28 days of storage at 8°C. Treatment at 45°C for 15 min was less effective in maintaining pepper quality during storage. Packaging with low density polyethylene film significantly reduced weight loss and chilling injury during low temperature storage. Lower O2 and higher CO2 levels were found in internal and in-package atmospheres of heated fruit than controls. Ethylene was not detected in the in-package atmosphere of treated fruit, but was present in the control. Polyamine levels increased immediately after hot water treatments. Putrescine levels increased during storage at 8°C particularly in heat-treated fruit and in packaged fruit. A significant increase in putrescine was noted in packaged fruit treated at 53°C for 4 min after 14 days of storage. Spermine levels decreased in control fruit during storage. However, heat treatment in combination with film packaging maintained higher levels of spermine in peppers during storage than controls. These results indicated that hot water treatment in conjunction with film packaging may delay chilling injury and decay of bell peppers through a mechanism that involved elevation of polyamine levels.  相似文献   

19.
以上海市静安区巨鹿路和浦东新区黄杨路道路两旁的行道树悬铃木(Platanus acerifolia)为研究对象,采用化学调控的方法,研究ED药剂、调呋酸钠(美国)、杭州控果剂、国光絮必治、飞絮抑制剂和合畅6种化学药剂对悬铃木球果的影响,从而为悬铃木球果果毛的防控提供理论和技术依据.结果 表明,经过化学药剂处理的悬铃木球...  相似文献   

20.
Litchi (Litchi chinensis Sonn.) fruit peel polyphenol oxidase (PPO) was partially purified 21 fold by ammonium sulfate fractionation and gel filtration. Pyrogallol, catechol, and 4-methylcatechol were good substrates for the enzyme; with no activity observed with chlorogenic acid, p-cresol, resorcinol, or tyrosine. The optimal pH for PPO activity was 7.0 with 4-methylcatechol, with the enzyme being most stable at pH 7.4. The enzyme was relatively temperature stable with maximum activity at 70 °C and requiring a little less than 10 min at 90 °C for 50% loss of activity. The Km and Vmax for the enzyme, with 4-methylcatechol, were 10 mM and 1.47 × 104 units/min per mg protein, respectively. The enzyme was not activated by SDS. Reduced glutathione, -cysteine, tropolone, thiourea, FeSO4, and SnCl2 markedly inhibited PPO activity, whereas MnSO4 and CaCl2 enhanced PPO activity. Data obtained in this study might help to better understand and control commercially, litchi fruit peel browning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号