首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of riparian denitrification on stream nitrate were investigated by detailed soil water observations and isotope analysis at a small headwater catchment in an urban area near Tokyo, central Japan. In the base flow period, stream nitrate concentration (<100 µM) was comparable with that of riparian ground water which had less nitrate than unsaturated soil water. Nitrogen isotope analysis showed that the consumption of nitrate by denitrification took place in riparian ground water, suggesting that denitrification is an important process to control nitrate leaching to streams. During rainfall, the concentration of stream nitrate increased up to 400 µM, which was comparable with that of pre-event soil water. The fact that soil water nitrate directly leached to streams indicated that the riparian denitrification process did not work during rainfall because of the rapid discharge of water. A decrease of denitrification effects is a possible reason for high stream nitrate concentration during rainfall.  相似文献   

2.
In French Brittany, water pollution with nitrate due tointensive agriculture has become one of the major environmentalconcerns. In this article, the nitrate, sulfate and chlorideconcentrations from the groundwater and the stream of a first-order agricultural watershed, are analyzed to infer the mechanisms responsible for the distribution and transfer of nitrate within the watershed. The aquifer is constituted by three layers: the thin soil cover, the weathered shale and thefissured shale. The weathered shale groundwater appears to bea large reservoir of nitrate in the watershed. Indeed the amount of nitrate is estimated at about 450 kg N ha-1, 5 to 9 times the total annual nitrate flux in the stream. In the upslope zones, this groundwater exhibited high nitrate concentrations (up to 138.4±10.5 mg NO3 - L-1), which decreased along the flow paths towards the stream (77.1±13.8 mg NO3 - L-1). Unlike nitrate, sulfate concentrations showed an increase from uphillto downhill (from 6.1±0.8 to 12.5±5.4 mg SO4 2- L-1) with little change in chloride concentrations. These patterns are presumed to result from upward flows from fissured shale groundwater where denitrification by oxidation of pyrite occurs with sulfate as end product. A scheme of nitrate transfer is proposed where stream discharge would result from the mixing of three end members which are: uphill weathered groundwater, deep groundwater and water in the uppermost soil horizons ofthe bottomlands. Temporal variability of nitrate concentrationsin base flow reflects changes in the relative contribution of each end member.  相似文献   

3.
Recent attention has focused on riparian forest buffer systems for filtering sediment, nutrients, and pesticides entering from upslope agricultural fields. Studies in a variety of physiographic areas have shown that concentrations of sediment and agrichemicals are reduced after passage through a riparian forest. The mechanisms involved are both physical and biological, including deposition, uptake by vegetation, and loss by microbiological processes such as denitrification. Current research by USDA-ARS and University of Georgia scientists at Tifton, GA is focusing on managing riparian forest buffer systems to alleviate agricultural impacts on the environment. The underlying concept for this research is that agricultural impact on streams is best protected by a riparian forest buffer system consisting of three zones. In consecutive upslope order from the stream these zones are (1) a narrow band of permanent trees (5–10 m wide) immediately adjacent to the stream channel which provides streambank stabilization, organic debris input to streams, and shading of streams, (2) a forest management zone where maximum biomass production is stressed and frees can be harvested, and (3) a grass buffer strip up to 10 m wide to provide control of coarse sediment and to spread overland flow. Several ongoing projects at Tifton, GA are focusing on using riparian forest buffer systems as filters. A forest management project is testing the effects of different management practices on surface and ground water quality. This project includes three different forest management practices: mature forest, selectively thinned forest, and clearcut. In a different study a natural wetland is being restored by planting frees. The effectiveness of this wetland on filtering nutrients from dairy wastes which are being applied upslope is being evaluated. At this same site, a pesticide study is being conducted on the side opposite to where dairy wastes are applied. An overland flow-riparian buffer system using swine lagoon waste is evaluating the effectiveness of different vegetative treatments and lengths of buffer zones on filtering of nutrients. In this study three vegetative treatments are compared: (1) 10 m grass buffer and 20 m riparian forest, (2) 20 m grass buffer and 10 m riparian forest, (3) 10 m grass buffer and 20 m of the recommended wetland species maidencane. Waste is applied at the upper end of each plot at either a high or low rate, and then allowed to flow downslope. The three zone riparian forest buffer system is being used for the Riparian Ecosystem Management Model (REMM). This model, which is currently under development at Tifton, GA, is a computer simulation model designed to reduce soil and water degradation by aiding farmers and land use managers in decision making regarding how best to utilize their riparian buffer system. Both information currently being collected in field studies and development of the REMM are innovative farm-level and forestry technologies to protect soil and water resources.  相似文献   

4.
Excess nitrate (NO3-) in lakes and streams has deleterious effects for environmental and human health. Nitrate concentrations have become problematic in agricultural watersheds due to increased use of fertilizers and improper management of livestock wastes. Research has indicated that the planting and/or preservation of riparian buffer zones can be an effective means of reducing pollution from agricultural fields (Osborne and Kovacic, 1993; Jordan et al., 1992; Simmons et al., 1992). Biological denitrification is the most desirable means of nitrate attenuation as the microbial conversion of NO3- removes nitrate from the watershed in the form of N gases. Despite the inherent value of biological denitrification, a comprehensive review discussing the role of this process in removing nitrate from riparian zones is lacking. In this paper we examine the results and conclusions of past research on the topic of denitrification in riparian zones and make recommendations for future research in this area. The need for subsurface denitrification assays in riparian zones is emphasized.  相似文献   

5.
华北潮土冬小麦-夏玉米轮作包气带氮素淋溶机制   总被引:1,自引:0,他引:1  
合理水氮管理可以实现作物目标产量和品质、维持土壤肥力和降低环境污染。然而,自20世纪90年代以来,我国农田过量施氮和大水漫灌等问题突出,引起农业面源污染日趋加重,地下水硝酸盐污染成为一个普遍现象。本文以华北潮土区冬小麦-夏玉米体系为研究对象,采用数据整合和文献分析的方法,阐明了典型农田硝态氮淋溶的时空特征及影响因素,研究了地表裂隙和土壤大孔隙对硝态氮淋溶的影响,定量了氮素在地表-根层-深层包气带-地下水的垂直迁移通量及过程。结果表明,农户常规管理的冬小麦-夏玉米轮作体系氮素盈余较高(299~358kg·hm~(-2)·a~(-1)),导致土壤根区和深层包气带累积了大量的硝态氮。冬小麦季硝态氮的迁移主要受灌溉影响,以非饱和流为主,且迁移距离较短;春季单次灌溉量低于60 mm,可以有效控制水和硝态氮淋溶出根区。冬小麦耕作和灌溉引起的地表裂隙对水氮运移的贡献不大。雨热同期的夏玉米季,土壤水分经常处于饱和状态,再降雨就可以导致硝态氮淋溶出根层进入深层包气带。夏玉米季极易发生硝态氮淋溶事件(占全年总淋溶事件的81%左右),硝态氮淋溶量占全年总淋溶量的80%左右,且单次淋溶事件的淋溶量较高。大孔隙优先流对夏玉米季根区硝态氮淋溶的贡献率在71%左右,这些硝态氮脱离了作物根系吸收范围,反硝化作用对硝态氮去除具有一定作用。在华北气候-土壤条件下,特别应注意冬小麦收获后土壤不应残留过多硝态氮,以避免夏玉米季降雨发生大量淋溶;夏玉米季需要注意施氮与作物需氮的匹配。由于夏玉米追肥困难,生产上提倡一次性施肥措施,控释肥应该能够发挥更大作用。未来气候变化,导致夏季极端高强度降雨事件的频率增加,将会加剧包气带累积硝态氮通过饱和流或优先流向地下水的迁移。合理的水氮管理是从源头上减少硝态氮向深层包气带和地下水迁移的主要措施。  相似文献   

6.
Movement of agricultural nitrogen (N) into riparian buffers often occurs within discrete seepage or upwelling zones which can limit the ability of the ecosystem to process the nutrient delivered by exfiltrating groundwater. Characterization of the biogeochemical processing of N within these zones is important in assessing the effectiveness of riparian buffers for mitigating nutrient loading of surface waters. The biogeochemical potential for denitrification in zones of exfiltration within a riparian buffer wetland dominated by high-carbon mucky soils was found to be highly stratified by profile depth with substantially higher activity in the surface layer of soil. The denitrification enzyme activity (DEA) within these zones was partly related to the population size of denitrifying microorganisms as measured by the most probable number (MPN) as well as the general microbial population as measured by substrate-induced respiration. The addition of glucose to the DEA assay stimulated enzyme activity indicating that carbon substrate was limiting activity. The stratification patterns of microbial populations and DEA are consistent with new carbon inputs to the ecosystem being most important driver of biogeochemical reactions such as denitrification in this high-carbon environment. A survey of carbon inputs to the ecosystem under study identified two major sources that contribute most of the annual biomass carbon inputs to the wetland: skunk cabbage in early summer and tree leaf litter in the fall. Tests of the ability of annually deposited wetland plant residues to stimulate denitrification and microbial respiration indicated that the degree of stimulation was inversely related to the C/N ratio of these carbon sources.  相似文献   

7.
We studied the influence of spent mushroom substrate (SMS) land application on water resources. Four study sites, including mushroom farms with low or high density land applications of SMS, and two controls, an alfalfa field and a woodland, were instrumented with soilwater lysimeters and groundwater monitoring wells. Water samples were collected during the dormant season (winter) and growing season (spring). Samples were analyzed for a number of water quality parameters, including dissolved organic carbon (DOC), dissolved organic nitrogen (DON), ammonia, chloride, nitrate, nitrite, phosphate, sulfate, aluminum, cadmium, calcium, chromium, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, silicon, sodium, and zinc. Additional analyses were performed for pesticides commonly used in the cultivation of alfalfa or corn, or for insect control, including methomyl, dimethoate, hexazinone, atrazine, diuron and permethrin.

All agricultural sites had elevated salt concentrations relative to the woodland site. The mushroom farm where SMS was applied in high concentrations had salt concentrations in the soilwater that were 10 to 100 times higher than the other agricultural sites. Of particular note were ammonium, nitrate, chloride, sulfate, calcium, magnesium, sodium, and potassium. Each of these were also elevated in the groundwater. The high salt concentrations were reflected in measurements of electrical conductivity. DOC and DON concentrations were also elevated in the soilwater and groundwater. Groundwater from each agricultural site, including the agricultural control, exceeded the primary drinking water standard for nitrate.

No pesticide residues were detected in well or lysimeter water collected at either site amended with SMS. Water samples collected from the woodland and at the alfalfa field not receiving SMS contained part per trillion quantities of a few pesticides.  相似文献   

8.
Dual isotope evaluations of NO3 - in groundwater adjacentto ditches within constructed riparian wetlands across the Kankakee watershed may assist the determination of denitrificationefficiency. Groundwater sampling indicates that NO3 --N exceeded 10 mg L-1 in constructed riparian wetlands but not innative wetlands within the riparian zones of the Kankakee basin. Anapparent local empirical threshold for nitrification occurs in groundwater near ditches with less then 1:11 depth to width dimensions within similar hydrogeology. The 15N and 18Ocomposition of groundwater nitrate varies widely in these constructed riparian wetlands. Groundwater nitrate associated with broader ditches (e.g. 1:35) most closely matches the denitrification isotope signature of native riparian wetlands in the basin. The geometry of various cut and fill landforms may need evaluation in engineering designs for constructed riparian wetlands to ensure the establishment of local natural groundwaterflow conditions for efficient nitrate attenuation.  相似文献   

9.
In situ denitrification (DNT) and denitrification enzyme activity (DEA) were measured in a Mediterranean riparian forest soil during two periods under contrasting soil moisture conditions in order to investigate the factors that affect denitrification through the year. Results showed that in summer, soil moisture limited denitrification throughout the entire soil profile, whereas in winter, anaerobic conditions in the soil were more favourable for denitrifiers. The potential for denitrification was larger at shallow depths (<30 cm), and neither nitrate nor organic carbon limited denitrification significantly. Some denitrification was measured during winter at depths below 30 cm, suggesting that a reduction of groundwater nitrate could occur in some areas of this riparian forest during the wet period. In summer, low denitrification, together with high mineralization rates, brought about an increase of soil N, which could be leached to the stream channel during rainfall events. This study suggests that Mediterranean riparian soils act as sources or sinks of dissolved nitrogen depending on the period of the year.  相似文献   

10.
华北农区浅层地下水硝酸盐分布特征及其空间差异性   总被引:10,自引:5,他引:5  
华北平原地下水硝酸盐污染备受关注,然而受地貌类型、土地利用、土壤结构、含水层水文地质条件等因素差异性的影响,对区域尺度上农区浅层地下水硝酸盐污染程度和特征尚没有统一定论。本文通过综述过去华北平原地下水硝酸盐污染程度的相关研究,并结合近年来对华北平原农业种植区浅层地下水硝酸盐研究所取得的认识,指出补给源区(太行山低山丘陵区)、山前平原和低平原3个典型地貌类型区浅层地下水硝酸盐研究存在的问题:补给源区土地利用变化多样、土壤和含水层渗透性好,要重视对源区氮输入的控制,加强低山丘陵区气候变化对水文过程和氮迁移过程影响机制的研究;山前平原区是农业高产区,地下水埋深较深且包气带厚度大,较高的浅层地下水硝酸盐浓度除了与点源、污水渗漏以及污水灌溉等直接影响因素有关外,农田过量肥料施用对地下水硝酸盐影响的程度、水氮迁移路径以及未来潜在风险是农区地下水硝酸盐研究中亟需关注的问题;低平原区较细的土壤沉积结构减缓了氮向下迁移的速度,但地下水埋深较浅,二者的制约关系决定了地下水硝酸盐浓度,因此应在理解地表水-土壤-地下水转化关系的基础上评估地下水硝酸盐污染的风险。  相似文献   

11.
王志敏  林青  王松禄  徐绍辉 《土壤》2015,47(3):496-502
以青岛市大沽河下游地区冬小麦–夏玉米轮作农田为对象,通过田间试验和室内分析,研究了不同深度土壤和地下水中NO3–-N在一个轮作周期内的动态变化特征,探讨了不同氮肥施用量和灌溉量对土壤-地下水系统中NO3–-N时空分布的影响,并基于土壤水动力学和溶质运移理论对土壤中NO3–-N运移过程进行了数值模拟。模拟结果表明:小麦季施氮(N)量达到380 kg/hm2,玉米季施氮量达到290 kg/hm2时,季末剖面深度130~160 cm土壤NO3–-N含量超过10 mg/kg;由地下水NO3–-N月累计量估算模型得出,NO3–-N在6月和8月向浅部地下水的淋失量最大,分别为7.20、7.67 mg/L。  相似文献   

12.
This study determined isotopic fractionation of nitrate-nitrogen during denitrification in riparian aquifer sediments by sequential-column experiments at two different water flow rates. The purpose was to discuss the relationships of nitrogen isotopic enrichment factor of denitrification, denitrification rate, and infiltrating condition in sediment. Sandy sediment and groundwater were collected from floodplain in the middle reach of the Tama River where nitrogen isotopic enrichment factor for denitrification had been measured in a result of previous field observation. The denitrification rates and the isotopic enrichment factors of nitrate-nitrogen were estimated at 2.1 mgN dry-kg?1 day?1 and ?32.9‰ during the low water flow condition, and at 3.5 mgN dry-kg?1 day?1 and ?34.1‰ during the high water flow condition. The calculated water flow rates of the present column experiments were 300–400 times higher than that of the field observation. Because of the fast flow rate, nitrate was expected to continuously pass though active denitrifying sites in the small pore spaces of sediment, and nitrate supply to denitrifers by infiltration flow transport greatly exceeded the supply by diffusion. The observed denitrification rates was proportional to Peclet number as the ratio of solute nitrate transport to the diffusion, and apparent nitrogen isotopic enrichment factors during denitrification of our column experiments were lower than those obtained from the field observation. This study showed that denitrification rate and apparent nitrogen isotopic enrichment factor of denitrification in sediment depended on Peclet number.  相似文献   

13.
The effect of chronic high groundwater nitrate loading on riparian forests is poorly understood. The growth patterns of northern white cedar (Thuja occidentalis) and related plant–soil processes were examined at four riparian sites in southern Ontario, Canada which have similar vegetation, soils, and hydrology but have differed in adjacent land use for >60 years. Fertilized cropland at two riparian sites produced groundwater-fed surface flows with high mean NO3–N concentrations of 9 and 31 mg l−1, whereas mean concentrations were <0.5 mg l−1 at two control sites down slope from forest. Tree-ring analysis at the two nitrate-rich sites indicated a positive growth trend in 1980–2004 and an absence of a positive growth trend in the 1945–1970 period that preceded high rates of synthetic nitrogen fertilizer use on cropland. However, a significant increase in growth also occurred in 1980–2004 at the two control riparian sites suggesting that high groundwater nitrate inputs did not influence tree growth. Cedar foliar and litter N content did not differ significantly between the high nitrate and control sites. Litter decomposition rates measured by the litterbag technique at a nitrate-enriched and control site were similar. Litter from a high nitrate and a control site produced a similar rate of potential denitrification in lab incubations of riparian surface peat. This study indicates that prolonged nitrate inputs in groundwater did not increase nitrogen uptake and growth of white cedar or stimulate decomposition and denitrification as a result of changes in the quality of plant material. In the absence of anthropogenic nitrate inputs, riparian wetland soils are typically high in ammonium and low in nitrate, and as a consequence, white cedar may have a limited ability to utilize nitrate.  相似文献   

14.
Riparian zones are important features of the landscape that can buffer waterways from non-point sources of nitrogen pollution. Studies of perennial streams have identified denitrification as one of the dominant mechanisms by which this can occur. This study aimed to assess nitrate removal within the riparian zone of an ephemeral stream and characterise the processes responsible, particularly denitrification, using both in-situ and laboratory techniques. To quantify rates of groundwater nitrate removal and denitrification in-situ, nitrate was added to two separate injection-capture well networks in a perched riparian aquifer of a low order ephemeral stream in South East Queensland, Australia. Both networks also received bromide as a conservative tracer and one received acetylene to inhibit the last step of denitrification. An average of 77 ± 2% and 98 ± 1% of the added nitrate was removed within a distance of 40 cm from the injection wells (networks with acetylene and without, respectively). Based on rates of N2O production in the network with added acetylene, denitrification was not a major mechanism of nitrate loss, accounting for only 3% of removal. Reduction of nitrate to ammonium was also not a major pathway in either network, contributing <4%. Relatively high concentrations of oxygen in the aquifer following recent filling by stream water may have reduced the importance of these two anaerobic pathways. Alternatively, denitrification may have been underestimated using the in-situ acetylene block technique. In the laboratory, soils taken from two depths at each well network were incubated with four nitrate-N treatments (ranging from ambient concentration to an addition of 15 mg N l−1), with and without added acetylene. Potential rates of denitrification, N2O production and N2O:N2 ratios increased with nitrate additions, particularly in shallow soils. Potential rates of denitrification observed in the laboratory were equivalent in magnitude to nitrate removal measured in the field (mean 0.26 ± 0.12 mg N kg of dry soil−1 d−1), but were two orders of magnitude greater than denitrification measured in the field with added acetylene. The relative importance of assimilatory vs. dissimilatory processes of nitrate removal depends on environmental conditions in the aquifer, particularly hydrology and its effects on dissolved oxygen concentrations. Depending on seasonal conditions, aquifers of ephemeral streams like the study site are likely to fluctuate between oxic and anoxic conditions; nevertheless they may still function as effective buffers. While denitrification to N2 is a desirable outcome from a management perspective, assimilation into biomass can provide a rapid sink for nitrate, thus helping to reduce short-term delivery of nitrate downstream. Longer-term studies are needed to determine the overall effectiveness of riparian buffers associated with ephemeral streams in mitigating nitrate loads reaching downstream ecosystems.  相似文献   

15.
本文通过对华北平原典型再生水灌溉区(河北省石家庄洨河流域)的包气带土壤、地表水和地下水进行采样分析,对硝酸盐在多种环境介质中的来源与环境行为进行了研究,识别了再生水灌溉区地下水硝酸盐污染来源,明确了不同灌溉条件对包气带土壤中硝酸盐迁移的影响。在受到城市再生水严重影响的洨河流域,地下水中的硝酸盐浓度分布范围在4.0 mg·L?1到156.6 mg·L?1之间,已经形成了距离河道2 km、深度70 m的硝酸盐高值区域,经过计算硝酸盐的垂向扩散速率为每年1~2 m。硝酸盐与氯离子的相关性表明,城市再生水是再生水灌溉区包气带、地表水和地下水中硝酸盐的主要来源。利用Geoprobe获取利用不同灌溉水农田土壤剖面样品,研究再生水对厚包气带NO3?-N垂向分布影响,再生水灌溉区和地下水灌溉区中包气带土壤的NO3?-N的平均含量为137.0 mg·kg-1和107.7 mg·kg-1,最高含量523.2 mg·L?1和725.9 mg·L?1,分别出现1.20 m和0.85 m深度,分布规律有着明显的差别。包气带土壤硝酸盐与氯离子的相关性分析表明,再生水灌溉区土壤硝酸盐主要来源于城市再生水,而地下水灌溉区可能来源于农田氮肥。地下水年龄和硝酸盐之间关系表明,地下水中1975年以前补给的硝酸盐浓度低于1975年以后补给,地下水硝酸盐污染与包气带氮入渗的历史过程密切相关。在华北平原特殊的地质水文背景下,农田面源污染对地下水的影响有限,但再生水灌溉区地下水硝酸盐污染的风险较高。  相似文献   

16.
In regions with intensive agriculture and shallow hydrological systems, headstreams are often polluted with nitrate even at the springs. In North-West France, nitrate concentration was seen to decrease downstream during baseflow conditions when the stream flows on granite, but this does not occur on schist. In order to explain this difference in behaviour, we analysed the groundwaters and surveyed the redox conditions (using a field test for ferrous iron) in near-bank wet meadows as well as in the hyporheic zone. We show that the wet meadow groundwater was denitrified and that oxygen and nitrate were presentaround the stream channel in a wide zone on granite,compared with a very restricted zone on schist. Ongranite, exchanges between the stream and the hyporheic zone are favoured by sandy or peaty material having high hydraulic conductivity. This gives rise to two processes (1) lateral inflow of denitrified water from wet meadows, (2) in the opposite direction, supply of stream nitrate to denitrification sites in the hyporheic zone. In the second case, a high hydraulic conductivity also reduces the water residence time and limits denitrification, resulting in high levels of oxygen and nitrate. On schist, the low hydraulic conductivity prevents an efficientconnection between surface and subsurface waters.  相似文献   

17.
Poorly constructed wells (leaky or without a gravel pack) and abandoned wells can behave as conduits for the interconnection of aquifers at different depths and facilitate the transfer of contaminants between these aquifers. This is the case with Campo de Cartagena (SE Spain) where the primary land use is intensive irrigated agriculture, along with a high density of wells. The unconfined aquifer is heavily impacted by a high concentration of nitrate associated with agricultural activities. The present work provides a methodological approach to evaluate the impact of the unconfined aquifer on the water quality of the confined aquifer caused by leaky wells in high-density areas of production wells. The research approach included the use of geochemical and isotopic tools; specifically, nitrate was used as a tracer for evaluating the impact, and the code MIX_PROGRAM was used for mixing calculations. Results show an increase of the impact of the unconfined aquifer on the confined aquifer along the groundwater flow direction toward the coast, although this general pattern is controlled by local factors (pumping, intensity of agricultural practices, density of wells, and groundwater residence time).  相似文献   

18.
19.
GIS‐based modeling of soil‐crop interactions and hydrological processes is a valuable instrument to assess land‐use effects on N pollution of water resources from the agricultural sector. A case study is presented using spatial information on soils, climatic zones, land use, and distribution of agri‐environmental measures within the federal State of Brandenburg (Germany) to assess the reduction effect of EU‐funded measures on N pollution of water resources. In a first step, the area was classified concerning the risk for groundwater and surface‐water pollution. For this, spatially distributed model calculations of the soil‐solution exchange frequency were intersected to a vulnerability map for groundwater derived from geological data and zones of different transit times from the root zone into surface waters. In a second step, model calculations of water and N dynamics in the soil‐crop system for different crop and management systems were performed to calculate nitrate leaching from the root zone and to estimate the effect of present agri‐environmental measures to reduce N pollution on groundwater and surface waters. The results indicated that 75% of the agri‐environmental measures were placed in areas with low impact on groundwater and surface waters. Therefore, the effectiveness of the agri‐environmental measures concerning water‐protection aims was moderate.  相似文献   

20.
Wetlands in mountain environments provide critical ecosystem services but are increasingly threatened by agricultural land use intensification. This study evaluates agricultural nonpoint source nutrient pollution transport in a wetland–stream–lake complex in a mountain, tussock grassland catchment in the South Island, New Zealand. Flow and water-quality monitoring in the Lake Clearwater catchment during three flow events from May to August 2010 (autumn high flow, winter low flow, and winter high flow) showed high concentrations and exceedances of water quality guidelines for total nitrogen (TN) and total phosphorus (TP) in small ephemeral streams draining agricultural land during high flows. Concentrations were attenuated through the wetlands to below guidelines, with the exception of TN which still remained slightly higher. Most TN was in the organic form above and below the wetland, suggesting N sources from animal waste/agricultural land and organic material and vegetation within the wetland. Most TP was particulate associated with suspended solids during high flows. Dissolved forms of N and P generally were below guidelines. Flows and loads (instantaneous and daily) increased at the lake outlet during winter high flow, indicating unaccounted sources to the lake from groundwater, the wetlands, or the lake sediments, and seasonal N saturation. Infiltration losses to shallow groundwater along the main perennial tributary likely re-appear as discharge to the wetlands and lake downstream. Surface–groundwater interactions play a dominant role in N transport to the wetland complex due to highly permeable soils and glacial alluvial deposits. Loads and unit loads of TN and TP were also elevated in the ephemeral streams. Results show that TN and TP concentrations and unit loads during high flows in ephemeral streams in this mountain grassland catchment are similar to, or higher than, values for impacted lowland pasture catchments. Although impacts to the wetland ecosystem have not been observed to date, the lake is shifting toward a mesotrophic state, and further research is needed to elucidate impacts of nutrient loads and help meet conservation and restoration goals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号