首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to determine whether an antiestrogen (enclomiphene) would shorten the interval to first estrus and conception in postpartum beef cows. Sixty postpartum Angus beef cows were stratified by age, body condition, and calving date and were randomly assigned to one of two treatment groups. Group 1 cows (n = 24) received three silastic implants, each containing 150 mg of enclomiphene, on d 20 postpartum. Implants were removed on d 30 postpartum. Group 2 cows (n = 28), received empty implants and served as controls. Cows were artificially inseminated at first detected estrus. Estrus detection and ovulation were further verified by increased serum progesterone. Concentrations and pulse frequencies of LH were determined from blood samples collected at 15-min intervals for 6 h on d 20, 25, 30, and 40 postpartum. Hypothalami and pituitaries were collected from four cows in each treatment group on d 30 postpartum and analyzed for concentrations of estradiol receptors. Concentrations of total and unoccupied hypothalamic and pituitary estradiol receptors were reduced by enclomiphene. Neither concentrations nor pulse frequencies of LH differed significantly between treatment groups on any of the 4 d. Days to first estrus did not differ (P greater than .05) between enclomiphene-treated (57 +/- 6; n = 24) and control (56 +/- 4; n = 28) cows. Days to conception did not differ between treated (81 +/- 9) and control (79 +/- 8) cows. The dose of enclomiphene used in this study reduced hypothalamic and pituitary estrogen receptors but did not alter secretion of LH or days to first estrus in the postpartum beef cow.  相似文献   

2.
Seventy-seven multiparous beef cows (Hereford and Angus x Hereford) with thin to moderate BCS at calving were used to evaluate the effects of body condition at parturition and BW change after calving on duration and occurence of luteal activity before and after first estrus. Blood samples were collected twice weekly after parturition to determine the occurrence of the first postpartum luteal activity (LA, progesterone > or = 0.5 ng/mL). Weight changes and BCS were determined at 2-wk intervals. Cows were exposed to bulls and observed twice daily for behavioral estrus. Luteal activity was classified as normal if plasma concentrations of progesterone were > or = 0.5 ng/mL for at least 11 d, or short if concentrations of progesterone were > or = 0.5 ng/mL for 10 d or less. The interval from parturition to first normal LA was shorter (P < 0.001) for moderate condition (BCS > or = 4.5) than for thin (BCS < or = 4) cows (58.3 +/- 3.2 vs. 93.3 +/- 5.1 d, respectively). Interval to first estrus also was shorter (P < 0.001) for moderate than for thin cows (53.3 +/- 3.7 vs. 89.3 +/- 5.6 d, respectively). Before the first normal LA, 78% of cows had an increase in progesterone for < 11 d. Postpartum weight change and BCS at calving did not influence the incidence of estrus associated with first normal LA. After the first estrus, 72% of cows had normal LA, 16% had a short luteal phase, and 12% lacked LA. Postpartum weight change and BCS did not influence the length of LA associated with the first estrus. Cows with normal LA had increased (P < 0.05) maximal concentrations of progesterone compared with cows that had a short luteal phase. When a transient increase in progesterone occurred before first behavioral estrus, 81% of cows had normal luteal function after estrus. We conclude that when beef cows are in thin to moderate body condition at calving, postpartum BW change and BCS at calving do not influence the duration of luteal activity before or after the first postpartum estrus.  相似文献   

3.
The effects of estradiol-17beta (E-17beta) or estradiol benzoate (EB) on gonadotrophin release, estrus and ovulation in beef cattle were evaluated in two experiments. In experiment 1, 16 ovariectomized cows received a previously used CIDR insert from days 0 to 7 and 1mg of EB on day 8; they also received 5mg of E-17beta on days 0 or 1, or 5mg of E-17beta+100mg of progesterone on day 0. There was only an effect of time (P<0.0001) on plasma concentrations of progesterone, estradiol, FSH, and LH. Following treatment with E-17beta, plasma FSH concentrations were suppressed for approximately 36 h, whereas plasma LH concentrations were reduced (P<0.05) for 6 h, but surged within 24 h. Injecting 1mg of EB 24 h after CIDR removal decreased (P<0.02) plasma LH concentrations for 6h, followed by an LH surge at 18 h. In experiment 2, ovary-intact heifers (n=40) received a used CIDR and 5mg of E-17beta+100mg of progesterone on day 0. On day 7, CIDR were removed, PGF given, and heifers received nothing (control) or 1mg of EB 12, 24, or 36 h later. In these groups, plasma LH peaked (mean+/-SEM) 78.0+/-23.0, 37.8+/-8.5, 44.4+/-10.3, and 51.0+/-5.1 h after CIDR removal (means, P<0.001; variances, P<0.001) and intervals from CIDR removal to ovulation were 102.0+/-6.7, 63.6+/-3.6, 81.6+/-3.5, and 78.0+/-4.1h (P<0.05). The interval from CIDR removal to ovulation was shorter and less variable in EB-treated groups; the interval from EB to ovulation was shortest (P<0.05) in the 12-h group. In summary, E-17beta or EB decreased both FSH and LH, but LH increased after 6h (despite elevated progesterone concentrations). Following CIDR removal, 1mg of EB effectively synchronized LH release, and ovulation (in intact cattle), but the interval from CIDR removal to EB treatment affected the time of ovulation.  相似文献   

4.
The effect of implants of estradiol on initiation of ovarian cycles postpartum was studied in 201 anestrous beef cows. Cows from four farms were used over a 2-yr period in a 2 x 3 factorial arrangement of treatments with estradiol implants and stage postpartum as main effects. Cows were assigned at random within date of calving within farm to receive an ear implant containing estradiol-17 beta (24 mg) for 21 d or to serve as controls. Stages postpartum at implantation were divided into less than or equal to 25, 26 to 39, and greater than or equal to 40 d, three stages that should reflect potential changes in hypothalmic-hypophysial sensitivity to estradiol. Blood samples for determination of progesterone were obtained and rectal examinations of the ovaries performed at implant insertion, 14 d after insertion, at implant removal (d 21), and 14 d after removal (d 35) to assess ovulatory response to treatment. Circulating concentrations of estradiol on d 14 of treatment averaged 3.2 +/- 1.0 and 23.1 +/- 4.7 pg/ml for control and estradiol-treated cows, respectively. Compared with control cows, treatment with estradiol initiated after d 26 postpartum increased the proportion of cows that ovulated during the experimental period. No differences were seen in the average days postpartum when cows were first determined to have ovulated.  相似文献   

5.
Twelve anestrous, postpartum beef cows were used to determine the effect of calf removal on the effect of naloxone on serum luteinizing hormone (LH) concentrations. On d 1, six cows were injected iv with saline and six with 200 mg naloxone dissolved in saline. Blood samples were taken at 15-min intervals for 2 h before and 2 h after naloxone or saline administration. At the beginning of blood sampling, calves were removed from three cows in each treatment. At 48 h after calf removal (d 3), all cows were injected iv with 200 mg naloxone and blood samples were collected as on d 1. On d 1, naloxone treatment increased (P less than .01) serum LH concentrations from 1.2 +/- .3 ng/ml at time 0 to 4.3 +/- .6 ng/ml and 4.7 +/- .8 ng/ml at 15 and 30 min, respectively. Injection of saline had no effect on serum LH concentrations. Forty-eight-hour calf removal increased (P less than .01) serum LH concentrations in five of six cows (1.7 +/- .8 vs 4.4 +/- 1.2 ng/ml). Naloxone treatment failed to increase serum LH concentrations in these cows. Injection of naloxone increased (P less than .01) serum LH concentrations in the one cow that did not exhibit an LH increase after calf removal and in six cows whose calves were not removed (1.4 +/- .2 vs 4.4 +/- .5 ng/ml). The present study provides additional evidence that endogenous opioids regulate LH in the postpartum beef cow. We hypothesize that suckling stimulates an opioid inhibition of LH secretion and removal of the suckling stimulus removes the opioid inhibitory tone.  相似文献   

6.
Previous studies have indicated that initiation of standing estrus within 24h of fixed-time AI influenced pregnancy rates. Furthermore, uterine environment at time of insemination can influence sperm transport. We hypothesized that preovulatory concentrations of estradiol would influence uterine pH at time of insemination. The objective of this study was to determine the influence of elevated preovulatory concentrations of estradiol on uterine pH following a fixed-time AI protocol. Cows were synchronized with the CO-Synch (n=57) protocol, and 29 cows were treated with an injection of estradiol cypionate (ECP; 1mg) 36h before the second injection of GnRH. Cows that exhibited standing estrus or were treated with ECP had increased (P<0.05) concentrations of estradiol compared to cows not in estrus and not administered ECP, respectively. There was an ECP by standing estrus interaction on uterine pH (P=0.01). Control cows that exhibited estrus had a reduced uterine pH (6.72+/-0.10; P=0.05) compared to control cows not exhibiting estrus (7.0+/-0.06). Cows treated with ECP and detected in standing estrus had a greater uterine pH (7.0+/-0.07) compared to control cows in estrus (P=0.02) and ECP cows not in estrus (6.81+/-0.09; P=0.06). The interval between the initiation of standing estrus and when pH was determined also influenced uterine pH. Cows that initiated standing estrus within 4h of pH determination had a lower uterine pH (6.74+/-0.12) compared to cows that initiated estrus 4-8h (7.09+/-0.08; P=0.07) or 8-12h (7.10+/-0.15; P=0.03) after pH determination. In summary, elevated concentrations of estradiol influenced standing estrus but only influenced uterine pH when pH was determined within 4h of the initiation of standing estrus.  相似文献   

7.
The effect of bull exposure on the resumption of estrous activity following parturition was studied in an experiment using mature Hereford and Hereford X Angus beef cows. In the spring of 1981 and 1982, cows were assigned by breed and calving date to one of two treatment groups. Cows were exposed to bulls either from 3 to 85 d postpartum (BE; n = 45, 1981; n = 35, 1982) or from 53 to 85 d postpartum (NE; n = 39, 1981, n = 36, 1982). Blood samples were collected from all cows once weekly from calving until 85 d postpartum to determine progesterone concentrations. The first increase in progesterone, which indicated onset of estrous cycles occurred at 43 +/- 2 vs 63 +/- 2 d (P less than .01) in 1981 and at 39 +/- 2 vs 61 +/- 3 d (P less than .01) postpartum in 1982 in BE cows and NE cows, respectively. Early postpartum exposure of cows to bulls reduced the postpartum anestrous interval.  相似文献   

8.
The influences of body condition score (BCS) at calving and postpartum nutrition on endocrine and ovarian functions, and reproductive performance, were determined by randomly allocating thin (mean BCS = 4.4 +/- 0.1) or moderate condition (mean BCS = 5.1 +/- 0.1) Angus x Hereford primiparous cows to receive one of two nutritional treatments after calving. Cows were fed to gain either 0.45 kg/d (M, n = 17) or 0.90 kg/d (H, n = 17) for the first 71 +/- 3 d postpartum. All cows were then fed the M diet until 21 d after the first estrus. A replication (yr 2; M, n = 25; H, n = 23) was also used to evaluate reproductive characteristics. Concentrations of IGF-I, leptin, insulin, glucose, NEFA, and thyroxine were quantified in plasma samples collected weekly during treatment and during 7 wk before the first estrus. Estrous behavior was detected by radiotelemetry, and luteal activity was determined based on concentrations of progesterone in plasma. All cows were bred by AI between 14 and 20 h after onset of estrus, and pregnancy was assessed at 35 to 55 d after AI by ultrasonography. Cows that calved with a BCS of 4 or 5 had similar endocrine function and reproductive performance at the first estrus. During treatment, H cows gained BW and increased BCS (P < 0.01), and had greater (P < 0.05) concentrations of IGF-I, leptin, insulin, glucose, and thyroxine in plasma than M cows. However, during the 7 wk before the first estrus, plasma concentrations of IGF-I, leptin, insulin, glucose, NEFA, and thyroxine were not affected by time. Cows previously on the H treatment had a shorter (P < 0.01) interval to first postpartum estrus and ovulation, and a larger dominant follicle (P < 0.01) at first estrus, than M cows, but duration of estrus and the number of mounts received were not influenced by nutrient intake. Pregnancy rate at the first estrus was greater (P < 0.03) for H (76%, n = 38) than for M (58%, n = 33) cows. Increased nutrient intake after calving stimulated secretion of anabolic hormones, promoted fat deposition, shortened the postpartum interval to estrus, and increased pregnancy rate at the first estrus. Concentrations of IGF-I and leptin in plasma were constant during 7 wk before the first estrus, indicating that acute changes in these hormones are not associated with the resumption of ovarian function in primiparous beef cows.  相似文献   

9.
Two trials were conducted in which Angus x Hereford first-calf cows were assigned randomly at calving to one of two treatments: exposure to mature penile-blocked bulls (BE) or isolation from bulls (NE). In Trial 1 (BE, n = 38; NE, n = 37), cow to bull ratio increased from 12:1 to 19:1 over a 14-d period; in Trial 2 (BE, n = 25; NE, n = 24), this ratio was maintained at 13:1. In both trials, blood samples were collected weekly for progesterone and ovaries and uteri of cows were examined rectally. Cows were observed for estrus twice daily (am:pm) beginning 10 d after calving. In Trial 2, intensive blood sampling for LH began 10 d after calving (eight cows per treatment) and continued at weekly intervals until estrus or the end of the trial. Postpartum weight change, condition score change and time to uterine involution did not differ (P greater than .10) between treatments in either trial. Interval to estrus was shorter (P less than .05) for BE cows than for NE cows in both trials. A greater proportion (P less than .05) of BE cows exhibited estrus by 60 and 90 d after calving and showed an increase in progesterone before first estrus. Mean and baseline LH concentrations and amplitude, frequency and duration of LH pulses were not altered (P greater than .10) by bull exposure. In conclusion, exposing first-calf suckled beef cows to bulls after calving hastened resumption of estrous cycles. Bull exposure did not alter patterns of LH concentrations but did increase proportions of cows that showed increased progesterone before first estrus.  相似文献   

10.
Cows that exhibit estrus within 24 h of fixed-time AI have elevated concentrations of estradiol and greater pregnancy rates compared with cows not in estrus. Our objective was to determine whether estradiol, estrus, or both had an effect on uterine pH during a fixed-time AI protocol. Beef cows were treated with the CO-Synch protocol (100 mircog of GnRH on d -9; 25 mg of PGF(2alpha) on d -2; and 100 mircog of GnRH on d 0). One-half of the cows received an injection of estradiol cypionate (ECP; 1 mg) 12 h after PGF(2alpha). Cows detected in standing estrus within 24 h of the second GnRH injection were considered to be in standing estrus. Uterine pH was determined in all animals 12, 24, and 48 h after the PGF(2alpha) injection. For Exp. 1, pH was also determined 72 and 96 h after the PGF(2alpha) injection; in Exp. 2, pH was also determined at 54, 60, 66, 72, 78, 84, 90, and 96 h after the PGF(2alpha) injection or until ovulation. A treatment x time interaction (P < 0.01) influenced concentrations of estradiol. All cows had similar (P > 0.15) concentrations of estradiol at the time of ECP administration, but after ECP treatment all cows treated with ECP and control cows that exhibited estrus had greater (P < 0.01) concentrations of estradiol compared with nontreated cows that did not exhibit estrus. In all animals, estradiol diminished 48 h after the PGF(2alpha) (time of the second GnRH injection), but ECP-treated cows, regardless of estrus, had elevated (P < 0.02) concentrations of estradiol compared with control cows. There was a treatment x time interaction (P < 0.001) on uterine pH. All cows had similar uterine pH (P > 0.19) 24 h after the PGF(2alpha) injection. Control cows that did not exhibit estrus had a greater uterine pH compared with control cows that exhibited estrus (P < 0.01) and ECP cows that exhibited estrus (P = 0.05) 48 h after the PGF(2alpha) injection (7.0 +/- 0.1 vs. 6.7 +/- 0.1 and 6.8 +/- 0.1, respectively). Estradiol cypionate-treated cows not exhibiting estrus were intermediate (6.8 +/- 0.1; P > 0.05). All cows had similar uterine pH 72 h after the PGF(2alpha) injection through ovulation (P > 0.06). In summary, uterine pH was similar among all animals that exhibited estrus, regardless of treatment with ECP.  相似文献   

11.
Crambe meal was compared to a combination of sunflower and soybean meal as a protein supplement for mature beef cows in two experiments. In Exp. 1, cows (n = 80, average BW 651+/-14.4 kg) were fed crambe meal at 9.86% of dry matter intake (DMI) during the last trimester of gestation. No differences (P < .05) were detected due to treatment for cow weight, condition score, thyroid hormones, calf birth weight, or calving interval. In Exp. 2, cows (n = 100, average BW 566+/-6.82 kg) were fed crambe meal at 7.44% of DMI during the last trimester of gestation and at 8.33% of DMI during early lactation (53+/-6 d of lactation). Gains were greater during gestation (P = .09) and throughout the supplementation period (P = .06), and days to first estrus were reduced (P < .01) for cows fed crambe meal. During lactation, serum triiodothyronine (T3) concentrations did not decline as much (P = .03) in cows fed crambe meal as in cows fed sunflower-soybean meal-based supplements. No differences (P > .10) were apparent for condition score, birth weight, calf growth rate, weaning weight, thyroid hormones during gestation, or calving interval. These data indicate that crambe meal fed at the levels used in this experiment can be used as a protein supplement for beef cows without negatively affecting cows' performance.  相似文献   

12.
The effect of the uterus on luteal lifespan and pattern of secretion of progesterone following early weaning of calves from anestrous beef cows was studied. Calves were weaned from 15 anestrous beef cows 23 to 33 d postpartum, and cows were allotted to a control (sham surgery, n = 8) or a hysterectomy (n = 7) group, with surgery performed at weaning. Cows in the hysterectomy group were injected (im) with 25 mg prostaglandin F2 alpha (PGF2 alpha) approximately 20 d after first estrus (d 0). The interval from weaning to estrus was longer (P less than .05) for the hysterectomy group (10.4 +/- 1.6 d) than the control group (6.2 +/- .5 d). In the control group, the first estrous cycle (8.8 +/- .3 d) was shorter (P less than .01) than the second estrous cycle (20.2 +/- .5 d). Following first estrus in the hysterectomy group, cows were not detected in estrus until after injection of PGF2 alpha and did not return to estrus. From d 0 to 5, mean concentrations of plasma progesterone were similar (P greater than .05) between groups for both estrous cycles; after d 5 of estrous cycle 1, concentrations of plasma progesterone decreased in the control group. Within the hysterectomy group, the pattern of secretion of progesterone from d 0 to 16 was similar after the first and second estrus. Furthermore, there was no difference in the pattern of secretion of progesterone from d 0 to 16 between hysterectomy (first or second estrous cycles) and control (second estrous cycle) groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Mature beef cows were slaughtered at 5 (n = 6), 10 (n = 6), 20 (n = 6) or 30 (n = 5) d after calving to identify endocrine events that may affect the duration of postpartum anestrus. Additional cows (n = 6) were slaughtered 12 to 14 d after their first postpartum estrus (luteal phase cows). Anterior pituitary concentrations of luteinizing hormone (LH) were low at d 5 (383 +/- 69 micrograms/g), averaged 445 +/- 103 and 682 +/- 207 micrograms/g at d 10 and 20, respectively, and were elevated (P less than .05) by d 30 (1,097 +/- 174 micrograms) to a concentration similar to luteal phase cows (1,208 +/- 148 micrograms/g). Concentrations of follicle-stimulating hormone (FSH) averaged 12.4 +/- 1.1, 9.6 +/- 2, 8.6 +/- 1.8 and 7.4 +/- 3.3 mg/g at d 5, 10, 20 and 30, respectively. Affinity (1.6 +/- .2 X 10(9) M-1) of anterior pituitary receptors for the GnRH (gonadotropin-releasing hormone) analog (DAla6; des-Gly10, [D-Ala6]-LH-RH ethylamide) and weights (2.1 +/- .1 g) of the anterior pituitaries did not differ among groups (P greater than .05). Number of receptors for GnRH averaged 37 +/- 7, 39 +/- 9, 25 +/- 5 and 23 +/- 5 X 10(-14) M/mg protein at d 5, 10, 20 and 30, respectively. Anterior pituitaries from luteal phase cows contained 22 +/- 2 X 10(-14) M/mg protein of receptors for GnRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Gilts bred at first (n = 18) and third (n = 18) estrus were assigned in replicates of equal numbers to be slaughtered on d 3, 15 and 30 post-mating to assess fertilization rate, embryonic losses and serum concentrations of estrogen (estradiol-17 beta + estrone) and progesterone. Mean number of ovulations was lower among gilts bred at first vs third estrus (12.2 vs 14.5; P less than .05), with no difference in fertilization rate (100 vs 98%). Embryonic survival was lower (P less than .05) among gilts bred at first vs third estrus on d 15 (78.1 vs 95.4%) and 30 (66.7 vs 89.4%) of gestation. Serum estrogen (pg/ml) and progesterone (ng/ml) levels, although lower in gilts bred at first vs third estrus, were not significantly different at the three stages of gestation studied. The ratio of progesterone to estrogen in gilts bred at first estrus was higher than in those bred at third estrus on d 15 (439 +/- 71 vs 210 +/- 17) and 30 (597 +/- 106 vs 179 +/- 50), but was lower on d 3 (187 +/- 37 vs 444 +/- 123; stage of gestation X estrous period interaction, P less than .05). These data suggest that changes in the ratio of systemic levels of estrogen and progesterone may be related to early embryonic mortality in gilts bred at pubertal estrus.  相似文献   

15.
A 2-yr study using primiparous and multiparous, spring-calving, crossbred beef cows was conducted to evaluate the effects of supplemental whole corn germ on reproductive performance, calf performance, and serum leptin concentrations. Each year, cows were blocked by age and BCS and assigned randomly to one of three treatments: PRE (n = 115) cows received 1.14 kg/d (DM basis) of whole corn germ for approximately 45 d before calving; POST (n = 109) cows were fed 1.14 kg/d of whole corn germ for approximately 45 d after calving; and control cows (n = 118) were fed similar energy and protein from dry-rolled corn (1.82 kg of DM/d) for 45 d before and after calving. Additionally, PRE cows were grouped with controls after calving, and POST cows were grouped with control cows before calving, so that corn germ-supplemented cows received the control supplement in the alternate feeding period. Cow BW (538 +/- 13 kg) and BCS (5.4 +/- 0.13) did not differ among treatments at any time during the experiment. Calf birth weight (39 +/- 2 kg), weaning weight (225 +/- 7 kg), and age-adjusted weaning weight (234 +/- 8 kg) did not differ because of dam supplementation regimen. Treatment did not affect the proportion of cows exhibiting ovarian luteal activity before the start of the breeding season (67%) or pregnancy rate (91%). The interval from exposure to bulls until subsequent calving did not differ (P = 0.16) among PRE (298 +/- 2.3 d), POST (303 +/- 2.6 d), and control (304 +/- 2.3 d) cows. Leptin concentrations did not differ among treatments and were 2.15 +/- 0.75, 1.88 +/- 0.76, and 1.91 +/- 0.75 ng/mL for control, POST, and PRE cows, respectively. Age and week relative to calving influenced leptin concentration. Primiparous cows had similar leptin concentrations to 3-yr-old and mature cows for wk -7 and -6 relative to calving, but lower (P < 0.10) concentrations than mature cows for wk -5, and lower (P < 0.05) concentrations than either 3-yr-old or mature cows for wk -4 to +7 relative to calving. Serum leptin was correlated with BCS (P < 0.0001; r = 0.35) at initiation of the feeding period and was correlated with BCS (P = 0.02; r = 0.12) and weight (P < 0.01; r = 0.14) at the completion of the supplement period, but it was not correlated with initial BW or interim BCS. Calving interval was not correlated (P > 0.12) with weekly measures of serum leptin concentration. Supplementing beef cows with whole corn germ had no effect on cow performance, calf performance, or serum leptin concentrations of cows.  相似文献   

16.
The effects of calf isolation and restricted suckling on LH pulse characteristics and interval to first ovulation (postpartum interval) were studied in 52 multiparous beef cows, with or without exogenous progesterone. At 30 d postpartum, cows were randomly allocated to one of four treatments (n = 13/treatment): 1) Ad lib, ad libitum access of cows to calves; 2) CI/RS, calf isolation/restricted suckling, where suckling was restricted to once daily; 3) CI/RS+P4, same as CI/RS but cows received an intravaginal progesterone-releasing device at calf isolation for 6 d; or 4) CI/RS+P4+E2, as CI/RS+P4 but the intravaginal progesterone-releasing device had a 10-mg estradiol capsule attached. Daily ovarian scanning and twice-daily blood sampling were performed from d 25 postpartum until the day of second ovulation. A random sample of cows from each treatment (n = 31 in total) were blood-sampled at 15-min intervals for 10 h on d 29, 32, 35, and 38. Ovulatory response to treatment was regarded as ovulation of either the dominant follicle growing at d 30 or the subsequent DF. There was a treatment x day effect (P = .09) on LH pulse frequency, but neither progesterone (CI/ RS+P4) nor progesterone and estradiol (CI/RS+P4+E2) treatment suppressed the calf isolation/restricted suckling-induced increase in LH pulse frequency. The estradiol capsule (CI/RS+P4+E2) delivered sufficient estradiol to delay new follicle wave emergence (treatment x stage; P < .001) and the associated preemergence increase in concentrations of FSH (treatment, P < .05) in cows treated at the postselection stage of follicle wave development, prolonging dominance of the dominant follicle present at treatment initiation (P < .001). The number of cows that ovulated in response to treatment was greater (P < .001) in cows with calf isolation/restricted suckling than in cows suckled ad libitum. Hence, cows assigned to the Ad lib treatment had a longer postpartum interval (P < .001) than cows of the other treatments. Exogenous progesterone treatment increased the frequency of cows exhibiting clinical signs of estrus at first ovulation (P < .001) and reduced the frequency of short estrous cycles (P < .001). We conclude that, in beef cows with calves, a 6-d progesterone treatment does not suppress the calf isolation/restricted suckling-induced increase in LH pulse frequency. Hence, on progesterone withdrawal, the LH pulse frequency is sufficient to stimulate first ovulation, accompanied by overt estrous expression and elimination of a short estrous cycle in most cows.  相似文献   

17.
Objectives were to determine effects of lasalocid on reproductive performance and serum concentrations of leptin and IGF-I, and to correlate concentrations of leptin and IGF-I with reproductive performance of beef cows. Forty-one purebred, multiparous Brahman cows were blocked to control (C; n = 20) or lasalocid (L; n = 21) treatments by BW, BCS, and predicted calving date. Treatment began 21 d before expected calving. Cows were each fed 1.4 kg daily of an 11:1 corn:soybean meal supplement, with the L group receiving 200 mg of lasalocid/cow daily. Cows and calves were weighed, and cow BCS was assessed at calving and at 28-d intervals thereafter. Blood samples were collected weekly precalving, at parturition, and twice weekly thereafter. Sterile marker bulls were maintained with cows for estrous detection. Six days after estrus, ovaries were evaluated for corpus luteum formation, and blood samples from d 6, 7, and 8 after estrus were collected. Serum samples were assayed for progesterone (P4), IGF-I, and leptin concentration. Progesterone concentrations > 1 ng/mL were considered indicative of a functional corpus luteum. Treatment ended after completion of a normal estrous cycle, and cows removed from treatment were placed with a fertile bull equipped with a chinball marker. There were no treatment differences in calving date, calf sex, cow BW, BCS, calf BW, calf ADG, or in serum concentrations of P4, IGF-I, or leptin. Prepartum cow ADG was increased (P < 0.01) in L cows and tended (P < 0.011) to be increased from calving to d 56 after calving in L cows. Postpartum interval (PPI) was not affected by treatment; however, a greater percentage (P < 0.05) of L cows conceived by 90 d after calving (43% L vs. 15% C). First-service conception rate tended (P < 0.08) to be greater in L vs. C cows (68 vs. 40%), but pregnancy rate was not different (P < 0.12; 86% for L vs. 65% for C). There were no treatment differences (P > 0.18) for serum IGF-I concentrations. At calving, leptin was positively correlated with IGF-I (P < 0.04; r = 0.32), BCS (P < 0.06; r = 0.29), and cow BW (P < 0.02; r = 0.36), and was negatively correlated with PPI (P < 0.06; r = -0.29). These results provide evidence that feeding an ionophore before calving and during the postpartum period may increase the number of cows that rebreed to maintain a yearly calving interval. Cows with higher concentrations of leptin postpartum may exhibit shorter PPI.  相似文献   

18.
The objective of these studies was to evaluate whether exposing primiparous, suckled beef cows to the biostimulatory effect of bulls alters breeding performance associated with an estrus synchronization protocol that included GnRH followed 7 d later by PGF(2alpha) and fixed-time AI (TAI). This was a composite analysis of 3 experiments that evaluated (1) the effects of bull exposure at different days after calving (yr 1); (2) the biostimulatory effects of bull excretory products (yr 2); and (3) the biostimulatory effects of familiar and unfamiliar bulls (yr 3) on the resumption of ovarian cycling activity. In all studies, cows were exposed (biostimulated; n = 94) or not exposed (nonbiostimulated; n = 67) to bulls or excretory products of bulls for at least 60 d before the beginning of the estrus synchronization protocol. Average calving day did not differ among years and was 52 +/- 5 d. Year did not affect the proportions of biostimulated and nonbiostimulated cows that were cycling at the beginning of the estrus synchronization protocol; however, a greater (P < 0.001) proportion of biostimulated than nonbiostimulated cows were cycling at this time. In each year, cows were given GnRH followed by PGF(2alpha) 7 d later. Cows were observed for estrus twice daily (am and pm) after PGF(2alpha). Cows that exhibited estrus before 54, 60, and 64 h after PGF(2alpha) were inseminated by AI 12 h later in yr 1, 2, and 3, respectively. Cows that failed to show estrus were given GnRH and TAI at 62, 72, and 72 h after PGF(2alpha) in yr 1, 2, and 3, respectively. Conception rates were determined by transrectal ultrasonography 35 d after TAI in each year. The percentages of cows that exhibited estrus after PGF(2alpha) and before TAI, the interval from PGF(2alpha) to estrus, and the percentages of cows inseminated 12 h after estrus or at TAI did not differ between biostimulated and nonbiostimulated cows and were 51%, 54.7 +/- 7.3 h, 35%, and 65%, respectively. Conception rates for cows bred by AI 12 h after estrus did not differ between biostimulated and nonbiostimulated cows; however, the TAI conception rate was greater (P < 0.05) for biostimulated cows (57.6%) than for nonbiostimulated cows (35.6%). We conclude that TAI conception rates in an estrus synchronization protocol that includes GnRH followed 7 d later by PGF(2alpha) may be improved by the biostimulatory effect of bulls in postpartum, primiparous cows.  相似文献   

19.
Acute changes associated with removal of the inhibition of estrus caused by suckling were examined in beef cows. Calves were weaned during the fifth week after parturition and cows were slaughtered at 0 (n = 8), 36 (n = 8) or 72 h (n = 8) after calf removal. Tissues of preoptic area (POA), hypothalamus (HYP), pituitary stalk-median eminence (SME) and pituitary neurointermediate lobe (NIL) were obtained for analyses of luteinizing hormone-releasing hormone (LHRH) and four opioid neuropeptides. In addition, one-half of each SME was superfused in vitro for measurement of basal and potassium-induced release of LHRH. The following opioid neuropeptides were quantified: methionine-enkephalin (Met-Enk), beta-endorphin (beta-EP), dynorphin-A, 1-17 (DYN-17) and dynorphin-A, 1-8 (DYN-8). All four opioid neuropeptides were most concentrated in the pituitary NIL. Luteinizing hormone-releasing hormone was most concentrated in the SME tissue, which also contained substantial concentrations of Met-Enk and beta-EP, but very little DYN-17 or DYN-8. In addition, weaning increased the weight of NIL between 0 and 36 h (P less than .05), and the concentrations of LHRH, Met-Enk, and DYN-17 in the combined POA + HYP (P less than .05) tissue between 36 and 72 h. No differences occurred among groups in SME content of LHRH or in vitro release of LHRH from the superfused SME. Although they were not affected by weaning, within-cow correlations among parameters revealed that: 1) concentrations of DYN-17 and DYN-8 were always positively correlated (P less than .05); 2) concentrations of LHRH were positively correlated with Met-Enk (P less than .01), beta-EP (P less than .05) and DYN-17 (P less than .05) in the combined POA + HYP tissue; 3) LHRH concentrations in SME tissue were negatively related to POA + HYP concentrations of Met-Enk (P less than .01) and beta-EP (P less than .05), but not of LHRH or DYN-17 and 4) in vitro release of LHRH from the pituitary SME was correlated with concentrations of DYN-8 in various tissues including the SME (P less than .01). In summary, bovine neural tissues differ widely in concentrations of the four opioid neuropeptides with NIL tissue having the greatest concentrations. Weaning calves at 36 and 72 h before slaughter caused parallel changes in LHRH, Met-Enk and DYN-17 in preoptic and hypothalamic tissues.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Early weaning of calves from anestrous cows results in formation of short-lived corpora lutea (CL) unless the animals are pretreated with a progestagen (norgestomet). This study was conducted to investigate the relationship between pre- and post-ovulatory gonadotropin secretion and luteal lifespan. Postpartum beef cows were assigned randomly into two groups, control (n = 5) and norgestomet (implant given at weaning for 9 d; n = 7). Calves from all cows were weaned 30 to 33 d postpartum. Coccygeal artery cannulas were placed into cows in the control group 1 d prior to weaning and 2 d before implant removal in cows in the norgestomet group. Plasma for determination of luteinizing hormone (LH), follicle stimulating hormone (FSH), estradiol-17 beta (E) and progesterone (P) was collected daily at 10-min intervals for 6 h from weaning (control) or the day prior to implant removal (norgestomet) to estrus (d 0) and on d 2, 4 and 6 following estrus. Average interval (X +/- SE; P less than .05) from weaning to estrus or implant removal was 4.2 +/- .8 and 2.3 +/- .2 d for the control and norgestomet groups, respectively. Estrous cycle length for the control group was 12.4 +/- 1.8 d compared with 20.4 +/- .3 d for the norgestomet group (P less than .05). Four of five control cows had an estrous cycle length of 7 to 14 d; all cows in the norgestomet group and the remaining control cow had an estrous cycle of normal length (16 to 21 d).2+ estrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号