首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
针对如何实现快速、高效的采摘,提出机器人智能采摘实验平台系统,该采摘机器人依靠视觉反馈控制来识别采摘物的位置。研究机器人手臂的运动控制,构建机器人的运动学模型。分析机械手的视觉伺服控制问题,直接将图像位置误差矢量映射到所需的末端执行器速度矢量。对机器人智能采摘进行试验分析,试验任务进行171次,准确率94.67%。试验结果验证该视觉伺服控制方法在实际场景中对采摘物识别效率,提高视觉伺服系统的鲁棒性和有效性。  相似文献   

2.
采摘机器人视觉伺服策略研究——基于回归数据挖掘的   总被引:2,自引:0,他引:2  
为了实现采摘机器人的准确抓取控制、路径识别和自主导航功能,提出了一种基于回归数据挖掘计算模型的机器人视觉伺服控制系统。首先利用双目相机获取果实图像,然后利用拉普拉斯变换和高斯滤波方法对图片进行平滑和增强处理,并利用Canny算法对图像边缘进行检测和分割处理,完成图像的预处理。对图像进行目标识别,提取图像的特征,并采用回归数据挖掘方法对滤波图像进行检验,最终通过计算得到果实图像的中心位置,将中心位置利用控制器反馈给控制中心,控制中心发出指令,控制末端执行器完成果实的采摘作业。对机器人视觉伺服系统进行了测试,结果表明:利用采摘机器人视觉伺服系统可以准确地计算果实的中心位置,实测位置和计算位置的吻合程度较高,视觉伺服系统的计算的稳定性较好。  相似文献   

3.
针对现有采摘机器人的识别-采摘精度与效率偏低等问题,开展了采摘机器人深度视觉伺服手-眼协调规划研究。开发了在手RealSense深度伺服的小型升降式采摘机器人,进行了采放果的工作空间与姿态分析,针对“眼在手上”模式建立了手-眼协调的坐标变换模型。对采摘机器人提出了基于在手RealSense深度伺服的由远及近手眼协调策略,并根据RealSense与机械臂参数完成了基于深度视觉的远近景协调关键点间分段动作规划。手眼协调采摘试验表明,末端在X、Y、Z方向的平均定位精度为3.51、2.79、3.35mm,平均耗时为19.24s,其中机械臂从初始位开始采果的平均耗时为12.04s,中间识别与运算的平均耗时为3.82s,放果动作平均耗时为7.2s,机械臂动作耗时占整个环节的80.2%。该机器人结构和在手RealSense深度伺服的手眼协调策略可满足采摘作业需求。  相似文献   

4.
采摘机器人在作业时遇到通过自主导航无法越过的障碍物时,或者在危险的地带无法进行人工采摘作业时,需要借助远程方式进行实时控制,使其成功越过障碍物,并在高危环境中有效地展开采摘作业。为了优化采摘机器人远程控制系统,提出了一种基于手势识别的远程控制方案,并引入了势场蚁群算法,提高了机器人的控制的准确性和高效性。在远程控制方案中,将基于视觉的手势识别与远程控制机械手相结合,通过深度相机采集手势图像并提取手势特征,转换为机械手舵机的控制命令,并通过无线网络发送至采摘机器人控制单元,实现视觉手势对机器人的远程控制。对采摘机器人进行了测试,通过测试发现:基于蚁群算法的手势识别系统可以有效地追踪得到不同的动态手势,且可以准确地识别手势所代表的意义,成功实现了机器人远程控制的手势识别。该方法不仅可以远程实现机器人避障功能,还可以将其应用在山谷、沼泽等危险地带进行采摘作业,实现其非凡的使用价值。  相似文献   

5.
随着科技水平的提高,农业生产向实现智能化发展,农业采摘机器人中的自主避障控制系统成为重点。在农业生产环境复杂且未知的条件下,采摘机器人的控制需要具有较高的智能化水平。为此,基于足球比赛运动的控制规则,设计了采摘机器人自主避障控制系统;阐述了基于足球比赛运动的移动机器人自主避障设计实现技术、控制技术及模糊逻辑控制方法,使机器人的移动通过模糊逻辑控制和基于优先度的避障策略来实现。仿真试验结果表明:该采摘机器人自主避障设计有效性和实时性较高,在农业生产的复杂环境中,可较好地自主避障并进行路径优化。  相似文献   

6.
设计了一套针对地垄栽培模式下的草莓智能采摘机器人.该草莓采摘机器人可在一定范围内基于机器视觉识别成熟草莓位置和精准定位,并以夹持、扭转果柄的方式摘取果实,从而实现草莓的无损伤采摘.设计的采摘机器人由三轴精确运动同步滑台机构,三菱fx3n PLC控制系统,视觉识别系统组成,并采用面向对象编程工具C#编写了控制终端及视觉自...  相似文献   

7.
针对农田作业环境下传感器定位节点的数量较多、覆盖范围要求广及农作物作业场地很多都没有局域网覆盖的问题,提出一种面向多跳无线网络的采摘机器人节点定位方法,并将其应用在待采摘区域的精确定位上,从而提高了采摘机器人定位和目标识别的整体性能,降低了采摘机器人总体的能源损耗。在新式采摘机器人的设计过程中,采用无线多跳网络通过多个无线路由对接收的定位数据进行转发,其部署简单,可以使定位节点进行周期性的休眠,能源消耗低,从而保证了采摘机器人能源的供应;采用机器视觉辅助目标果实定位识别系统,实现了待采摘果实的准确定位。对采摘机器人多跳无线网络定位系统进行了抗干扰能力测试,结果表明:噪声干扰的环境下,采摘机器人依然具有较好的通信能力,可以对待采摘区域实现较为精确定位。  相似文献   

8.
采摘机器人视觉伺服控制系统设计   总被引:5,自引:0,他引:5  
分析了采摘机器人目标位置与机器人关节角度之间的运动学关系,给出了两者之间的坐标变换公式.根据伺服控制特点,在机器人伺服控制中引入模糊PID控制方法,利用模糊控制策略在线自适应整定PID参数,提高了控制系统的动、静态性能.仿真和实验结果验证了设计的合理性和有效性.  相似文献   

9.
面向柑橘采摘,构建以上位机、RealSense Camera R200深度相机、VS-6556垂直多关节工业用机械臂、三指柔性手爪等组成的采摘机器人硬件平台。以Windows10为开发环境,采用librealsense相机软件开发工具包、OpenCV计算机视觉库、TensorFlow-GPU和Keras深度学习框架、ORIN2机械臂控制软件开发工具包、Arduino IDE函数库以及SerialPort串口通信软件开发工具包等,研究基于深度相机、机械臂二次开发的采摘控制系统设计,包括视觉识别定位、手爪动作控制、机械臂运动控制以及采摘控制等模块的程序设计。采摘控制系统柑橘定位试验和柑橘采摘试验的测试结果显示,在实验室环境下面对随机布置的柑橘,视觉识别定位模块的平均定位精度误差为1.22 cm,采摘过程中柑橘识别成功率达到100%,平均识别时间约为47 ms,机器人柑橘采摘成功率达到80%,平均采摘时间约为15.2 s,验证了采摘机器人平台控制系统程序的可行性,表明所开发的采摘控制系统能够正确、高效地完成整个柑橘采摘作业流程。  相似文献   

10.
以采摘机器人采摘作业为研究对象,以选择性采摘成熟果蔬为研究目标,基于无标定视觉伺服系统,结合果蔬成熟特性判断目标果实是否适合采摘,设计了一套以MSP430F149为核心的智能检测控制系统,可以实时处理相机采集到的图像,并选择性采摘符合要求的果实。本文重点研究了视觉伺服原理与模型、果实成熟度判断、选择性作业信息获取,以及系统的硬软件设计,并对文中设计研究的系统进行了可行性验证。试验结果表明:该无标定视觉伺服系统判断准确,能够较大程度提高机器人的可靠性与稳定性,应用前景宽广。  相似文献   

11.
在现代农业生产中,果蔬采摘作业复杂而繁重,采摘机器人在作业过程中常常需要经历成千上万个果蔬采摘点,面对这样巨大的工作量,采摘机器人移动路径规划显得非常重要。为此,以采摘机器人运动轨迹为研究对象,以其运动轨迹总长最短为研究目标,针对机器人各关节机构运动速度变化情况及机器人运动特性,利用基本蚁群原理对六自由度采摘机器人的路径进行规划。实验结果表明:所设计的采摘机器人轨迹优化技术不但路径优化能力强、运动轨迹平滑,还具有可靠性强及稳定性好的优点。  相似文献   

12.
在人机交互模式中,语言沟通是最便捷、最直接的交流方式之一,语音识别技术在现代机器人上得到广泛应用,现已推广到农业机器上。采摘机器人作为现代比较新型的农业机械,语音识别的应用增加了机器人的实用性。为此,设计出基于英语语音识别的水果采摘机器人控制系统,利用TMS320VC5416DSK板为平台,实现了水果采摘机器人的英语语音识别。英语语音识别主要包括前处理、特征提取及特征匹配等。在安静环境下提取了不同英语语音数据,并采用MATLAB对语音特征参数进行了仿真语音识别实验,结果表明:本设计的识别率可以达到90%以上,具有较强的鲁棒性。水果采摘机器人采用4个自由度的机械臂和英语语音识别模块等硬件电路,实现了英语控制机采摘器人完成采摘作业。  相似文献   

13.
孙宁  毛伟民  夏浩然 《农机化研究》2021,43(3):64-67,75
随着我国农业生产规模的扩大,日益增长的劳动力需求和落后的传统农业生产方式之间的矛盾越来越突出。采摘作业是农业生产中较为普遍的环节,为克服传统采摘作业效率低、安全隐患大等问题,设计了基于PLC的采摘机器人平台,完成了机器人平台的结构设计。同时,通过建立机器人的动力学模型,求解了各关节机构与采摘目标之间的运动关系,通过硬件选型和硬件设计,确定了合理可靠的功能模块,并完成各个模块与PLC控制器输入输出接口的外部接线设计,最后完成了机器人平台的软件流程设计。生产实践表明:该采摘机器人平台结构简单、控制精度高,具有较高的安全性和稳定性,有较大的推广价值。  相似文献   

14.
机器视觉技术在现代农业生产中的研究进展   总被引:1,自引:1,他引:1  
机器视觉技术已经广泛应用于农业生产的各个环节,详细阐述机器视觉的概念、组成部分、工作原理以及发展历程,总结国内外的研究成果,介绍机器视觉技术在作物病虫草害识别与监测、作物生长信息监测与产量估计、果蔬识别定位与采摘、种子产前检测与果蔬分级以及农业机器人视觉导航等领域的研究进展与应用情况,提出农业场景视觉系统在稳定性、可靠性、准确性以及嵌入式视觉系统硬件计算能力与核心算法等方面还有待提高与突破,国内高水平学者集中的研究机构匮乏,行业创新能力不足,本土企业竞争力较弱等劣势;认为3D视觉技术、多传感器融合的视觉系统以及与5G深度融合的视觉系统将会成为未来农业生产领域的主要研究方向。此外,机器视觉技术的应用势必会带动产业升级、推动农业智能化发展,为无人农场建设提供有力的技术保障。  相似文献   

15.
介绍了视觉导航、激光导航、卫星导航和路标导航等机器人导航技术,分析了不同类型的机器人导航技术在特定应用场景下的导航精度、实时性、适应性。根据这些导航技术的特点,结合在梅州市金绿现代农业发展有限公司室内养殖场开展的导航技术试验结果,指出了在室内养殖场内应用单一导航技术存在的问题,并展望多种导航方法信息融合的导航技术在室内养殖场的应用前景,期望为突破机器人饲喂、运输、采摘关键技术,解决制约农业智能化、无人化发展难题提供思路。   相似文献   

16.
鲜食果蔬收获是难以实现机械化作业的生产环节,高效低损采摘也是农业机器人研发领域中的难题,导致目前市场化的自动化果蔬采摘装备生产应用几乎空白。针对鲜食果蔬采摘需求,为改善人工采摘费时费力、效率低下、自动化程度低的问题,近30年来,国内外学者设计了一系列自动化采摘设备,推动了农业机器人技术的发展。在研发鲜食果蔬采摘设备时,首先要确定采收对象和采收场景,针对作物的生长位置、形状和重量、场景的复杂程度、所需自动化程度,通过复杂度预估、力学特性分析、姿态建模等方式,明确农业机器人的设计需求。其次,作为整个采摘动作的核心执行者,采摘机器人的末端执行器设计尤为重要。本文对采摘机器人末端执行器的结构进行了分类,总结了末端执行器的设计流程与方法,阐述了常见的末端执行器驱动方式、切割方案,并对果实收集机构进行了概括。再次,本文概述了采摘机器人的总体控制方案、识别定位方法、避障方法及自适应控制方案、品质分类方法以及人机交互、多机协作方案。为了总体评价采摘机器人的性能,本文还提出了平均采摘效率、长期采摘效率、采收质量、损伤率和漏采率指标。最后,本文对自动化采摘机械的总体发展趋势进行了展望,指明了采摘机器手系统将向着采摘目标场景通用化、结构形式多样化、全自动化、智能化、集群化方向发展的趋势。  相似文献   

17.
孙承庭  胡平 《农机化研究》2016,(11):219-223
采摘机器人拥有自主收集信息并进行有效判断的能力,可以独立完成对果实的采摘作业,对满足水果种植需求、减小水果种植的劳动力投入及降低生产成本有着很重要的实际应用价值。为此,以嵌入式ARM智控系统为基础平台,设计了采摘机器人视觉测量与避障控制系统。该系统集机器视觉、视觉传感感知、伺服电机驱动和ARM智控模块于一体,建立了采摘机器人采摘运动学的数学模型,并通过BP网络神经型迭代学习算法测量果实的距离和球心坐标,对成熟果实进行精准识别和定位采摘。试验结果表明:采摘机器人能准确地进行自主采摘,成功率比较高,躲避障碍物的能力很强,更适合在复杂未知的果园中进行收获作业。  相似文献   

18.
寻径避障是水果采摘机器人中一个重要的经典问题。随着我国机械自动化、计算机控制系统和测试计量行业突飞猛进的发展,对水果采摘机器人自主寻径避障有了更高的要求。为了更好地满足现代农业种植生产的需要,启发式智能学习型寻径避障成为采摘机器人研究的热点。为此,基于启发性智能轨迹优化算法,采用传感器检测系统,设计和研究了水果采摘机器人自主寻径避障系统,并利用Mat Lab仿真软件进行了验证分析。结果表明:在复杂路况环境下,针对不同目标和路径要求,该采摘机器人能灵活避开作业途径中障碍物,具有很强的学习和适应能力,且系统运行稳定、可靠性强。  相似文献   

19.
基于轨道平移式果蔬采摘机器人作业原理,建立了果蔬柔性采摘机器人作业质量测试方法,确定了采摘效率、果实采摘尺寸范围、最大抓握输出力、抓取成功率及果实破损率等作业指标的测定方法。依据提出的方法对FHR-2型柔性果蔬采摘机器人进行了设施温室大果番茄采收试验,结果表明,采摘效率8个/min,果实采摘尺寸范围30~92 mm,最大抓握输出力22.5 N,抓取成功率72.9%,果实破损率0,能够满足大果番茄的采摘要求。建立的测试方法能够对番茄采摘机器人进行作业质量测试,机器人的图像识别系统参数需进一步优化,以提高作业质量。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号