首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Controversial conclusions from different studies suggest that the decomposition of old soil organic matter (SOM) is either more, less, or equally temperature sensitive compared to the younger SOM. Based on chemical kinetic theory, the decomposition of more recalcitrant materials should be more temperature sensitive, unless environmental factors limit decomposition. Here, we show results for boreal upland forest soils supporting this hypothesis. We detected differences in the temperature sensitivity 1) between soil layers varying in their decomposition stage and SOM quality, and 2) inside the layers during a 495 day laboratory incubation. Temperature sensitivity increased with increasing soil depth and decreasing SOM quality. In the organic layers, temperature sensitivity of decomposition increased during the early part of a 495 day laboratory incubation, after respiration rate and SOM quality had notably decreased. This indicates that decomposition of recalcitrant compounds was more temperature sensitive than that of the labile ones. Our results imply that Q10 values for total heterotrophic soil respiration determined from short-term laboratory incubations can either underestimate or overestimate the temperature sensitivity of SOM decomposition, depending on soil layer, initial labile carbon content and temperature range used for the measurements. Using Q10 values that ignore these factors in global climate models provides erroneous estimates on the effects of climate change on soil carbon storage.  相似文献   

3.
Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burned boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.  相似文献   

4.
半干旱土添加有机改良剂后有机质的化学结构变化   总被引:1,自引:0,他引:1  
A 9-month incubation experiment using composted and non-composted amendments derived from vine pruning waste and sewage sludge was carried out to study the effects of the nature and stability of organic amendments on the structural composition of organic matter (OM) in a semi-arid soil.The changes of soil OM,both in the whole soil and in the extractable carbon with pyrophosphate,were evaluated by pyrolysis-gas chromatography and chemical analyses.By the end of the experiment,the soils amended with pruning waste exhibited less organic carbon loss than those receiving sewage sludge.The non-composted residues increased the aliphatic-pyrolytic products of the OM,both in the whole soil and also in the pyrophosphate extract,with the products derived from peptides and proteins being significantly higher.After 9 months,in the soils amended with pruning waste the relative abundance of phenolic-pyrolytic products derived from phenolic compounds,lignin and proteins in the whole soil tended to increase more than those in the soils amended with sewage sludge.However,the extractable OM with pyrophosphate in the soils amended with composted residues tended to have higher contents of these phenolic-pyrolytic products than that in non-composted ones.Thus,despite the stability of pruning waste,the composting of this material promoted the incorporation of phenolic compounds to the soil OM.The pyrolytic indices (furfural/pyrrole and aliphatic/aromatic ratios) showed the diminution of aliphatic compounds and the increase of aromatic compounds,indicating the stabilization of the OM in the amended soils after 9 months.In conclusion,the changes of soil OM depend on the nature and stability of the organic amendments,with composted vine pruning waste favouring humification.  相似文献   

5.
探明生物炭、秸秆和化肥配施对黄褐土条件下土壤团聚体的影响,为降低黄淮海平原黄褐土生产障碍,建立合理培肥制度提供参考。本研究通过3年定位试验,设置了不同的施肥制度:对照为不施肥(CK)、施用化肥(NPK)、生物炭配施化肥(NPKB)、秸秆配施化肥(NPKS)、生物炭和秸秆配施化肥(NPKSB)5个处理。对不同处理条件下湿筛的土壤团聚体指标进行了分析。结果表明:施用有机物料后,能增加大粒级土壤团聚体含量,提升土壤团聚体稳定性,提高土壤有机质含量。稳定性的提升幅度次序为NPKSNPKSBNPKB。在试验期内,添加生物炭能逐年提升土壤有机碳含量,顺序为NPKSBNPKB。在所有施肥处理中,NPKSB对提升大粒级团聚体有机碳贡献率效果最好。在本研究设置处理中,NPKSB对提升土壤团聚体基本性能效果最好。  相似文献   

6.
Biochar is used as a soil amendment for improving soil quality and enhancing carbon sequestration. In this study, a loamy sand soil was amended at different rates (0%, 25%, 50%, 75%, and 100% v/v) of biochar, and its physical and hydraulic properties were analyzed, including particle density, bulk density, porosity, infiltration, saturated hydraulic conductivity, and volumetric water content. The wilting rate of tomato (Solanum lycopersicum) grown in soil amended with various levels of biochar was evaluated on a scale of 0–10. Statistical analyses were conducted using linear regression. The results showed that bulk density decreased linearly (R2 = 0.997) from 1.325 to 0.363 g cm?3 while the particle density decreased (R2 = 0.915) from 2.65 to 1.60 g cm?3 with increased biochar amendment, with porosity increasing (R2 = 0.994) from 0.500 to 0.773 cm3 cm?3. The mean volumetric water content ranged from 3.90 to 14.00 cm3 cm?3, while the wilting rate of tomato ranged from 4.67 to 9.50, respectively, for the non-amended soil and 100% biochar-amended soil. These results strongly suggest positive improvement of soil physical and hydraulic properties following addition of biochar amendment.  相似文献   

7.
Biochar application has the potential to improve soil fertility and increase soil carbon stock, especially in tropical regions. Information on the temperature sensitivity of carbon dioxide(CO_2) evolution from biochar-amended soils at very high temperatures, as observed for tropical surface soils, is limited but urgently needed for the development of region-specific biochar management targeted to optimize biochar effects on soil functions. Here, we investigated the temperature sensitivity of soil respiration to the addition of different rates of Miscanthus biochar(0, 6.25, 12.5, and 25 Mg ha~(-1)) in two types of soils with contrasting textures. Biochar-amended soil treatments and their controls were incubated at constant temperatures of 20, 30, and 40℃. Overall, our results show that: i) considering data from all treatments and temperatures, the addition of biochar decreased soil CO_2 emissions when compared to untreated soils;ii) CO_2 emissions from biochar-amended soils had a higher temperature sensitivity than those from biochar-free soils; iii) the temperature sensitivity of soil respiration in sandy soils was higher than that in clay soils; and iv) for clay soils, relative increases in soil CO_2 emissions from biochar-amended soils were higher when the temperature increased from 30 to 40℃, while for sandy soils, the highest temperature responses of soil respiration were observed when increasing the temperature from 20 to 30℃. Together, these findings suggest a significantly reduced potential to increase soil organic carbon stocks when Miscanthus biochar is applied to tropical soils at high surface temperatures, which could be counteracted by the soil-and weather-specific timing of biochar application.  相似文献   

8.
Information on the distribution patterns of soil water content (SWC), soil organic matter (SOM), and soil exchangeable cations (SEC) is important for managing forest ecosystems in a sustainable manner. This study investigated how SWC, SOM, and SEC were influenced in forests along a successional gradient, including a regional climax (monsoon evergreen broad-leaved forest, or MEBF), a transitional forest (coniferous and broad-leaved mixed forest, or MF), and a pioneer forest (coniferous Masson pine (Pinus rnassoniana) forest, or MPF) of the Dinghushan Biosphere Reserve in the subtropical region of southern China. SWC, SOM, and SEC excluding Ca^2+ were found to increase in the soil during forest succession, being highest in the top soil layer (0 to 15 cm depth) except for Na^+. The differences between soil layers were largest in MF. This finding also suggested that the nutrients were enriched in the topsoil when they became increasingly scarce in the soil. There were no significant differences (P = 0.05) among SWC, SOM, and SEC. A linear, positive correlation was found between SWC and SOM. The correlation between SOM and cation exchange capacity (CEC) was statistically significant, which agreed with the theory that the most important factor determining SEC is SOM. The ratio of K^+ to Na^+ in the topsoil was about a half of that in the plants of each forest. MF had the lowest exchangeable Ca^2+ concentration among the three forests and Ca^2+:K^+ in MPF was two times higher than that in MF. Understanding the changes of SWC, SOM, and CEC during forest succession would be of great help in protecting all three forests in southern China.  相似文献   

9.
Much effort has been made to improve understanding of factors controlling the temperature dependence of soil organic matter (SOM) decomposition. The question of how soils formed in different geographical locations and conditions respond to temperature changes is still open. In addition to climate, residence times of soil organic matter are controlled by its decomposability and microbial community. In this work we hypothesized that the decomposition of SOM is adapted to the prevailing SOM quality and climatic conditions. This should result in different temperature vs. decomposition curves for northern and southern soils. We studied short-term temperature dependence of SOM decomposition near the northern and southern borders of the boreal forest zone using a Gaussian model. As carbon mineralization rate is driven by microbial activity, we focused on organic carbon fractions available to microbes and the size, composition and functioning of microbial communities in the soil. Despite differences in microbial community structure and behavior, similar amounts and qualities of the microbially available carbon led to similar temperature dependences of carbon mineralization in the north and south. The overall soil respiration rate level was higher in spruce forest sites than in pine forest sites irrespective of climate conditions. Our results do not mean that there is no risk of carbon losses from northern soils due to warming climate conditions. As temperature sensitivity of the decomposition increases with decreasing temperature regime, the proportional increase in the decomposition rate in northern latitudes might lead to significant carbon losses from the soils.  相似文献   

10.
依托湖北武汉、重庆北碚、湖南望城、湖南祁阳、江西南昌、浙江杭州6个水稻土壤肥力长期定位试验历史样品及数据,分析和讨论了土壤有机质含量变化趋势及对施化肥和有机肥的响应差异。施有机肥提升土壤有机质含量显著高于施化肥的效果。施化肥NPK处理,6个试验点土壤有机质含量都呈现提升趋势;但是,有机质平均年增量、有机质累计增量与累计有机肥施用量的比值都是逐年下降的,固定施肥方法提高土壤有机质含量是有限的,最高达到平衡点,施化肥的有机质含量的平衡点低于施有机肥的,土壤有机质含量提升不仅对施有机肥有响应,而且与累积产量也有一定的相关关系。  相似文献   

11.
12.
Wood extraction by heavy machinery has always been associated with soil disturbance in mountain forests,and the degree of soil degradation is influenced by several factors,including site and soil characteristics,soil moisture,type of equipment used,and number of machine passes.The effects of ground-based skidding operations on the physical properties of soils with different texture were evaluated at different levels of traffic frequency and trail gradient at two sites in an Iranian temperate forest.The treatments included combinations of three different traffic frequencies(3,8,and 14 passes of a rubber-tired cable skidder),three levels of trail gradient(10%,10%–20%,and20%) and two soil texture classes,clay loam(Site 1) and sandy loam(Site 2).The average gravimetric soil moisture at the time of skidding was 23%(Site 1) and 20%(Site 2).The average dry bulk density and total porosity of the undisturbed soil(control) were0.71 g cm~(-3) and 73.3% at Site 1(clay loam) and 0.86 g cm~(-3)and 59.1% at Site 2(sandy loam),respectively.At site 1(fine-textured soil),rutting began after three passes of the skidder,whereas at site 2(coarse-textured soil),rutting occurred only after eight passes.Independent of the traffic frequency and trail gradient,machine impact on the fine-textured soil caused greater increases in bulk density and rut depth compared to that on the coarse-textured soil.After three skidder passes and independent from trail gradients,dry bulk density at Site 1 increased by 54.8% compared to that of the undisturbed control,and the increase was 45.5% at Site 2.Therefore,medium to fine-textured soils are more susceptible to compaction than coarse-textured soils.Such soils,especially when moist,should be protected using brush mats created from harvesting residues during the forest processing phase.  相似文献   

13.
Abstract. A no-tillage (NT) system was developed in semiarid Morocco to improve the soil fertility and stabilize yield through conservation of water. Results in two long-term trials (4 and 11 years) were able to show the effects of a no-tillage system in increasing total soil organic matter and total nitrogen. Over time, the quality of the NT soil surface was improved compared with that under conventional tillage (CT) with disc harrows. This effect was the result of an increase in soil organic carbon (SOC) and a slight decline in pH. However, over time, nitrogen decreased in both tillage practices, especially in the 0–25 mm layer (from 0.59 to 0.57 t ha−1 and from 0.44 to 0.42 t ha−1 under NT and CT, respectively). After 4 years of NT an extra 5.62 t ha−1 of SOC was sequestered in the 0–25 mm layer, and after 11 years the SOC increased further to 7.21 t ha−1.  相似文献   

14.
Low molecular mass organic acids (LMMOAs) and hydroxamate siderophores (HS) are molecules secreted by microbes and have previously been found in soil solution and in cultures. Mycorrhizal fungi are suggested to be involved in the nutrient uptake processes of trees and weathering of minerals. In this study soil samples taken from the O and E horizons of a podzol were extracted with 10 mM potassium phosphate buffer at pH 7.2. Variable parameters included addition of methanol to the extraction buffer and the use of ultrasonication or rotary shaking during extraction. LMMOAs and HS content of the soil extracts were determined. Analysis of soil extracts were carried out by liquid chromatography mass spectrometry (LC–MS) and the extraction results compared to results for soil solution samples obtained by centrifugation of the soils sampled. The extraction yields were significantly increased by addition of methanol to the extraction buffer, especially for the O horizon samples. Rotary shaking of the samples for 90 min gave slightly higher yields than ultrasonication for 15 min but the reduction in extraction time makes ultrasonication an attractive option. Of the HSs determined, ferricrocin was found in all samples. Optimal extraction conditions showed citric acid and isocitric acid to be the most abundant organic acids in the O and E horizons, respectively.  相似文献   

15.
The impacts of tillage and organic fertilization on soil organic matter (SOM) are highly variable and still unpredictable, and their interactions need to be investigated under various soil, climate and cropping system conditions. Our work examined the effect of reduced tillage and animal manure on SOM stocks and quality in the 0–40 cm layer of a loamy soil under mixed cropping system and humid temperate climate. The soil organic carbon (SOC) and N stocks, particulate organic matter (POM), and C and N mineralization potential (301 days at 15 °C) were measured in a 8‐yr‐old split‐plot field trial, including three tillage treatments [mouldboard ploughing (MP), shallow tillage (ST), no tillage (NT)] and two fertilization treatments [mineral (M), poultry manure 2.2 t/ha/yr C (O)]. No statistically significant interactive effects of tillage and fertilization were measured except on C mineralization. NT and ST showed greater SOC stocks (41.2 and 39.7 t/ha C) than MP (37.1 t/ha C) in the 0–15 cm increment, while no statistical differences were observed at a greater depth. N stocks exhibited similar distribution patterns with regard to tillage effect. Animal manure, applied at a rate representative of typical field application rates, had a smaller impact on SOC and N stocks than tillage. The mean SOC and N stocks were higher under O than M, but the differences were statistically significant only in the 0–5 cm increment. MP showed lower C‐POM stocks than NT and ST in the 0–5 cm increment, whereas greater C‐POM stocks were measured under MP than under NT or under ST in the 20–25 cm increment. Organic fertilization had no impact on C‐POM or N‐POM stocks. In the 0–25 cm increment, NT showed a lower C and N mineralization potential than MP. Our work shows that the sensitivity of SOM to reduced tillage for the whole soil profile can be relatively small in a loamy soil, under humid‐temperate climate. However, POM was particularly sensitive to the differential effects of tillage practices with depth, and indicative of differentiation in total SOM distribution in the soil profile.  相似文献   

16.
Shrinking of Lake Chany in W Siberia exposed 10,000 km2 of former lakebed. On this new land we studied a chronosequence of young soils. The fraction of microbial C in total organic C had stabilized at 3% after 30 to 40 y. Concentration of organic C increased within the first 50 to 100 y to 4–5% in the first 10 cm, and to 2–3% at 10–20 cm depth. The amount of sequestered C is equivalent to about 2.5 d of current anthropogenic CO2 emissions.  相似文献   

17.
Biochars are,amongst other available amendment materials,considered as an attractive tool in agriculture for carbon sequestration and improvement of soil functions.The latter is widely discussed as a consequence of improved physical quality of the amended soil.However,the mechanisms for this improvement are still poorly understood.This study investigated the effect of woodchip biochar amendment on micro-structural development,micro-and macro-structural stability,and resilience of two differently textured soils,fine sand (FS) and sandy loam (SL).Test substrates were prepared by adding 50 or 100 g kg-1 biochar to FS or SL.Total porosity and plant available water were significantly increased in both soils.Moreover,compressive strength of the aggregates was significantly decreased when biochar amount was doubled.Mechanical resilience of the aggregates at both micro-and macro-scale was improved in the biochar-amended soils,impacting the cohesion and compressive behavior.A combination of these effects will result in an improved pore structure and aeration.Consequently,the physicochemical environment for plants and microbes is improved.Furthermore,the improved stability properties will result in better capacity of the biochar-amended soil to recover from the myriad of mechanical stresses imposed under arable systems,including vehicle traffic,to the weight of overburden soil.However,it was noted that doubling the amendment rate did not in any case offer any remarkable additional improvement in these properties,suggesting a further need to investigate the optimal amendment rate.  相似文献   

18.
不同改良剂对滨海盐渍土土壤理化性质和小麦生长的影响   总被引:19,自引:1,他引:19  
【目的】盐分胁迫是滨海盐渍土上粮食产量提高的主要障碍因子之一。研究不同功能性改良物料对消除和减轻这一障碍因子的作用,为改良盐渍化土壤和提高作物产量提供理论依据。【方法】以小麦品种‘青麦 6 号’为供试材料,在滨海盐渍土上进行田间试验,设置 7 个处理为空白对照(CK)、含钙物料的磷石膏(PG)和脱硫石膏(FGD)、调酸物料的硫酸亚铁(FS)、含碳材料的牛粪(M)以及含碳和调酸物料的腐植酸(HA)和糠醛渣(FRs),分析比较不同改良剂对滨海盐渍化土壤理化性质以及对小麦生长发育的影响。【结果】施加改良剂降低了土壤表层 (0—20 cm) 的 pH 值,作为酸性材料的腐植酸、糠醛渣和硫酸亚铁效果明显,土壤的 pH 值较对照分别降低了 0.10、0.11 和 0.11;施改良剂降低了土壤的交换性钠离子含量和钠的吸附比 (sodium adsorption ratio, 简称 SAR),磷石膏和脱硫石膏提供充足的钙离子用于置换土壤中交换性钠离子,明显降低了不同土层中的交换性钠离子含量和 SAR 值,0—20 cm、20—40 cm 和 40—60 cm 土层中,磷石膏和脱硫石膏对土壤交换性钠离子含量和 SAR 值的降低效果明显,其中施加磷石膏分别较对照降低了 15.5% 和 18.3% (0—20 cm)、28.2% 和 28.6% (20—40 cm)、36.5% 和 36.5% (40—60 cm),施加脱硫石膏分别较对照降低了 24.9% 和 27.9% (0—20 cm)、27.6% 和 26.3% (20—40 cm)、24.5% 和 25.0% (40—60 cm);施加改良剂增加了小麦成熟期的穗数,其中磷石膏、脱硫石膏和糠醛渣改良效果显著,分别较对照增加 27.6%、24.5% 和 18.6%,并分别提高小麦的产量 26.7%、17.8% 和 17.8%。【结论】 酸性物料的糠醛渣、腐植酸和硫酸亚铁,可以明显降低土壤 pH 值和增加小麦苗期的茎蘖数量,综合考虑改良剂对土壤 pH、Na+ 含量、SAR 值和小麦群体数量的影响,含碳的调酸物料的糠醛渣效果较好;含钙物料的磷石膏和脱硫石膏,可以显著降低土壤 Na+ 含量以及 SAR 值,增加小麦成熟期穗数,提高小麦产量均具有显著的效果,磷石膏效果最佳。  相似文献   

19.
Recovery of soil organic matter, organic matter turnover and mineral nutrient cycling is critical to the success of rehabilitation schemes following major ecosystem disturbance. We investigated successional changes in soil nutrient contents, microbial biomass and activity, C utilisation efficiency and N cycling dynamics in a chronosequence of seven ages (between 0 and 26 years old) of jarrah (Eucalyptus marginata) forest rehabilitation that had been previously mined for bauxite. Recovery was assessed by comparison of rehabilitation soils to non-mined jarrah forest references sites. Mining operations resulted in significant losses of soil total C and N, microbial biomass C and microbial quotients. Organic matter quantity recovered within the rehabilitation chronosequence soils to a level comparable to that of non-mined forest soil. Recovery of soil N was faster than soil C and recovery of microbial and soluble organic C and N fractions was faster than total soil C and N. The recovery of soil organic matter and changes to soil pH displayed distinct spatial heterogeneity due to the surface micro-topography (mounds and furrows) created by contour ripping of rehabilitation sites. Decreases in the metabolic quotient with rehabilitation age conformed to conceptual models of ecosystem energetics during succession but may have been more indicative of decreasing C availability than increased metabolic efficiency. Net ammonification and nitrification rates suggested that the low organic C environment in mound soils may favour autotrophic nitrifier populations, but the production of nitrate (NO3?) was limited by the low gross N ammonification rates (≤1 μg N g?1 d?1). Gross N transformation rates in furrow soils suggested that the capacity to immobilise N was closely coupled to the capacity to mineralise N, suggesting NO3? accumulation in situ is unlikely. The C:N ratio of the older rehabilitation soils was significantly lower than that of the non-mined forest soils. However, variation in ammonification rates was best explained by C and N quantity rather than C:N ratios of whole soil or soluble organic matter fractions. We conclude that the rehabilitated ecosystems are developing a conservative N cycle as displayed by non-mined jarrah forests. However, further investigation into the control of nitrification dynamics, particularly in the event of further ecosystem disturbance, is warranted.  相似文献   

20.
中国北方森林坡向对土壤细菌和从枝菌根真菌群落的影响   总被引:1,自引:0,他引:1  
The effects of slope aspects on soil biogeochemical properties and plant communities in forested environments have been studied extensively; however, slope aspect influence on soil microbial communities remains largely unexamined, despite the central role of soil biota in ecosystem functioning. In this study, the communities of both soil bacteria and arbuscular mycorrhizal fungi (AMF) were investigated using tagged pyrosequencing for three types of slope aspects (south-facing aspect, north-facing aspect and flat area) in a boreal forest of the Greater Khingan Mountains, China. The bacterial and AMF community composition differed with slope aspects. Bacterial diversity was the lowest on the north-facing aspect, and AMF diversity was the lowest on the flat area. Aspects also had a significant impact on soil pH and available phosphorus (P) and shrubby biomass. Soil pH and understory shrub biomass were significantly correlated with bacterial communities, and soil available P and shrub biomass showed significant correlations with AMF communities. Our results suggested that slope aspects affected bacterial and AMF communities, mediated by aspect-induced changes in plant community and soil chemical properties (e.g., pH and available P), which improved the knowledge on the effects of forest slope aspects on aboveground and belowground communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号