首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yam (Dioscorea spp.) is widely grown in many parts of Ethiopia and plays a vital role in local subsistence. Nevertheless, its diversity has not been studied in detail. A survey covering 339 farm households and eight districts was conducted in the major yam growing regions of Southern Ethiopia to investigate the diversity and distribution of yam landraces using structured and semi-structured questionnaires. A total of 37 named landraces were recorded, with a range from one to six (mean 2.9) on individual farms. Farmers’ decisions regarding the number and type of landraces maintained was influenced by tolerance of the landraces to drought, their maturity time and market demand. Most landraces had limited abundance and distribution, and only a few dominant landraces were widely grown. There was also variation amongst districts with respect to diversity, distribution and abundance of the landraces found. In the majority of the localities surveyed, farmers reported a decreasing trend in the number of landraces maintained on individual farms and in the overall yam production. Besides, in those limited areas where yam production is expanding, farmers are increasingly relying on a few selected landraces that mature early. Findings of this study suggest that local farmers in Wolayita and Gamo-Gofa zones maintain considerable yam diversity that remains to be further explored for sustainable utilization and conservation of the available genetic resources.  相似文献   

2.
Genetic diversity within and among 12 populations of the dioecious tropical tree species Hagenia abyssinica (Bruce) J.F. Gmel. in Ethiopia was examined with eight inter simple sequence repeat (ISSR) primers. A total of 104 clearly scorable bands were generated, among which 84 (81%) were polymorphic. Jaccard similarity coefficient was calculated for pairwise comparisons among all 120 individuals and ranged from 0.30 to 0.88 while average within-population similarity ranged from 0.53 to 0.66. Within-population variability was estimated as percentage polymorphic loci (ranging from 52% to 87%), Shannon’s information index (0.30–0.50) and Nei’s genetic diversity (0.21–0.35). The highest variability values were obtained for one recently planted population and for one wild population growing in an undisturbed primary forest area. Significant overall differentiation among populations was detected by both Shannon’s information index (0.26) and G ST (0.25). Relatedness among samples was estimated with a principal coordinate analysis, and relatedness among populations was estimated with a cluster analysis (UPGMA). A Mantel test indicated a significant association between genetic and geographic distances, and an autocorrelation analysis showed significant evidence of gene flow over distances up to 30 km. This study is the first of its kind for H. abyssinica, which has decreased recently in Ethiopia and now must be regarded as an endangered species. Both within-population and between-population diversity estimates are typical of outcrossing, longlived and late successional species, suggesting that recent anthropogenic disturbances have not yet had much impact on population genetic parameters. DNA marker data can, however, be used to identify the most suitable sites for in situ conservation and for collection of material for establishment of genebanks and plant improvement programs.  相似文献   

3.
Ethiopia is a centre of diversity and hosts rich genetic resources of tetraploid wheats. Through time, the wheat materials were subject to genetic erosion. Closer investigation was made to assess the status of loss, and identify the possible causes by studying two districts from East Shewa. Information from primary and secondary sources was reviewed and analysed. Farmers identified 26 tetraploid wheat landraces (21 from Akaki and 17 from Ejere), which were once widely grown in the area. Of these, only six were currently available. Compared to the formerly available number of landraces, the loss of diversity in the study area was estimated to be 77%. In the Ejere locality, the loss was 100% before the launching of the on farm landrace conservation programme, and for Akaki it was 95%. Major factors that contributed to the loss include: (1) introduction and expansion of bread wheat varieties; (2) expansion of tef; (3) lack of a mechanism to re-supply seeds of tetraploid wheat landraces; (4) decline in size of landholdings; (5) changes in land use and cropping patterns; (6) lack of policy support; and (7) expansion of improved tetraploid wheat varieties. The lessons from this study underscore the importance of strengthening the local seed supply system as a prerequisite for sustaining on farm conservation of landraces. Moreover, it is necessary to initiate diversity studies focusing on the distribution and status of tetraploid wheat landraces across the country. Complementing these by molecular analyses is essential in order to assess the genetic distinctness of the landraces.  相似文献   

4.
Genetic diversity was investigated in 348 accessions and subaccessions of grasspea (Lathyrus sativus L.) from 10 geographical regions. Polymorphism for 20 isozymes of 13 enzyme systems was studied to estimate the genetic diversity. The Near East and North Africa regions included the most variability for these isozyme systems, suggesting that the center of diversity (center of origin) for grasspea is in this general area. The lowest variability was found in accessions and subaccessions from South America, followed by those from Sudan–Ethiopia. Diversity was measured for individual loci over regions and EST-1 and SKDH had the highest genetic diversity. The closest genetic diversity was observed for LAP-2, followed by AAT-1 and PGM. The closest genetic distance existed between populations from the Near East and North Africa. Populations from South Asia and Sudan–Ethiopia, though geographically widely separated, exhibited a closer genetic distance from each other than from other regions.  相似文献   

5.
Over the past three centuries, maize has become adapted to complex environmental conditions in the highlands of Ethiopia. We analyzed 62 traditional Ethiopian highland maize accessions, using 20 simple sequence repeat (SSR) markers and 15 morphological traits, to assess genetic diversity and relationships among these accessions and to assess the level of correlation between phenotypic and genetic distances. The accessions varied significantly for all of the measured morphological traits. The average number of alleles per locus was 4.9. Pair-wise genetic dissimilarity coefficients ranged from 0.27 to 0.63 with a mean of 0.49. Ward minimum variance cluster analysis showed that accessions collected from the Northern agroecology were distinct from the Western and Southern agroecologies. However, there was no differentiation between the Western and Southern accessions. This suggested gene flow between these regions. The relationship between morphological and SSR-based distances was significant and positive (r = 0.43, p = 0.001). The high genetic diversity observed among these set of accessions, suggests ample opportunity for the development of improved varieties for different agroecologies of Ethiopia. From conservation perspective, sampling many accessions from all agroecologies would be an effective way of capturing genetic variation for future collections and conservation.  相似文献   

6.
Genebanks complement other conservation programs because they preserve genetic diversity needed for future breeding and restoration. We evaluated efficiency of capturing genetic diversity, using endangered Zizania texana (Texas wild rice) as a model for plants with recalcitrant seeds. This perennial aquatic grass is restricted to 4 km of the San Marcos River in Texas. An early conservation collection included plants from stands throughout the river, based on the assumption stands would be unique genotypes. Using microsatellite markers, we found that genetic diversity was concentrated in five of 15 large, demographically stable stands; 96 stands smaller than 2 m2 contributed no unique alleles. High heterozygosity and few duplicate genotypes suggested that sexual reproduction occurs more often than presumed. Simulations of stratified sampling of large stands captured all alleles in only 45 individuals, while random sampling along the river captured much less diversity. The early conservation collection captured as much diversity as expected from random sampling. Texas wild rice stands resemble a mainland-island metapopulation; our analyses suggest that stratified sampling maximizes genetic diversity for this population dynamic. Demographic and genetic information is important for validating the design of efficient ex situ collections and guiding in situ conservation.  相似文献   

7.
The Ethiopian region is characterised by a wide range of agro-climatic conditions, which accounted for the enormous resources of agro-biodiversity that exist in the country. The most important of these resources is the immense genetic diversity of the various crop plants in the country. Of these, one of the most on farm genetically diverse crops is sorghum. Since the advent of formal breeding in particular after green revolution, genetic diversity of most crops has been threatened worldwide. In order to assess on farm genetic erosion (GE), various research methodologies were employed. These were focused group interviews with 360 farmers, on farm monitoring and participation with 120 farmers, key informant interviews with 60 farmers and development agents, and semi-structured interviews with 250 farmers. Besides, diversity fairs were done with over 1200 farmers. Notwithstanding the complexity of assessing GE, it was assessed by various methods; namely, by temporal method (comparing 1960 and 2000 collections), area method, and semi-structured interview method at individual, community or wereda level and causes of varietal loss from other various perspectives. Farmers perceived GE as the reduced importance of the variety as indicated by lower proportion in the varietal portfolio. The five most important factors for varietal loss at individual farmers’ level were reduced benefit from the varieties, drought, Khat expansion, reduced land size and introduction of other food crops respectively. GE was not affected by wealth groups and ecological regions. Farmers do not make simple replacement as a strategic mechanism for genetic resources management. GE at regional level was quantified by temporal and spatial method. There was a complementation not rivalry between farmer varieties (FVs) and improved varieties (IVs). The whole process of GE is explained by three models, namely: Bioecogeographic enhanced genetic erosion model, Farmer induced genetic erosion model and Farmer-cum-bioecogeographic genetic erosion model. As aforementioned, sorghum genetic erosion behaviour is completely different from other food crops such as tetraploid wheat. The prediction in the late seventies that complete erosion of FVs by IVs by the end of the eighties, the principle of GE that competition between IVs and FVs, favours the former and results in the replacement of the latter is not valid in the context of sorghum in Ethiopia. Hence, maintenance of the on farm genetic diversity of sorghum is a reality but GE is rhetoric.  相似文献   

8.
Studying molecular genetic relationships can substantially contribute to the understanding of the pathways of domestication of a species. Although an increasing number of molecular genetic studies have been performed on Lablab purpureus (hyacinth bean), many covered germplasm of restricted geographic origin or limited intra-specific systematic position. Integrating the molecular diversity found with phenotypic or morpho-agronomic diversity is also deficient. This investigation combines findings of eight molecular genetic studies that include about 400 accessions of both wild and cultivated germplasm, thus providing the largest assessment of diversity in Lablab purpureus to date. In particular, results from a recent molecular investigation (Robotham and Chapman 2015) are revisited and reinterpreted by integrating them with known phenotypic diversity. Wild accessions clearly fall into two types, with characteristic pods—2-seeded and 4-seeded. The large majority of cultivated types are more closely related to 4-seeded pod-types. Certain cultivated 2-seeded pod-type accessions from Ethiopia are genetically closer to wild 2-seeded pod-types. These two major phenotypes are reflected in two chloroplast DNA haplotypes A and B. Hence, two domestication events appear to exist in L. purpureus based on this combined data. No other geographic patterns of diversity, which might assist to trace the dispersal of L. purpureus, were found as cultivated accessions predominantly fell into 2-3 major groups. In all studies, the greatest genetic diversity was found in Africa, making Ethiopia one of the probable centers of domestication.  相似文献   

9.
Vernonia galamensis is a new potential industrial crop with very high content of vernolic acid in the seed oil. The species is known to naturally grow as a weed in fields or in woodlands under a wide range of agroecological conditions of Africa. In order to study the existing variability in Ethiopia, germplasm collection was carried out. Vernonia grows wild in various ecosystems. Ten regions were explored from North, South, East, Southeast, Southwest and Central Ethiopia. A diverse range of habitats having different altitudes and ecological conditions was explored. Altitude of collecting sites varied between 1250 and 2050 m, and soil pH from 5.1 to 8.5. The most common soil type was sandy loam, and the organic matter content varied from 0.2% to 12.9%. At 80 sites, about 480 accessions were collected including different maturity time, plant type, flower color, and branching patterns as well as fatty acid composition. The mean vernolic acid content of the seed oil of the accessions was 74%, and ranged from 34% to 87%. A wide variability in composition of other fatty acids was observed. It was not possible to find Vernonia in some locations that were earlier indicated by herbarium specimens collected since 1840. This could be a sign of change in land use system and environmental degradation and, hence, loss of genetic resources of the species.  相似文献   

10.
The composition and structure of 300 enset gardens from 10 different locations in Sidama were examined. Average size of the gardens was 0.74 ha. The gardens are composed of mixtures of various named enset varieties and different groups recognisable on the basis of ‘sex’ (male and female) and use (cooking and processing). The gardens exhibit high diversity, with a given garden containing up to 24 varieties (mean = 8.2). However, the components are not represented equally. Typically, the gardens consisted of one or two very abundant varieties and a much larger number of less common ones. Enset gardens are dynamic because the number and composition of varieties and different types changed from garden to garden, from location to location and across time. Their composition, structure and dynamics have been influenced by human, socio-economic factors (farm size, land per capita, cropping patterns and size of livestock), temporal circumstances and landscape elements (elevation) in which they are found. The nature, characteristics, organization and functions of Sidama enset gardens are outlined and the importance of maintaining mixtures of varieties for farmers is discussed.  相似文献   

11.
The aim of this article is to provide an overview of the current situation of coffee genetic resources that are dwindling at an alarming rate in Ethiopia, the centre of diversity of Coffea arabica. Firstly, we describe the coffee growing systems (forest coffee, semi-forest coffee, garden coffee and plantation coffee) and recent research on the genetic diversity of the coffee planting material associated with those systems. Whilst the maximum genetic diversity revealed by DNA-based markers is found in the forest coffees of the south-western highlands, the natural habitat of C. arabica, the taxonomy of coffee landraces is particularly rich in garden coffee systems located in ancient growing zones such as Harerge in eastern Ethiopia. After reviewing the factors involved in the genetic erosion of the Ethiopian genepool, we give an update on the status of coffee genetic resources conserved ex situ in the field genebank of the Jimma Agricultural Research Centre, with 4,780 accessions spread over 10 research stations located in the main production areas, and in the main genebank of the Institute of Biodiversity Conservation located in Choche (Limu) with 5,196 accessions conserved. Lastly, we mention the in situ conservation operations currently being implemented in Ethiopia. Improving our knowledge of the genetic structure of Ethiopian forest and garden coffee tree populations as well as genetic resources conserved ex situ will help to plan the future conservation strategy for that country. To this end, modern tools as DNA-based markers should be used to increase our understanding of coffee genetic diversity and it is proposed, with the support of the international scientific community and donor organizations, to undertake a concerted effort to rescue highly threatened Arabica coffee genetic resources in Ethiopia.
Jean-Pierre LabouisseEmail:
  相似文献   

12.
To assess the genetic diversity among China’s cultivated barley, sequence tagged site (STS) marker analysis was carried out to characterize 109 morphologically distinctive accessions originating from five Chinese eco-geographical zones. Fourteen polymorphic STS markers representing at least one in each chromosome were chosen for the analysis. The 14 STS markers revealed a total of 47 alleles, with an average of 3.36 alleles per locus (range 2–8). The proportion of polymorphic loci per population averaged 0.84 (range 0.71–1.00); the mean gene diversity averaged 0.39 (range 0.28–0.49). The means of P and He were highest in the Yangtze reaches and Southern zone (P = 1.00; He = 0.46) and lowest (P = 0.71 He = 0.28) in the Yellow river reaches zone. The STS diversity in different zones is quite different from the morphology diversity. The STS variation was partitioned into 17% among the zone and 83% within the zone. Both cluster and principal coordinate analyses clearly separated the accessions into a dispersed group (mostly two-rowed barley with a lower mean GS value) and a concentrated group (mostly six-rowed barley with a higher mean GS value) according to the spike characteristic with only a few exceptions. The accessions from the Qinghai-Tibet plateau formed a distinctive subgroup and can be distinguished from the concentrated group. The role of Tibet in the origin and evolution of cultivated barley has been discussed.  相似文献   

13.
The genetic diversity of 50 wild and semi-wild accessions of the Coffea arabica L. germplasm collection, gathered by the FAO and ORSTOM missions to Ethiopia, and maintained in Colombia by CENICAFE, was evaluated with RAPD markers. The evaluation was carried out in two phases: In phase one, the polymorphism of 8 Ethiopian accessions of different geographic origin, plus the cultivated variety 'Caturra' was assessed with the RAPD technique with forty-two 10-mer oligonucleotides. In phase two, 51 accessions were assessed with a set of 5 polymorphic primers that reproduced, with a correlation of 95%, the groups generated by the 24 polymorphic primers found in phase one. Principal Coordinate Analysis of molecular data revealed that a closely related group consisting of 86% of the Ethiopian C. arabica accessions evaluated are significantly different from the Caturra variety and could be used in a genetic breeding initiative to increase the variability of cultivated varieties. The results also indicate that a larger polymorphism is present in the Colombian replica of FAO Ethiopian coffee germplasm collection than previously reported.  相似文献   

14.
The amphidiploid species Brassica carinata A. Braun is believed to have originated in the plateaus of Ethiopia and has been cultivated there as an oilseed crop since antiquity. The species possesses agronomically important genes of rare occurrence. Although there is a large number of collections in Ethiopia, information on the extent of their genetic diversity is very limited. Thirty-six accessions of ecologically diverse regions were tested at three locations and multivariate analyses on 13 morphological and seed characters were performed. There was generally a large amount of divergence in all characters. Geographic isolation of genes, however, was not observed. Both principal component and cluster analyses disclosed complex relationships among the accessions and characters. Accessions with potential genes of interest to improve earliness, yield components and oil and protein contents have been identified. Length of growing period and yield components contributed most for divergence and clustering pattern. Oil, glucosinolate and protein contents also varied among the accessions but not so much between clusters. Increasing protein in high-glucosinolate genotypes reduced oil content and should be more efficient in genotypes of low-glucosinolate genetic background.  相似文献   

15.
On-farm conservation is recognized as a key component of a comprehensive strategy to conserve crop genetic resources. A fundamental problem faced by any on-farm conservation project is the identification of crop populations on which efforts should be focused. This paper describes a method to identify a subset of landraces for further conservation efforts from a larger collection representing the diversity found in the Central Valleys of Oaxaca, Mexico. Mexico is a center of origin and diversity for maize (Zea mays L.). The 17 landraces selected from an initial collection of 152 satisfy two criteria. First, they represent the diversity present in the larger collection. Second, they appear to serve the interests of farmers in the region. Data for applying the method were elicited through participatory as well as conventional techniques. They incorporate the complementary perspectives of both men and women members of farm households, and of plant breeders and social scientists.  相似文献   

16.
Ambiguity exists about the level of genetic diversity represented by farmer crop varieties, how it develops over time and how it relates to the diversity comprised by formal varieties. As part of an interdisciplinary technological/sociological study on farmer management of gene flow, upland rice (Oryza sativa L.) and late millet (Pennisetum glaucum (L.) R.Br.) from The Gambia were investigated for morphological and molecular variation. The goal of these analyses was to obtain insight into the level of crop genetic diversity of farmer’s materials planted in several case study villages in The Gambia. For both crops, samples were collected from villages and various research institutes. Based on variety names, different rice and millet varieties were expected to be used in different villages. In fact, there was a large overlap in genetic diversity for both crops, masked by the use of synonyms. The considerable similarity in rice genetic diversity between villages most likely results from the exchange of varieties between farmers. For millet this seems the result of development of varieties from the same gene pool. Some farmer varieties of rice, however, are apparent hybrid forms between the species O. sativa and O. glaberrima Steud., and farmer varieties in general displayed higher levels of genetic diversity than formal varieties. This indicates that, for rice, genetic diversity develops in farmers’ fields and may have potential use in formal breeding programs.  相似文献   

17.
In this study, soybean nodules were collected from 12 sites in the State of Mato Grosso, in the Brazilian Cerrados, where both exotic soybean [Glycine max (L.) Merrill] and bradyrhizobial strains have been introduced from 1 to 18 years before. All soils were originally devoid of rhizobia capable of effectively nodulating soybean and varied in terms of chemical and physical properties, inoculation procedures, and cropping systems. Rhizobial genetic diversity was assessed on 240 isolates by rep-PCR fingerprinting with BOX primer, and indices of diversity (abundance-based coverage estimator and traditional and modified Shannon indices) were applied to the profiles obtained. The genetic diversity was much greater than expected, as after the introduction of a maximum of four strains, up to 13 profiles were identified, some sharing many similar bands with the inoculant strains, but others quite distinct from the putative parental genotypes. The increase in the number of rep-PCR profiles could be attributed to genetic variability due to the stressful tropical environmental conditions, but also might indicate that indigenous rhizobia become capable of nodulating the host legume. After the third year of cropping with the host legume, inoculation did not affect rhizobial diversity. A high content of clay decreased diversity in comparison with that seen in a sandy soil, probably due to reduced aeration. Diversity was higher under the no-tillage system when compared to the conventional tillage management, highlighting the importance of maintaining crop residues in tropical soils. Understanding the ecology of exotic rhizobia after being introduced into new cropping areas represents a first step towards the establishment of better strategies of inoculation, which in turn may result in sustainability and higher plant yields.  相似文献   

18.
ISSR molecular markers have been used to investigate genetic diversity of oca (Oxalis tuberosa Mol.), an Andean neglected tuber crop species. Sampling procedure allowed a preliminary study of the genetic diversity at the intra- and intervarietal levels. Twenty tuber lots conserved in situ in the microcentre of Candelaria and ex situ in the Toralapa Centre (Bolivia) were identified. Four ISSR primers amplified a total of 25 fragments of which 17 (68%) were polymorphic. These experiments show that the structure of oca varieties is mainly based upon vernacular names with a greater differentiation among tuber lots than within them, supporting agromorphological data. ISSR technique enlightened the existence of heterogeneous varieties in oca and divergence between in situ and ex situ conservation strategies. These observations are potentially linked to the different ways of management of tubers in these two conservation systems.  相似文献   

19.
Genetic diversity among 115 coffee accessions from the Coffea Germplasm Collection of IAC was assessed using SSR markers. The germplasm represents 73 accessions of Coffea arabica derived from spontaneous and subspontaneous plants in Ethiopia and Eritrea, species center of origin and diversity, 13 commercial cultivars of C. arabica developed by the Breeding Program of IAC, 1 accession of C. arabica cv. ‘Geisha’, 13 accessions of C. arabica from Yemen, 5 accessions of C. eugenioides, 4 accessions of C. racemosa and 6 accessions of C. canephora. Genetic analysis was performed using average number of alleles per locus (A), proportion of polymorphic loci (P), Shannon’s genetic index (H′ and GST) and clustering analysis. All evaluated species were distinguished by a cluster analysis based on Jaccard’s coefficient. Differentiation between the cultivated plants of C. arabica and accessions derived from spontaneous and subspontaneous plants was observed. Spontaneous and subspontaneous accessions from Ethiopia were separated according to the geographical origin: east and west of the Great Rift Valley. Cultivated plants showed a low genetic diversity with a division in two groups: accessions from Yemen (H′=0,028) and Brazilian commercial cultivars (H′=0,030). The results agreed with previously reported narrow genetic basis of cultivated plants of C. arabica and supported the hypotheses about domestication of the species. This study also showed a significant genetic diversity among accessions from Ethiopia and Eritrea present in the Germplasm Collection of IAC. This diversity is specially observed in accessions from Sidamo (H′=0,143), Kaffa (H′=0,142) and Illubabor (H′=0,147) indicating their importance as source of genetic variability for coffee breeding programs.  相似文献   

20.
Solanum pimpinellifolium, due to its close relationship to S. lycopersicum, has been a genetic source for many commercially important tomato traits. It is a wild species found in the coastal areas of Peru and Ecuador. In this study, the genetic variation of S. pimpinellifolium was studied using the diversity found in 10 microsatellites in 248 plants spread throughout its entire distribution area, including Ecuador, which has been underrepresented in previous studies. Peruvian and Ecuadorian accessions are genetically quite differentiated. A possible cause of these differences could be the non-uniform nature of the coastal Ecuadorian and Peruvian climates, seeing as an important correlation between genetic differentiation and climate has been found. In addition, Ecuadorian and south Peruvian accessions have a lower genetic diversity and a higher homozygosity due to their higher autogamy, lower population size, and possible colonization bottlenecks. The Galápagos Islands population is an extreme case, with no diversity, likely caused by a recent colonization from the northern continental Ecuadorian region where genetically identical plants have been found. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Elena Zuriaga and José M. Blanca contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号