首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
以提高水提液中黄酮类化合物质量浓度为目的,通过4组单因素试验和均匀试验研究了槐花黄酮类化合物的最佳水提工艺。结果表明:在料液比为34g∶250mL条件下,槐花黄酮类化合物的最优水提条件为水的pH值8.0、水提温度100℃、水提时间105min;按优化工艺条件黄酮类化合物的得率为1.440%。  相似文献   

2.
该研究以汽爆毛白杨木粉为原料 ,采用正交实验法进行同时糖化发酵 (SSF)来生产乙醇 .通过考察反应温度、pH值、酶浓度和酵母用量来寻找绿色木霉纤维素酶和酿酒酵母同时糖化发酵转化汽爆毛白杨木粉成乙醇的最佳条件 .研究结果表明 :①在相同条件下 ,同时糖化发酵可提高汽爆毛白杨木粉转化成乙醇的效率 ,转化率高达86 % ,比分步糖化发酵 (LHF)提高了 1.6倍 ;②绿色木霉纤维素酶和酿酒酵母同时糖化发酵转化汽爆毛白杨木粉成乙醇的最佳条件为 :反应温度 36℃ ,pH值 5 .0 ,酶浓度 2 5U/ g ,酵母用量 (湿重 ) 0 0 1g/mL发酵液 .  相似文献   

3.
预处理是利用木质纤维素转化生成乙醇的关键步骤。实验基于Box Behnken试验设计,应用Design Expert 8.0软件对玉米芯预处理条件进行响应面分析,建立以同步糖化发酵终点乙醇浓度为响应值的数学模型,结果表明:最佳预处理条件温度为88.6℃、时间为19.81 h、液固比为6.5、硫酸浓度为1.86%(v/v)。与未预处理的玉米芯相比,经预处理后的固体物料中半纤维素去除率达到77.58%,纤维素含量提高66.49%,利用自絮凝酵母SPSC01进行同步糖化发酵,终点乙醇浓度为12.4 g/L,接近预测值12.64 g/L。当加酶量为35 FPU/g时,发酵终点乙醇浓度可达20.54 g/L。  相似文献   

4.
鬼针草中黄酮类化合物提取方法研究   总被引:3,自引:1,他引:2  
以鬼针草为原料,分别利用乙醇、水作为浸提介质对鬼针草中黄酮类化合物进行提取,通过单因素试验、正交试验确定醇提的最佳提取条件为乙醇浓度80%、固液比1:14、提取时间0.5h、提取温度90℃:水提最佳提取条件为固液比1:40、提取温度100℃、提取时间1.5h。且两种提取方法问不存在显著性差异。  相似文献   

5.
采用乙醇自催化法提取棉秆中的木质素,考察了乙醇浓度、反应温度、反应时间、棉秆-乙醇的固液比等因素对木质素产率的影响规律.确定了乙醇自催化法提取棉秆中木质素的最优提取条件为:乙醇浓度为75%,反应时间为3h,反应温度为200℃,棉秆-乙醇固液比为1g∶6mL.在此条件下所得木质素的产率最高,为47.0%.  相似文献   

6.
【目的】以羧甲基纤维素钠酶活(Carboxymethylcellulose sodium enzyme activity,CMCase)和滤纸酶活(Filter paper enzyme activity,FPAase)作为双指标,通过响应面法对黑曲霉(Aspergillus niger)ZD产纤维素酶的液体发酵条件进行优化,研究黑曲霉对棉花秸秆的降解效果。【方法】通过单因素试验确定主要影响因素,通过Plackett-Burman和Box-Behnken设计进行因素优化和交互作用的影响,测定棉秆中纤维素含量。【结果】单因素试验确定碳源为淀粉,氮源为蛋白胨,无机盐为K2HPO4,培养时间168 h,转速150 r/min,温度30℃,接种量7%;利用Plackett-Burman设计筛选出影响产酶的显著因素是淀粉质量浓度、蛋白胨质量浓度、转速和接种量;最后通过Box-behnken确定产酶的最佳发酵条件,淀粉质量浓度1.21 g/100 mL,蛋白胨质量浓度0.25 g/100 mL,K2HPO4质量浓度0.1 g/100 mL,培养时间168 h,转速170 r/min,温度30℃,接种量7.8%,比初始发酵条件提高了35.96%。【结论】利用黑曲霉通过液体发酵降解棉秆效果显著,可以有效降解棉秆中纤维素和半纤维素,用真菌实现棉秆饲草化极具前景。  相似文献   

7.
[目的]在联合生物加工技术发酵菊芋生料生成乙醇工艺中,降低高浓度菊芋生料醪液的黏度,使菊芋发酵乙醇浓度达到或超过目前玉米乙醇的行业水平。[方法]利用马克斯克鲁维酵母(Kluyveromyces marxianus),通过添加辅助酶制剂、改变拌料水温及优化补料方式等方法,降低发酵醪液黏度,提高菊芋生料的浓度,从而提高发酵终点的乙醇浓度并缩短发酵时间。[结果]最佳工艺条件为:45℃水拌料,pH 5.0,添加0.10%酒精复合酶,发酵初始干粉浓度为240 g/L,分别在发酵12和24 h补料,菊芋干粉终浓度可达到300 g/L,发酵时间48 h,乙醇浓度达到91.6 g/L,乙醇对糖的得率为0.464,为理论值的90.6%。[结论]此工艺为菊芋乙醇工业化的生产提供了有利条件。  相似文献   

8.
为研究地肤子水提液对植物病原真菌的抑制作用及其活性部位,试验用生长速率法测定了水提液对10种植物病原真菌的抑菌效果和指示菌的室内毒力,并确定了水提液经大孔树脂分离后的抑菌活性部位。结果表明:地肤子水提液对植物病原真菌有良好的抑制作用,在质量浓度为106mg/L时水提液对辣椒炭疽病菌抑菌活性最强,抑制率为99.96%,EC50值为2.28×104mg/L,经大孔树脂分离20%乙醇洗脱液抑制辣椒炭疽病菌活性最强,抑制率达100%,EC50值为5.46×103mg/L。抑菌物质可能是极性较强的成分。  相似文献   

9.
对薏仁多糖的水提和发酵的提取条件进行了优化,并研究了薏仁多糖提取液抗氧化活性和透皮吸收效果。结果表明,薏仁多糖水提的最佳条件为料液比0.11(g/mL),温度90℃,时间7 h;发酵最佳条件为酿酒酵母,料液比0.1(g/mL),时间54 h,pH 4.5;薏仁多糖发酵提取率约为水提的3倍。薏仁多糖发酵液抗氧化性优于水提液;薏仁多糖发酵液24 h透过率为1.14 mg/cm~2,水提液24 h透过率为0.53 mg/cm~2。  相似文献   

10.
该研究以汽爆毛白杨木粉为原料,采用正交实验法进行同时糖化发酵(SSF)来生产乙醇,通过考察反应温度、pH值、酶浓度和酵母用量来寻找绿色木霉纤维素酶和酿酒酵母同时糖化发酵转化汽爆毛白杨木粉成乙醇的最佳条件,研究结果表明:①在相同条件下,同时糖化发酵可提高汽爆毛白杨木粉转化成乙醇的效率,转化率高达86%,比分步糖化发酵(LHF)提高了1.6倍;②绿色木霉纤维素酶和酿酒酵母同时糖化发酵转化汽爆毛白杨木粉成乙醇的最佳条件为:反应温度36℃,pH值5。0,酶浓度25u/g,酵母用量(湿重)0.01g/mL发酵液。  相似文献   

11.
以毛竹为研究对象,采用蒸汽爆破法进行预处理并对爆破前后化学组成和纤维形态的变化进行分析,以及GC-MS技术对爆破后的降解产物进行鉴定.结果表明:(1)蒸汽爆破预处理使得半纤维素含量大幅度降低,纤维素含量相对增加,木质素含量稍有变化;(2)爆破后纤维长度降低,纤维表面明显有碎片和裂纹,爆破后的纤维相对结晶度明显提高;(3)毛竹爆破液的乙酸乙酯萃取物中,共鉴别出以戊二酸二乙酯为主的32种化合物.  相似文献   

12.
红麻秸秆发酵转化燃料乙醇   总被引:1,自引:1,他引:1  
红麻秸秆含纤维素42.31%、半纤维素22.58%、木质素23.79%.分别采用热水和3%硫酸、1.5%烧碱溶液对红麻秸秆进行预处理(121℃,60 min),通过纤维素酶催化水解,红麻秸秆平均纤维素转化率分别达到12.23%、25.62%和85.34%,说明碱性预处理比较适合.以10 g碱处理红麻秸秆样品为底物的同步糖化发酵试验表明,当发酵168 h后,乙醇浓度达到26.06 mg.mL-1,乙醇产率达到理论产率的76.71%.  相似文献   

13.
曾汉元  宋荣  吴林华 《安徽农业科学》2011,(19):11660+11774-11660,11774
[目的]筛选纤维素含量高且木质素含量低的物种,为纤维质能源植物的开发利用积累资料。[方法]采用酸碱洗涤法、硝酸乙醇法和比色法对同一样品棉花的纤维素含量进行测定,从中筛选最佳测定方法,然后采用最佳方法对河八王、斑茅、五节芒、芒和拟高粱进行茎、叶及茎叶混合物的纤维素含量的测定,采用Klason法对它们的木质素含量进行测定。[结果]酸碱洗涤法测定纤维素含量最佳。5种高大禾草中,同一种类的纤维素和木质素含量均为茎〉茎叶混合物〉叶;纤维素含量由高到低依次为河八王(52.1%)、五节芒(47.9%)、斑茅(44.3%)、芒(44.1%)和拟高粱(40.2%);木质素含量由高到低依次为五节芒(32.4%)、芒(29.8%)、斑茅(29.5%)、拟高粱(27.5%)和河八王(26.2%)。[结论]5个样品中,河八王是纤维素含量最高且木质素含量最低的种类,适合作为纤维质能源植物开发利用。  相似文献   

14.
通过酶解实验提出秸秆粗饲料中的粗纤维成分分为两个结构层次,即粗纤维中易被酶水解的是游离型半纤维素和纤维素,难以被酶水解的是与木质素键合的结合型半纤维素和纤维素。试验结果表明,棉花秸秆中半纤维素酶降解部分占半纤维素总量的80.98%,被纤维素酶降解部分占纤维素总量的19.31%;玉米秸秆中被半纤维素酶降解部分占半纤维素总量的60.23%,被纤维素酶降解部分占纤维素总量的44.36%;小麦秸秆中被半纤维素酶降解部分占半纤维素总量的46.20%,被纤维素酶降解部分占纤维素总量的43.04%;水稻秸秆中被半纤维素酶降解部分占半纤维素总量的47.60%,被纤维素酶降解部分占纤维素总量的51.80%。这可能是造成粗饲料消化代谢率低的主要原因。  相似文献   

15.
烤烟纤维素含量的变异及其与化学成分的关系   总被引:1,自引:0,他引:1  
以我国主产烟区292份烤烟样品为材料,研究了烤烟纤维素含量的变异及其与主要化学成分的关系。结果表明:供试烤烟样本纤维素含量主要分布在12.0%~17.0%的范围内,平均值为14.64%±1.78%,变异系数为12.17%;纤维素含量在不同地区之间存在显著差异,在不同年份和不同部位之间差异则不显著;部分地区和不同部位烤烟纤维素含量与某些化学成分之间的相关性达到了显著水平。  相似文献   

16.
F_1菌株对玉米秸秆木质素和纤维素降解能力的研究   总被引:2,自引:1,他引:1  
为了探讨F1菌株的产酶活性及其对玉米秸秆中木质素和纤维素的降解能力,以羧甲基纤维素钠为诱导物配制培养基Ⅰ,以不加羧甲基纤维素钠为对照配制培养基Ⅱ,分别接种F1菌株,在25℃下培养诱导产生纤维素降解酶Cx,用分光光度法测定不同时间所产生的酶活。将培养5 d的F1菌株以10%的接种量转接到玉米秸秆固体发酵培养基上培养,在5 d1、0 d、15 d2、0 d用差重法测定F1菌株对玉米秸秆中半纤维素、纤维素和木质素的降解能力。结果表明,以羧甲基纤维素钠为诱导物培养基,F1菌株能够产生Cx酶,而且在第5天时酶活性最强。F1菌株在玉米秸秆发酵培养基中的生长情况良好,培养前15 d,F1菌株对纤维素和木质素的降解都很快,之后对纤维素的降解速率明显降低甚至停止降解。培养20 d,对半纤维素、纤维素和木质素的累计降解速率为3.5%、10.5%、7.0%。  相似文献   

17.
香蕉茎叶资源的开发利用研究   总被引:1,自引:0,他引:1  
根据我国香蕉资源丰富而茎叶等副产物利用不够充分的情况,结合国内外研究现状,阐述香蕉茎叶资源的开发利用研究情况及有待研究解决的问题。香蕉茎叶可以作为有机肥料、栽培食用菌、生产饲料、粗纤维加工、医用等,还是开发生物质能的优质原料,是有待大力开发的农作物资源。  相似文献   

18.
野生牛蒡根提取物的抑菌作用研究   总被引:1,自引:0,他引:1  
弥春霞  姜明  任玉兰 《安徽农业科学》2010,38(33):18765-18767
[目的]研究野生牛蒡(Arctum lappa L.)根提取物的抑菌作用,为其开发应用提供理论依据。[方法]采用琼脂打孔扩散法和最低抑菌浓度法研究了野生牛蒡根水提物和70%乙醇提取物的抑菌活性。[结果]2种提取物对供试金黄色葡萄球菌(Staphylococcus aureus.)、枯草杆菌(Bacillus subtilis)、普通变形杆菌(Proteus vulgaris)和大肠杆菌(Escherichia coli)都具有抑菌效果。70%乙醇提取物的抑菌效果优于水提取物,其对金黄色葡萄球菌、枯草杆菌的最低抑菌浓度皆为31.25 mg/ml,对普通变形杆菌的最低抑菌浓度为62.50mg/ml,对大肠杆菌的最低抑菌浓度为250.00 mg/ml;水提物和乙醇提取物对啤酒酵母(Saccharomyces erevisiae)和白色念珠菌(Monilia albican)均未表现出抑菌作用。[结论]野生牛蒡根水提物和乙醇提取物都具有较好的抑制细菌的作用,但无抑制酵母菌的作用,70%乙醇提取物抑制细菌的效果优于水提物。  相似文献   

19.
[目的]研究在新疆棉杆中提取纤维素为原料制备羧甲基纤维素的工艺条件.[方法]以棉杆为原料制备羧甲基纤维素,对影响羧甲基纤维素制取的主要变量进行了考察,包括碱化过程和醚化过程的酸度、时间、温度等对产品产率的影响,得出最佳制备条件,并对所得的产品进行了表征.[结果]试验确定了制备羧甲基纤维素的最优条件为:纤维素(g)∶NaOH(g)∶氯乙酸(g)=1∶1.2∶0.4,碱化温度为40℃,时间为80 min.醚化温度为65 ~70℃,时间为180 min,产品黏度大于450 mPa·s,取代度大于0.6,有效成分大于0.8.[结论]研究可为有效开发利用棉杆资源提供参考依据.  相似文献   

20.
[]中国是世界产茶大国与消费大国,在茶叶加工过程中有大量的废弃茶梗生成,既污染环境又造成生物资源的巨大浪费。茶梗富含纤维素、茶多酚、茶多糖、茶氨酸等营养成分,具有较高的营养价值和开发价值。笔者从利用的角度出发,简述了茶梗作为原料在食用菌培养料方面的研究进展,并提出了一种简单实用的“茶叶生产+茶梗+食用菌+菌渣还园+茶叶生产”综合利用方案,为实际应用提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号