首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以环氧树脂为胶结材料、不同类型的砂和木质碎料作为集料,利用平板振捣器,采用振实法制备了树脂基木质碎料复合材料.分析环氧树脂用量、木质碎料用量以及砂类型对树脂基木质碎料复合材料的抗折、抗压强度的影响规律.结果表明:试件的最大抗压、抗折强度分别可达5.74和17.16 MPa;在相同胶集比下,试件强度随着木质碎料掺入量的增...  相似文献   

2.
通过原位聚合法的二步法制备脲醛@环氧树脂微胶囊,囊壁以尿素和甲醛为原料,囊芯用环氧树脂制备,将其添加进木器水性涂料中形成木器涂膜,探究微胶囊对水性涂膜的性能影响及其自修复效果。通过扫描电子显微镜和红外光谱测试仪对制备的不同芯壁比的微胶囊形貌特征和组成成分进行了观测,并将微胶囊分别以不同浓度添加量加入水性涂层,对涂层的光泽度、硬度、附着力、抗冲击力性能进行了评价。结果表明:在水性涂层中,微胶囊质量分数为10%,芯壁材质量比为0.83∶1时,水性涂层综合性能较好,对涂层各性能的负面影响较少。划痕实验表明,微胶囊质量分数为10%时涂层具有良好的修复能力。通过水性自修复涂层的制备和性能表征,探讨了微胶囊自修复技术应用于水性涂料的可能性,为后续涂料的工程应用研究奠定了基础。  相似文献   

3.
Wood Science and Technology - Bulking treatment with low molecular weight phenol formaldehyde (LmwPF) resin has been found to successfully enhance the properties of low-density wood but emit higher...  相似文献   

4.
High-density and high-resin-content boards were produced by phenolic resin impregnation into board materials prepared by the water-vapor-explosion process (WVE) to develop high-durability wood composite boards for exterior use. Wet-dry cyclic tests and accelerated weathering tests were conducted, and the fundamental properties were determined to examine the effect of resin impregnation on board qualities. Bending and internal bond strength of resin-impregnated boards (I-board) satisfied the criterion for 18-type particleboard described in JIS A 5908. Thickness swelling (TS) after 24-h water immersion was approximately 2%. Resin impregnation improved the dimensional stability of the boards. In wet—dry cyclic testing, TS of I-board was the same as that of plywood. The retention ratio of modulus of rupture of I-board was large; thus, I-board had high bond durability. Color change of I-board was less than that of ordinary particleboard after a 500-h accelerated weathering test. I-Board had lower surface roughness than boards produced by a spray application method (S-board) and higher water repellency, although the difference in resin contents of the face layer was small. Thus, it is suggested that the surface properties and weatherability of I-board were improved by impregnation of phenolic resin. High-density and resin-impregnated boards made from the WVE elements are expected to withstand actual exterior use. Part of this report was presented at the 54th Annual Meeting of the Japan Wood Research Society, Sapporo, August 2004  相似文献   

5.
The results from a duration-of-load and creep testing program on a thick strand-based composite product, using wood from forests attacked by the mountain pine beetle, are presented. The constant loading of experimental beams lasted for 1?year. The long-term deflection was monitored and recorded at a pre-set frequency. Time-to-failure data were also obtained for all the broken specimens. Ramp load test was carried out at different rates of loading to investigate its influence on short-term strength. Finally, the fatigue test was conducted with a triangular cyclic load history, and the strain history was obtained to elucidate the low-cycle fatigue behavior of the composite.  相似文献   

6.
In order to investigate the creep and duration-of-load (DOL) effects in thick strand-based wood composite products, a creep-rupture model is proposed linking the accumulated damage to creep deformation. Results from long-term constant load tests have been interpreted by means of this creep-rupture model, which is capable of representing the time-dependent deflection and time-to-failure data at different stress levels. The predictions of the model have been verified using results from ramp load test at different rates of loading. The creep-rupture model incorporates the short-term strength of the material, the load history and predicts the deflection history as well as the time-to-failure. As it is a probabilistic model, it allows its incorporation into a time-reliability study of wood composites’ applications.  相似文献   

7.
As an essential preliminary evaluation for understanding the hydration behavior of wood-cement-water mixtures, an isothermal calorimetry and experimental method were used to measure the hydration heat of woodcement-water mixtures. The compatibility of 38 wood species with ordinary portland cement was studied using this procedure. Based on the results, all the wood species tested were classified into two groups. The 24 species included in the first group showed a moderating influence on the hydration reaction of cement, and a maximum temperature (T max) peak during the exothermic reaction while the cement set appeared within 24h for each species. The other 14 species inhibited cement hydration completely. According to the maximum hydration temperature (T max) and the time (T max) required to reach the maximum temperature of the mixture, the suitability of each species in the first group was estimated when used as a raw material during production of cement-bonded particleboard. By testing mechanical properties [modulus of rupture (MOR) and internal bonding strength (IB)] during the board-making experiment using the same composition of wood-cement-water, a positive correlation was found betweenT max andt max and MOR and IB. The results imply that the method can be used as a predictor of the general inhibitory properties and feasibility of using wood species as raw materials prior to manufacture of cement-bonded particleboard.Part of this report was presented at the 49th annual meeting of the Japan Wood Research Society, Tokyo, April 1999  相似文献   

8.
抗菌耐磨实木复合地板的研究开发   总被引:2,自引:0,他引:2  
通过在实木复合地板表面覆以具有耐磨和杀菌作用的Al2O3和无机银类纳米材料的表层纸,制成了抗菌耐磨实木复合地板。对该新型地板的各项性能进行了测试,并与其他同类地板进行了比较,结果表明,抗菌耐磨实木复合地板具有较高的耐磨性和较强的杀菌能力,各项物理力学指标符合国家复合地板标准的要求。  相似文献   

9.
ABSTRACT

Multi material mix is a promising approach to reduce weight and the carbon footprint in automotive engineering at competitive costs. As a result, automotive industry is getting more venturous, exploring and applying other materials than metals and plastics – e.g. fibre reinforced plastics (FRPs). In this context, engineered wood products (EWPs) and wood composites should be considered: Wood composites provide high stiffness, strength, excellent damping, high resistance against fatigue and a very low density at low material costs. It is hypothesized that modern wood composites are competitive to metals and artificial fibre-reinforced materials when designed and applied properly. The application of wood and wood composites in automotive engineering calls for precise and reliable material data, required for initial material selection and later in numerical simulation. In this study, a material model normally used for modelling FRPs was adopted. A material database was generated for three hardwood species, to establish the required material parameters and validate material model. Results prove that wooden components can be simulated in crash situations and the selected material model is applicable, even in full vehicle simulation.  相似文献   

10.
以3种状态的竹束和木束为原材料,研究分析在相同条件下,浸渍酚醛树脂胶黏剂固体含量以及浸胶时间对竹束和木束浸胶量的影响。结果表明:相同的条件下,竹束、木束酚醛树脂浸胶量随浸胶时间的增加变化不明显;在相同浸胶时间下,竹束、木束酚醛树脂浸胶量随酚醛树脂胶固体含量的不同而变化显著;确定竹束、木束适宜的浸胶时间和酚醛树脂胶固体含量分别为25 min和30%。  相似文献   

11.
12.
Three-layered composite oriented strand boards were manufactured using very thin hinoki (Japanese cypress, Chamaecyparis obtusa Endl.) strands oriented in the faces and mixtures of sugi (Japanese cedar, Cryptomeria japonica D. Don.) and hinoki particles in the core. The boards were composed of two density levels, with 1:8:1, 0.5: 9 : 0.5, and 0: 10 : 0 face: core: face ratios. Polymeric and emulsion type isocyanate resins were used. The resin contents for the strands in the face and particles in the core were 10% and 5%, respectively. The steam-injection press was applied at 0.62MPa (160°C), and the steam-injection time was 2min. The mechanical and physical properties of the boards were evaluated based on the Japanese Industrial Standard. The parallel moduli of rupture and elasticity along the strand orientation direction and the wood screw retaining force increased with increasing face/core ratios. Incorporation of 10%–20% of thin strands in the face of the boards improved the parallel moduli of rupture and elasticity by 47%–124% and 30%–65%, respectively. In addition, the thickness swelling after water-soaking at 20°C for 24h, and the parallel linear expansion after boiling for 2h and water-soaking at 20°C for 1 h, of the three-layered composite boards were below 8% and 0.15%, respectively, despite a short steam-injection press time. The thickness swelling of the boards decreased with increasing face/core ratios. In contrast, the presence of face strands seems to have a minimal effect on the moduli of rupture and elasticity along the perpendicular direction of the three-layered composite boards. A similar trend was observed for the internal bond strength, hardness, and linear expansion along the perpendicular direction.This paper was presented at the 47th annual meeting of the Japan Wood Research Society, Kochi, April 1997  相似文献   

13.
Summary This paper evaluated the wood composite weathering over time step by Markov theory. By the null hypothesis (H0), the panel weathering under the long-term outdoor exposure was determined to be a Markov process. The transition matrix which derived from the practical data can be calculated by program Markov and thus the future outcome of wood composite weathering can be forecasted. Also, the utility of the Markov model was successfully testified from the example of 3-year natural aging waferboard in Ottawa, Saskatoon, Fredericton areas.  相似文献   

14.
To gain insight into the physical nature of the coupling between mechanical stress and humidity variations, the behaviour of thin wood strips was studied using specially developed apparatus for creep/recovery and relaxation/blotting-out tests in a controlled humidity environment. The load time and the rate of viscoelastic creep were found to have little influence on mechano-sorptive creep. Moreover, creep trajectory curves for specimens with continuous and interrupted humidity cycles indicated divergence from simple creep-limit behaviour. The effect of transient moisture was also modelled numerically at the molecular level using an idealized cellulose-based composite. Preliminary results suggest that: (i) during free shrinkage, the cellulose chains in elementary fibrils may bend perpendicular to the planes of the hydrogen bonded sheets which form the crystalline lattice; (ii) transient hydrogen bonding between the crystalline cellulose and amorphous polymer owing to the introduction or removal of water may accelerate shear slip between the two phases in the presence of an external load. Received 6 July 2000 The financial support of the Swiss Federal Office for Education and Science is gratefully acknowledged.  相似文献   

15.
Radiata pine sapwood and heartwood were dried using high-temperature, conventional-temperature, and air drying schedules with and without pre-steaming. They were then impregnated by vacuum treatment with double-distilled water, toluidine blue, and fluorescein dye. For sapwood, there were only minor differences in uptake between drying methods and when pre-steaming was used. Using microscopy, the primary flow pathways in sapwood were found to be the resin canal network and ray parenchyma cells, which provided conduction without large resistance. In heartwood, uptake was strongly influenced by pre-steaming the green lumber. After pre-steaming heart-wood, there was an increase in uptake from all surfaces but especially from the radial surfaces. Lower extractive contents, disruption of epithelial and ray parenchyma cells, and alteration of the condition of bordered pits were also associated with pre-steaming. It was therefore possible to classify flow paths in radiata pine heartwood five ways, according to uptake values and wood anatomical features.This research was presented in part at the 48th annual meeting of the Japan Wood Research Society, Shizuoka, April 1998.  相似文献   

16.
In order to improve wood properties of triploid clones of Populus tomentosa, urea-formaldehyde (UF) resin was compounded with nano-SiO2, coupling agents and flame retardants in different ways to prepare five kinds of modifiers. The poplar wood samples were impregnated with the modifiers and heated to prepare UF-SiO2-wood composites. The antiswelling efficiency, resistance of water absorption, oxygen index and hardness of the composites were measured. Results show that all of the modifiers reduced water absorption of poplar wood and enhanced flame resistance and hardness. Nano-SiO2 showed a marked effect in improving the hardness of wood. In addition, all of the modifiers, except UF-C-SiO2-polymer, improved the dimensional stability of poplar wood. The UF resin and nano-SiO2 compound improved general properties of poplar wood. __________ Translated from Journal of Beijing Forestry University, 2006, 28(2): 123–128 [译自: 北京林业大学学报]  相似文献   

17.
This research work aimed at studying the effects of oleothermal modification of fir wood by using combined soybean oil with maleic anhydride (OHT–MA) to achieve lower treatment temperatures and enhance physico-mechanical properties. Wood blocks were oleothermally treated with soybean oil and OHT–MA at five different treatment temperatures (100, 120, 140, 160 and 180 °C) for three different holding times (30, 60 and 180 min). Afterward, physical and mechanical properties of the treated samples were determined, i.e., density, water absorption and volumetric swelling as the physical properties and bending strength, compression parallel to grain and impact load resistance as the mechanical properties. Results revealed increases in densities and reduction in water absorption as well as volumetric swelling of all treated samples. The mechanical properties were affected by OHT–MA treatment at different temperatures. Bending modulus of elasticity as well as compression parallel to grain was increased due to OHT–MA treatment. In addition, there was less reduction in impact load resistance of the treated samples. It was revealed that the OHT–MA enhanced wood properties at low treatment temperatures as well as shorter holding times.  相似文献   

18.
High temperature and chemical effects on wood stability   总被引:9,自引:0,他引:9  
Summary The increasing supplies of fast-grown woods grown on short roations contain significantly higher proportions of juvenile wood with properties different from those of mature wood. Improved processes will be required to produce dried wood that is satisfactorily stable with few distortional or dimensional changes. The basic wood features affecting different forms of instability are considered. Variations in the amounts of cellulose, hemicelluloses and lignins in wood, the changes in them and the degradation products formed under different conditions are discussed. Changes in the nature of hemicelluloses appear to play an important role in conveying stability. The different volumes of heartwood in green timber have an effect on moisture levels and other properties. As industry is increasing kiln temperatures for high-temperature drying, the effect of time-temperature-moisture relationships on stability and degradation are discussed. The effect of ammonia and other chemicals on stability is considered.  相似文献   

19.
Summary A study was made of the softening curves of wood in different growth rings taken from young radiata pine trees. The curves were determined from the rate of twist of a strip of wood under constant torque when heated at a steadily increasing temperature. The softening points of about 80° and 100°C are attributed to hemicelluloses and lignins respectively and were indistinct in sapwood taken from the 3rd and 4th growth rings from the pith but became increasingly distinct in growth rings further from the pith. Heartwood in the juvenile wood zone had two distinct softening points. Differences in the softening curves are attributed to differences in the chemistry of the hemicelluloses.The authors thank Mr. R. M. Cowan and associates, Woods and Forests Department of South Australia, Mr. R. Cherry, Australian Forest Industries, Myrleford, the Forests Commission Victoria for material and to Dr. P. U. A. Grossman for discussion  相似文献   

20.
Summary A study was made of the rigidity and stability of wood in different growth rings taken from young radiata pine trees. The stability of dried wood to moisture changes was deduced from changes in the rigidity under constant torque after wetting. Stability increased with increasing temperature and time of drying, with increasing age of the sapwood and it varied according to the origin of the tree and between trees. Evidence indicated heartwood would be more readily dried to a stable form than sapwood.The authors thank Mr. R. M. Cowan and associates, Woods and Forests Department of South Australia, Mr. R. Cherry, Australian Forest Industries, Myrtleford, the Forests Commission Victoria for material and to Dr. P. U. A. Grossman for discussion  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号