首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We formulated and tested models of relationships among determinants of vegetation cover in two agroforested landscapes of eastern North America (Haut Saint-Laurent, Quebec, Canada) that differed by the spatial arrangement of their geomorphic features and intensity of agricultural activities. Our landscape model compared the woody plots of each landscape in terms of the relative influence of environmental attributes, land use history (1958 – 1997), and spatial context (i.e., proximity of similar or contrasting land cover). Our vegetation model evaluated the relative contribution of the same sets of variables to the distributions of herbs, trees, and shrubs. Relationships were assessed using partial Mantel tests and path analyses. Significant environmental and contextual differences were found between the vegetation plots of the two landscapes, but disturbance history was similar. Our vegetation model confirms the dominant effect of historical factors on vegetation patterns. Whereas land-use history overrides environmental and contextual control for trees, herbaceous and shrub species are more sensitive to environmental conditions. Context is determinant only for understory species in older, less-disturbed plots. Results are discussed in relevance to vegetation dynamics in a landscape perspective that integrates interactions between environmental and human influences.  相似文献   

2.
The spatial genetic structuring of the land snail Helix aspersa was investigated for 32 colonies within an intensive agricultural area, the polders of the Bay of Mont-Saint-Michel (France). Given the habitat patchiness and environmental instability, the setting of H. aspersa colonies meets the broader view of a metapopulation structure. The identification of extrinsic barriers to migration and their impact on the genetic distribution was addressed through the genotyping of 580 individuals using a combined set of enzyme and microsatellite loci. To evaluate the distance as well as the direction over which the spatial genetic arrangement occurs, two-dimensional spatial autocorrelation analyses, Mantel tests of association and multivariate Mantel correlograms were used. Different connectivity networks and geographical distances based on landscape features were constructed to evaluate the effect of environmental heterogeneity and to test the adequacy of an isolation by distance model on the distribution of the genetic variability. Genetic divergence was assessed using either classical IAM-based statistics, or SMM-based genetic distances specifically designed to accommodate the mutational processes thought to fit microsatellite evolution (IAM: Infinite Allele Model; SMM: Stepwise Mutation Model). Genetic distances based only on genetic drift yielded the most plausible biologically meaningful interpretation of the observed spatial structure. Applying a landscape-based geographical distance which postulates that migration arises along roadside verges, hedges or irrigation canal embankments gave a better fit to an isolation by distance model than did a simple Euclidean distance. The progressive decline of genetic similarity with physical distance appeared to be environmentally induced, leading to functional migration pathways.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

3.
Urban street trees are part of the bundle of environmental amenities that support healthy social, economic, and environmental functions. In this study, we systematically evaluate the quality of 196,825 street trees at the US. Census tract level in Washington D.C., as well as related impacts from socioeconomic, landscape patterns and environmental factors using Ordinary least-squares (OLS) regression, geographically weighted regression (GWR) and structural equation modeling (SEM). Our results reveal that environmental and socioeconomic factors can explain most of the spatial variation of street tree quality in Washington, D.C. There is a substantial statistical negative relationship between median household income and the percent of street trees under stress, which provided the evidence of the inequities of street tree quality in Washington D.C. Higher-income neighborhoods exhibited a lower proportion of street trees under stress. In addition, the extreme summer temperature is positively associated with the proportion of street trees under stress. The quality of street trees is directly impacted by environmental and landscape pattern factors. There is also an indirect impact from socioeconomic factor toward quality of street trees. Our findings suggest that multiple variables, related to income, age, education, landscape pattern, and environment contribute to the quality of street trees in D.C. Based upon our findings, we identify strategies and insights for urban street tree management in DC to not only address environmental inequity and injustice, but also promote a more inclusive and resilient urban greenery system.  相似文献   

4.
5.
Spatial and temporal changes in community structure of soil organisms may result from a myriad of processes operating at a hierarchy of spatial scales, from small-scale habitat conditions to species movements among patches and large-sale landscape features. To disentangle the relative importance of spatial and environmental factors at different scales (plot, patch and landscape), we analyzed changes in Collembola community structure along a gradient of forest fragmentation, testing predictions of the Hierarchical Patch Dynamics Paradigm (HPDP) in different European biogeographic regions (Boreal, Continental, Atlantic, Mediterranean, Alpine). Using variance partitioning methods, based on partial CCAs, we observed that the independent effect of environmental processes was significantly explaining Collembola community variance in all regions, while the relative effect of spatial variables was not significant, due to the observed high levels of landscape heterogeneity along the gradient. Environmental factors at the patch and plot scales were generally significant and explained the larger part of community changes. Landscape variables were not significant across all study sites. Yet, at the landscape level, an increase in forest habitat and proximity of forest patches were showed to have an indirect influence on local community changes, by influencing microhabitat heterogeneity at lower spatial scales in all studied regions. In line with HPDP, large-scale landscape features influenced spatio-temporal changes in soil fauna communities by constraining small-scale environmental processes. In turn, these provided mechanistic understanding for diversity patterns operating at the patch scale, via shifts in community weighted mean of Collembola life-forms occurring in local communities along the fragmentation gradient.  相似文献   

6.
Different organisms respond to landscape configuration and spatial structure in different terms and across different spatial scales. Here, regression models with variation partitioning were applied to determine relative influence of the three groups of variables (climate, land use and environmental heterogeneity) and spatial structure variables on plant, bird, orthopteran and butterfly species richness in a region of the Southern Alps, ranging in elevation from the sea level to 2,780 m. Grassland and forest cover were positively correlated with species richness in both taxonomic groups, whilst species richness decreased with increasing urban elements and arable land. The variation was mainly explained by the shared component between the three groups in plants and between landscape and environmental heterogeneity in birds. The variation was related to independent land use effect in insects. The distribution in species richness was spatially structured for plants, birds and orthopterans, whilst in butterflies, no spatial structure was detected. Plant richness was associated with linear trend variation and broad-scale spatial structure in the northern part of the region, whilst bird richness with broad-scale variation which occurs on the external Alpine ridge. Orthopteran diversity was strongly related to fine-scale spatial structure, generated by dynamic processes or by unmeasured spatially structured abiotic factors. Although the study was carried out in relatively small area, the four taxonomic groups seem to respond to biodiversity drivers in a surprisingly different way. This has considerable implications for conservation planning as it restricts the usefulness of simple indicators in prioritizing areas for conservation purposes.  相似文献   

7.
In this study, we investigated the environmental factors driving small mammal (rodents and shrews) assemblages in permanent habitat patches in response to a gradient of agricultural intensification. Small mammals were sampled using a trapping standard method in the hedgerow networks of three contrasted landscapes differing by their level of land-use intensity and hedgerow network density (BOC1: slightly intensified; BOC2: moderately intensified and POL: highly intensified). We hypothesized that habitat and landscape characteristics have to be considered to understand the structure of local community. In that way, we carried out a multi-scale study using environmental variables ranging from local habitat (structure and composition of the hedgerows) to hedgerows neighbourhoods in a radius of 300 m (land cover and connectivity around hedges) and to landscape units (three sites). During 1 year, 24 hedgerows were sampled seven times, representing a total of 1,379 captures (86% of rodents and 14% of shrews) and eight species, dominated by the wood mouse (Apodemus sylvaticus) and the bank vole (Clethrionomys glareolus). Inter-site variability was significant and accounted for 18% of total variation in small mammal species abundances. But intra-site variability was also highlighted: species abundance profiles may differ greatly among hedgerows within a site. The more explanatory variables were identified at the different scales of the study: the landscape unit POL was shown to be an important factor in structuring the community, but the predominant factors explaining differences of abundances among hedgerows were about local habitat. In fact, the width of hedges and the tree species richness appeared to be significant and explaining the greatest part of the total variation of the small mammal community composition.  相似文献   

8.
There has been an increasing interest in evaluating the relative condition or health of water resources at regional and national scales. Of particular interest is an ability to identify those areas where surface and ground waters have the greatest potential for high levels of nutrient and sediment loadings. High levels of nutrient and sediment loadings can have adverse effects on both humans and aquatic ecosystems. We analyzed the ability of landscape metrics generated from readily available, spatial data to predict nutrient and sediment yield to streams in the Mid-Atlantic Region in the United States. We used landscape metric coverages generated from a previous assessment of the entire Mid-Atlantic Region, and a set of stream sample data from the U.S. Geological Survey. Landscape metrics consistently explained high amounts of variation in nitrogen yields to streams (65 to 86% of the total variation). They also explained 73 and 79% of the variability in dissolved phosphorus and suspended sediment. Although there were differences in the nitrogen, phosphorus, and sediment models, the amount of agriculture, riparian forests, and atmospheric nitrate deposition (nitrogen only) consistently explained a high proportion of the variation in these models. Differences in the models also suggest potential differences in landscape-stream relationships between ecoregions or biophysical settings. The results of the study suggest that readily available, spatial data can be used to assess potential nutrient and sediment loadings to streams, but that it will be important to develop and test landscape models in different biophysical settings.  相似文献   

9.
An advantage of trait-based approaches to ecology is the ability to predict the response of a species assemblage to environmental change through trait–environment relationships. Because species assemblages are also known to be affected by spatial processes, variation in community-level traits may be similarly affected by spatial structure. Furthermore, the importance of spatial structure may vary with changes to the environment. Using a dataset describing a local stream fish assemblage and environmental variables, we examine the relative contribution of environmental and spatial factors in explaining variation in community-level traits across seasons. We also test for any spatial structuring of community-level traits. For most traits, seasonal environmental change did not seem to alter the relative importance of environmental factors. Traits that did not vary consistently with environmental variables across seasons exhibited significant spatial structure. Overall, relationships between traits and environmental variables seemed to operate on a continuum with ‘environmental traits’ (those that were strongly correlated with environmental variables in response to environmental change) at one end to ‘spatial traits’ (those that did not correlate with environments, but exhibited spatial structure) at the other. We suggest that the distinction between these types of traits is important, as different modeling approaches would be appropriate in using community-level traits to predict the response of species assemblages to environmental change.  相似文献   

10.

Context

Species distributions are driven by a wide variety of abiotic and biotic factors, including nest placement for breeding individuals. As such, the spatial distribution of nests within a landscape can reflect environmental heterogeneity, habitat preferences, or even interactions with predators and other species.

Objectives

We determined the extent to which environmental heterogeneity and predation risk accounted for the observed spatial distribution of nests.

Methods

We assessed the spatial distribution of 112 nests of a migratory shorebird, the Hudsonian Godwit (Limosa haemastica), at Beluga River, Alaska, from 2009 to 2012, and explicitly tested for the relative influence of habitat characteristics and predation risk on nest locations. We also evaluated the effect of nest location, distance to conspecific nests, and proximity to roads on nest fate using 64 nests that were monitored through completion.

Results

Hudsonian Godwit nests were clustered across the landscape despite a lack of significant spatial autocorrelation (i.e., patchiness) in vegetation characteristics at either the micro- or landscape scale. Nest fate also was not predicted by either the distance to the nearest conspecific neighbor or proximity to roads. Thus, neither habitat characteristics nor predation risk explained the clustering of godwit nests.

Conclusions

These results suggest that godwits may select nest locations based more on social cues than underlying heterogeneity in vegetation or predation risk. As such, intra- and inter-specific interactions should be considered when developing management plans for species of conservation concern.
  相似文献   

11.
Analysis of carabids spatial distribution in a hedgerow network landscape in western France, pinpoints the role of the landscape among other levels of ecological organization.Dispersion of forest species differs among core forest species, peninsula forest species and corridor forest species. Abundance of forest carabid species in a particular hedgerow is related to the positive effect of a dense herbaceous layer and the presence of a tree layer which is enhanced by the presence of two parallel hedgerows, especially along lanes.At the landscape level distance from the largest forest determines abundance of forest species within the first kilometer out of it. Beyond that, abundance is independent of distance from the source forest and the discriminant ecological factors are: hedgerow structure, presence of lanes bordered by two hedgerows.  相似文献   

12.
A common approach used to estimate landscape resistance involves comparing correlations of ecological and genetic distances calculated among individuals of a species. However, the location of sampled individuals may contain some degree of spatial uncertainty due to the natural variation of animals moving through their home range or measurement error in plant or animal locations. In this study, we evaluate the ways that spatial uncertainty, landscape characteristics, and genetic stochasticity interact to influence the strength and variability of conclusions about landscape-genetics relationships. We used a neutral landscape model to generate 45 landscapes composed of habitat and non-habitat, varying in percent habitat, aggregation, and structural connectivity (patch cohesion). We created true and alternate locations for 500 individuals, calculated ecological distances (least-cost paths), and simulated genetic distances among individuals. We compared correlations between ecological distances for true and alternate locations. We then simulated genotypes at 15 neutral loci and investigated whether the same influences could be detected in simple Mantel tests and while controlling for the effects of isolation-by-distance using the partial Mantel test. Spatial uncertainty interacted with the percentage of habitat in the landscape, but led to only small reductions in correlations. Furthermore, the strongest correlations occurred with low percent habitat, high aggregation, and low to intermediate levels of cohesion. Overall genetic stochasticity was relatively low and was influenced by landscape characteristics.  相似文献   

13.
Investigations of spatial patterns in forest tree species composition are essential in the understanding of landscape dynamics, especially in areas of land-use change. The specific environmental factors controlling the present patterns, however, vary with the scale of observation. In this study we estimated abundance of adult trees and tree regeneration in a Southern Alpine valley in Ticino, Switzerland. We hypothesized that, at the present scale, spatial pattern of post-cultural tree species does not primarily depend on topographic features but responds instead to small-scale variation in historical land use. We used multivariate regression trees to relate species abundances to environmental variables. Species matrices were comprised of single tree species abundance as well as species groups. Groups were formed according to common ecological species requirements with respect to shade tolerance, soil moisture and soil nutrients. Though species variance could only be partially explained, a clear ranking in the relative importance of environmental variables emerged. Tree basal area of formerly cultivated Castanea sativa (Mill.) was the most important factor accounting for up to 50% of species’ variation. Influence of topographic attributes was minor, restricted to profile curvature, and partly contradictory in response. Our results suggest the importance of biotic factors and soil properties for small-scale variation in tree species composition and need for further investigations in the study area on the ecological requirements of tree species in the early growing stage.  相似文献   

14.
园林植物光合生理特征研究进展   总被引:1,自引:0,他引:1  
园林植物光合生理特征研究是为解决环境生态问题,尤其是全球环境变化问题应运而生的一门学科,它结合园林植物生理学来分析生态学现象。植物学中最重要的生态学现象是光合作用,综述光合生理生态研究状况,以及不同因素对园林植物的光合生理生态的影响,为深入研究我国的园林植物光合生理生态资源提供参考。  相似文献   

15.
A site suitability model of urban development was created for the Santa Monica Mountains in southern California, USA, to project to what degree future development might fragment the natural habitat. The purpose was to help prioritize land acquisition for the Santa Monica Mountains National Recreation Area and examine to what extent projected urban development would affect distinct vegetation classes. The model included both environmental constraints (slope angle), and spatial factors related to urban planning (proximity to roads and existing development, proposed development, and areas zoned for development). It implemented a stochastic component; areas projected to have high development potential in the suitability model were randomly selected for development. Ownership tracts were used as the spatial unit of development in order to give the model spatial realism and not arbitrarily `develop' grid cells. Using different assumptions and parameters, the model projected the pattern of development from 5 to 25 years hence (based on recent development rates in the area). While <25% of the remaining natural landscape is removed under these scenarios, up to 30% of core (interior) habitat area is lost and edge length between natural vegetation and development increases as much as 45%. Measures of landscape shape complexity increased with area developed and number of patches of natural habitat increased four- to nine-fold, depending upon model parameters. This increase in fragmentation occurs because of the existing patterns of land ownership, where private (`developable') land is interspersed with preserved park lands.  相似文献   

16.
林内景观质量评价对林场的经营和管理有重要意义,而林分空间结构的研究对生态景观林景观质量有重要影响。以塞罕坝机械林场落叶松纯林与落叶松-白桦混交林为研究对象,选取了16张最具代表性的照片,采用美景度评价(SBE)法以美景度作为景观质量指标,通过探究林分空间结构对林分夏季近景的景观质量影响,进而为塞罕坝生态景观林夏季景观经营技术提供依据。结果表明:(1)林内垂直结构越完整,林下整齐度越高,人们的喜好频数越高,美景度越高。(2)林内透视距离与美景度值存在明显的二项式关系;林内透视距离高于1倍树高时,美景度值随透视距离增加而增加。(3)林分枝下高与株高比值和美景度值存在二项式关系,林分枝下高与株高比值在0.5~0.6之时,美景度值存在1个峰值,此时人们接受程度最高。人们对林内垂直结构、透视距离、林下整齐度、树干形态与枝下高等指标偏好程度为打造更美好的生态景观林提供科学指导,对林场的转型和森林景观旅游事业有促进作用。  相似文献   

17.
While landscape trajectories are increasingly used for tracking change in processes such as agricultural intensification and urbanization, analyses that combine environmental and human disturbances remain scarce. The aim of this study was to investigate the relationship between Shannon evenness, a measure of landscape composition, and spatial contagion, a measure of landscape configuration, within sixteen Canadian regions covering a gradient of land-uses and human disturbances: natural, semi-natural, urban, and agricultural. The agricultural regions showed generally lower variation in contagion and evenness and overall lower contagion values (smaller patches), leading to steeper contagion-evenness slopes than in the other region categories. In addition, the sampled agricultural regions were much more similar to each other than were the sampled regions within each of the other three region categories. These results indicate that the process of agricultural development (at least in western Canada) leads to a reduction in pattern variation and an alteration of the expected relationships among pattern metrics in agricultural regions. This possibility is supported by a neutral model of patch dynamics, suggesting that the characteristic scale of disturbances is a generic structuring process of landscape trajectories.  相似文献   

18.
Biotic communities are structured by both regional processes (e.g., dispersal) and local environmental conditions (e.g., stress). We examined the relative importance of landscape position (position within the hydrologic flow system and distance from other lakes) and local environmental factors in determining the assemblage structure of lake-dwelling snails and fingernail clams in a boreal landscape. Both landscape position and local environmental factors were highly influential in structuring the molluscan assemblages. In canonical correspondence analysis, 53.6% of snail and 48.2% of fingernail clam assemblage composition were accounted for by both sets of variables. The pure effects of landscape position were higher than those of environmental variables, and a considerable amount of variability was shared by the two sets of variables. In regression analysis, 95.5% of snail and 62.2% of fingernail clam species richness was accounted for by the explanatory variable groups, with most of the variability being related to shared effects, followed by landscape position. The effects of landscape position on species composition suggest that passive dispersal increases the similarity of molluscan assemblages in adjacent lakes. This process does not lead to an overall homogenisation of assemblage composition across the landscape, however, because local conditions set a strong environmental filter, excluding species that arrive at an unsuitable lake. These environmental filters may reflect either extinction probability (area, productivity) or species niche differences (calcium levels, abiotic stress). Landscape position may also be important in maintaining the species richness of lake-dwelling molluscan assemblages. By providing potential colonists, nearby source lakes are likely to be important in countering local extinctions. Our test of the relative importance of landscape position and local drivers of assemblage structure was partly confounded by their co-variation. Nevertheless, studying the relationship between landscape position and local variables is useful because it can tell us about the importance of local and regional processes in shaping lake communities.  相似文献   

19.
In densely urbanized areas, small pockets of vegetated areas such as street verges, vacant lots, and walls can be rich in biodiversity. In spite of their small size, these ‘informal urban greenspaces’ can provide critical ecosystem services to urban residents. Maintaining and enhancing the provisioning of ecosystem services requires a systematic understanding of biodiversity patterns and drivers in informal urban green spaces. The ‘environmental filtering’ (a process of certain species selected by specific environmental conditions) concept in community ecology theory may serve as a useful tool for this goal. We tested a multi-scale filtering framework by examining the spontaneous plant diversity patterns (from 83 surveyed sites) on the vertical surfaces of the ancient city wall of Nanjing, China. We found that the variables representing local-habitat filtering (e.g., wall substrates and aspect) and landscape filtering (including spatial configuration of urban land cover, and nighttime light intensity surrounding the local habitats) can jointly explain substantial fractions of variations in taxonomic diversity (up to ca. 60%) and functional diversity (up to ca. 40%). The explanatory power was stronger in the repaired wall habitats than in the unrepaired counterparts, in line with the prediction that environmental filtering is more pronounced during the early stages of community assembly. While the strength of landscape filtering showed clear scale-dependency, its relative importance consistently outweighs local-habitat filtering across all study scales of 200–1600 m, suggesting that configuration of neighboring landscape context can play an important role in shaping local-scale biodiversity of informal urban green spaces. Our results have useful implications for the study, design, and management of informal urban green spaces. Well-tailored multi-scale filtering frameworks may contribute to understanding urban biodiversity patterns in a systematic way.  相似文献   

20.
The fragmented landscape of the Midwest USA includes prairie remnants embedded in an agricultural matrix, potentially impermeable to dispersing individuals. We examined butterfly responses to local (environmental variables measured within the prairie fragment itself such as vegetative characteristics) and landscape (environmental variables measured up to 2 km surrounding the fragment, but not the fragment itself) factors at 20 prairie remnants in Iowa. Our objectives were to: 1) document how the composition and configuration of the landscape affects butterfly community within the fragment, 2) determine whether explanatory power is gained by including both landscape and local variables rather than only local variables, and 3) analyze differences in butterfly community composition between linear and block shaped fragments. Results from partial least squares regression suggest there are significant effects of the landscape on butterfly community composition at all spatial extents investigated. The local variable that was most highly correlated with butterfly community response was percentage litter, while percentage of roads was the most important variable at all landscape spatial extents. Ordination diagrams clearly separate linear from block sites based on butterfly community composition. Variance partitioning using partial canonical correspondence analysis indicated that landscape variables at all spatial extents add additional explanatory power beyond local variables with little overlap in percentage of variation explained. Our results suggest that butterflies are making decisions based both on the local and landscape environmental factors, thus land surrounding prairie remnants should be included in management decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号