首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
长效尿素的供氮过程及其在稻—麦轮作下的生物学效应   总被引:1,自引:0,他引:1  
采用磷酸盐包膜工艺制成长效尿素PCU,含N 33.8%,全磷(P)5.15%,有效磷(P)4.10%。同日本产品SCU和IBDU进行了盆栽和田间小区及微区试验,发现:(1)PCU作基肥穴施其供氮强度和供氮容量均高于SCU和IBDU;(2)PCU在红壤上对中稻的产量效应显著高于普通尿素分次施。但在黄泥土和白土上对单晚的肥效不及普通尿素分次施;(3)PCU作基肥穴施在中稻上其氮素利用率最高,达到79%,而SCU和IBDU作基肥混施以及普通尿素分次施的氮素利用率分别为60%,42%和34%;(4)长效肥的后效与释放率呈反相关的趋势,即释放率越低,后效越长,如释放率最低的IBDU的后效比SCU和PCU分别高89%和47%。  相似文献   

2.
Polymer-coated urea (PCU) may facilitate nitrogen (N) placement with the seed. Laboratory experiments evaluated the effect of (i) variety and N treatment and (ii) urea contact with the seed on winter wheat (Triticum aestivum L.) emergence. Four varieties were grown in a silt loam soil (–200 kPa Ψm, where Ψm is matric potential) with control (0 kg N ha?1), PCU treatment (44% N) at 56, 112, and 168 kg N ha?1, or urea treatment (56 kg N ha?1) placed with the seed. One variety had less emergence than the control with PCU at N rates ≥112 kg ha?1. Urea delayed and decreased emergence of all varieties. In another experiment, urea (56 kg N ha?1) was placed in contact with or between seeds. The contact treatment exhibited delayed and lower emergence. The no-contact treatment behaved similar to controls. Large amounts of 44% N PCU can be placed with the seed without reducing wheat emergence when soil Ψm is at least –200 kPa.  相似文献   

3.
ABSTRACT

Two Chilean soils were used to evaluate the performance of the nitrification inhibitor 3,4-dimetilpirazol phosphate (DMPP) added to ammonium-sulfate-nitrate (ASN) in comparison with traditional nitrogen (N) sources and different N-application forms. Two experiments were conducted: In the first, broccoli (Brassica oleracea var. italica) plants were cultivated in pots under greenhouse conditions, and received a N-fertilization equivalent to 150 Kg N ha?1 as ASN+DMPP (one application), urea (two splits), and sodium-potassium nitrate (three splits). In the second, ryegrass (Lolium spp.) plants were grown in pots under shading conditions. In this case, ASN+DMPP and urea were applied at N rates equivalent to 150 and 300 Kg N ha?1 in a single application. In the first experiment, ASN+DMPP increased dry-matter production, maintained a higher N content in the soil (at least until the middle of the growing period), and improved fertilizer N-use efficiency (FUE) in one soil. There were no significant differences in N-leaching losses. In the ryegrass experiment, ASN+DMPP increased dry-matter production and FUE, while N-leaching losses were reduced. Treatments with ASN+DMPP maintained higher N levels in soil throughout the growing period, and there were no significant differences in the available N fraction between the two N rates. The use of DMPP-containing fertilizers may be a good alternative for increasing FUE.  相似文献   

4.
Summary Field studies of the effects of different N fertilizers on emission of nitrous oxide (N20) from three Iowa soils showed that the N2O emissions induced by application of 180 kg ha–1 fertilizer N as anhydrous ammonia greatly exceeded those induced by application of the same amount of fertilizer N as aqueous ammonia or urea. On average, the emission of N2O-N induced by anhydrous ammonia was more than 13 times that induced by aqueous ammonia or urea and represented 1.2% of the anhydrous ammonia N applied. Experiments with one soil showed that the N2O emission induced by anhydrous ammonia was more than 17 times that induced by the same amount of N as calcium nitrate. These findings confirm indications from previous work that anhydrous ammonia has a much greater effect on emission of N2O from soils than do other commonly used N fertilizers and merits special attention in research relating to the potential adverse climatic effect of N fertilization of soils.Laboratory studies of the effect of different amounts of NH4OH on emission of N2O from Webster soil showed that the emission of N2O-N induced by addition of 100 g NH4OH-N g–1 soil represented only 0.18% of the N applied, whereas the emissions induced by additions of 500 and 1 000 g NH4OH-N g–1 soil represented 1.15% and 1.19%, respectively, of the N applied. This suggests that the exceptionally large emissions of N2O induced by anhydrous ammonia fertilization are due, at least in part, to the fact that the customary method of applying this fertilizer by injection into soil produces highly alkaline soil zones of high ammonium-N concentration that do not occur when urea or aqueous ammonia fertilizers are broadcast and incorporated into soil.  相似文献   

5.
High N fertilizer and flooding irrigation applied to rice in anthropogenic‐alluvial soil often result in N leaching and low use efficiency of applied fertilizer N from the rice field in Ningxia irrigation region in the upper reaches of the Yellow River. Sound N management practices need to be established to improve N use efficiency while sustaining high grain yield levels and minimize fertilizer N loss to the environment. We investigated the effects of Nursery Box Total Fertilization technology (NBTF) on N leaching at different rice growing stages, N use efficiency and rice yield in 2010 and 2011. The four fertilizer N treatments were 300 kg N ha−1 (CU, Conventional treatment of urea at 300 kg N ha−1), 120 kg N ha−1 (NBTF120, NBTF treatment of controlled‐release N fertilizer at 120 kg N ha−1), 80 kgN ha−1 (NBTF80, NBTF treatment of controlled‐release N fertilizer at 80 kg N ha−1) and no N fertilizer application treatment (CK). The results showed that the NBTF120 treatment increased N use efficiency, maintained crop yields and substantially reduced N losses to the environment. Under the CU treatment, the rice yield was 9634 and 7098 kg ha−1, the N use efficiency was 31·6% and 34·8% and the leaching losses of TN were 44·51 and 39·89 kg ha−1; NH4+‐N was 5·26 and 5·49 kg ha−1, and NO3‐N was 27·94 and 26·22 kg ha−1 during the rice whole growing period in 2010 and 2011, respectively. Compared with CU, NBTF120 significantly increased the N use efficiency and decreased the N losses from the paddy field. Under NBTF120, the N use efficiency was 56·3% and 51·4%, which was 24·7% and 16·6% higher than that of CU, and the conventional fertilizer application rate could be reduced by 60% without lowering the rice yield while decreasing the leaching losses of TN by 16·27 and 14·36 kg ha−1, NH4+‐N by 0·90 and 1·84 kg ha−1, NO3‐N by 110·6 and 10·14 kg ha−1 in 2010 and 2011, respectively. Our results indicate that the CU treatment resulted in relatively high N leaching losses, and that alternative practice of NBTF which synchronized fertilizer application with crop demand substantially reduced these losses. We therefore suggest the NBTF120 be a fertilizer application alternative which leads to high food production but low environmental impact. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Urea is the most common nitrogen(N)fertilizer used in the tropics but it has the risk of high gaseous nitrogen(N)losses.Use of nitrification inhibitor has been suggested as a potential mitigation measure for gaseous N losses in N fertilizer-applied fields.In a field trial on a tropical Andosol pastureland in Costa Rica,gaseous emissions of ammonia(NH3)and nitrous oxide(N2O)and grass yield were quantified from plots treated with urea(U;41.7 kg N ha-1application-1)and urea plus the nitrification inhibitor nitrapyrin(U+NI;41.7 kg N ha-1application-1and 350 g of nitrapyrin for each 100 kg of N applied)and control plots(without U and NI)over a six-month period(rainy season).Volatilization of NH3(August to November)in U(7.4%±1.3%of N applied)and U+NI(8.1%±0.9%of N applied)were not significantly different(P>0.05).Emissions of N2O in U and U+NI from June to November were significantly different(P<0.05)only in October,when N2O emission in U+NI was higher than that in U.Yield and crude protein production of grass were significantly higher(P<0.05)in U and U+NI than in the control plots,but they were not significantly different between U and U+NI.There was no significant difference in yield-scaled N2O emission between U(0.31±0.10 g N kg-1dry matter)and U+NI(0.47±0.10 g N kg-1dry matter).The results suggest that nitrapyrin is not a viable mitigation option for gaseous N losses under typical N fertilizer application practices of pasturelands at the study site.  相似文献   

7.
A field study was conducted in the sub-humid tropical region of India to examine the effect of different nitrogen (N) management strategies on nitrate leaching, nitrous oxide (N2O) emission and N use efficiency in aerobic rice. Treatments were: control (no N), 120 kg N ha?1 applied as prilled urea (PU) in conventional method, 120 kg N ha?1 applied as neem coated urea (NCU) in conventional method, N applied as PU on the basis of leaf colour chart (LCC) reading, N applied as NCU on the basis of LCC reading, and 120 kg N ha?1 applied as PU and farm yard manure (FYM) in 1:1 ratio. Results showed that 3.4–16.1 kg NO3-N ha?1 was leached below 45 cm depth and 0.61–1.12 kg N2O-N ha?1 was emitted from aerobic rice during the growing season. NCU when applied conventionally reduced nitrate-nitrogen (NO3-N) leaching and N2O emission by 18.6% and 21.4%, respectively However when applied on the basis of LCC reading NCU reduced NO3-N leaching by 39.8% as compared to PU applied in conventional method. NCU when applied on the basis of LCC reading synchronized N supply with demand and reduced N loss, which resulted in higher yield and N use efficiency.  相似文献   

8.
Summary The major agronomic concern with NH3 loss from urea-containing fertilizers is the effect of these losses on crop yields and N fertilizer efficiency. In this 2-year study, NH3 volatilization from surface-applied N fertilizers was measured in the field, and the effects of the NH3 losses detected on corn (Zea mays L.) and orchardgrass (Dactylis glomerata L.) yield and N uptake were determined. For corn, NH4NO3 (AN), a urea-AN solution (UAN), or urea, were surface-broadcast at rates of 0, 56 and 112 kg N ha–1 on a Plano silt loam (Typic Argiudoll) and on a Fayette silt loam (Typic Hapludalf). Urea and AN (0 and 67 kg N ha–1) were surface-applied to grass pasture on the Fayette silt loam. Significant NH3 losses from urea-containing N sources were detected in one of four corn experiments (12%–16% of applied N) and in both experiments with grass pasture (9%–19% of applied N). When these losses occurred, corn grain yields with UAN and urea were 1.0 and 1.5 Mg ha–1, respectively, lower than yields with AN, and orchardgrass dry matter yields with urea were 0.27 to 0.74 Mg ha–1 lower than with AN. Significant differences in crop N uptake between N sources were detected, but apparent NH3 loss based on N uptake differences was not equal to field measurements of NH3 loss. Rainfall following N application markedly influenced NH3 volatilization. In corn experiments, NH3 loss was low and yields with all N sources were similar when at least 2.5 mm of rainfall occurred within 4 days after N application. Rainfall within 3 days after N application did not prevent significant yield reductions due to NH3 loss from urea in grass pasture experiments.  相似文献   

9.
菜地土壤中氮肥的反硝化损失和N2O排放   总被引:4,自引:0,他引:4  
A field experiment was conducted on Chinese cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Olsson) in a Nanjing suburb in 2003. The experiment included 4 treatments in a randomized complete block design with 3 replicates: zero chemical fertilizer N (CK); urea at rates of 300 kg N ha^-1 (U300) and 600 kg N ha^-1 (U600), both as basal and two topdressings; and polymer-coated urea at a rate of 180 kg N ha^-1 (PCU180) as a basal application. The acetylene inhibition technique was used to measure denitrification (N2 + N2O) from intact soil cores and N2O emissions in the absence of acetylene. Results showed that compared to (3K total denitrification losses were significantly greater (P ≤ 0.05) in the PCU180, U300, and U600 treatments,while N2O emissions in the U300 and U600 treatments were significantly higher (P ≤ 0.05) than (3K. In the U300 and U600 treatments peaks of denitrification and N2O emission were usually observed after N application. In the polymer-coated urea treatment (PCU180) during the period 20 to 40 days after transplanting, higher denitrification rates and N2O fluxes occurred. Compared with urea, polymer-coated urea did not show any effect on reducing denitrification losses and N2O emissions in terms of percentage of applied N. As temperature gradually decreased from transplanting to harvest, denitrification rates and N2O emissions tended to decrease. A significant (P ≤0.01) positive correlation occurred between denitrification (r = 0.872) or N2O emission (r = 0.781) flux densities and soil temperature in the CK treatment with a stable nitrate content during the whole growing season.  相似文献   

10.
Summary Field studies to determine the effect of different rates of fertilization on emission of nitrous oxide (N2O) from soil fertilized with anhydrous ammonia showed that the fertilizer-induced emission of N2O-N in 116 days increased from 1.22 to 4.09 kg ha–1 as the rate of anhydrous ammonia N application was increased from 75 to 450 kg ha–1. When expressed as a percentage of the N applied, the fertilizer-induced emission of N2O-N in 116 days decreased from 1.6% to 0.9% as the rate of fertilizer N application was increased from 75 to 450 kg N ha–1. The data obtained showed that a 100% increase in the rate of application of anhydrous ammonia led to about a 60% increase in the fertilizer-induced emission of N2O.Field studies to determine the effect of depth of fertilizer injection on emission of N2O from soil fertilized with anhydrous ammonia showed that the emission of N2O-N in 156 days induced by injection of 112 kg anhydrous ammonia N ha–1 at a depth of 30 cm was 107% and 21 % greater than those induced by injection of the same amount of N at depths of 10 cm and 20 cm, respectively. The effect of depth of application of anhydrous ammonia on emission of N2O was less when this fertilizer was applied at a rate of 225 kg N ha–1.  相似文献   

11.
沙壤土包膜尿素释放期与小麦适宜施用方式研究   总被引:8,自引:2,他引:8  
【目的】在保水保肥性差、 氮素淋溶损失严重的姜堰高砂土地区,采用新型水基反应成膜技术的包膜尿素,研究可提高小麦产量以及氮肥利用率的肥料品种和施肥方法。【方法】本研究采用30、 60、 90 d三种控释期包膜尿素(PCU30、 PCU60、 PCU90)并各设置三种施肥方式处理: 播种行下方12 cm处一次基施、 播种行侧方3 cm深5 cm处一次基施、 播种行侧方10 cm深5 cm处一次基施(T1、 T2、 T3)。小麦成熟期测定各小麦秸秆和籽粒产量与干物质分配,测定氮素吸收量。【结果】三种包膜尿素中,施用PCU60增产效果最好,其侧施处理优于种下深施,其中T2处理的小麦产量最高,为8661 kg/hm2,比当地习惯施肥增产6.5%。PCU60 T2处理的氮肥利用率为53.7%,较习惯施肥提高17.3%,差异显著。PCU90各处理较习惯施肥均减产且收获期土壤硝态氮残留量高,不适合当地使用。【结论】在砂土基质下,PCU60在播种行侧方3 cm深5 cm处一次基施可替代尿素分次施用,降低劳动成本。  相似文献   

12.
Bioremediation of crude oil in salt marsh mesocosms growing Spartina alterniflora was investigated during winter and summer to determine the influence of nitrogen (N) and phosphorus (P) fertilization, flooding, and season. Fertilization with urea and ammonium (NH4 +) applied at 75 or 150 kg N ha-1 with or without P did not significantly (p = 0.05) increase oil or hydrocarbon degradation in continuously flooded mesocosms over an 82 day period during winter (temperature range of 17 to 30 °C). Phosphorus applied at 40 kg P ha-1 significantly (p = 0.05) increased oil and hydrocarbon degradation. Nitrate (NO3 -) added alone did not increase oil or hydrocarbon degradation, but when added with P, it significantly (p = 0.05) increased degradation above that for P alone. Up to 70% of applied oil and 75% of applied hydrocarbons were degraded in P supplemented treatments. Inipol, an oleophilic fertilizer containing N, P, and a dispersant, significantly increased oil and hydrocarbon degradation. During a 40 day summer experiment (temperature range of 27–42 °C), N and P fertilization did not increase oil or hydrocarbon degradation. For continuously flooded treatments, 72% of applied hydrocarbons were degraded while 51% were degraded in alternately flooded treatments. Mesocosms provided conditions suitable for quantitative recovery of oil and results indicated that N and P fertilization, flooding, and season interacted to influence oil bioremediation. Even under the most favorable conditions, more than 1 month was required for most of the oil to disappear.  相似文献   

13.
Abstract

Field experiments were designed to quantify N2O emissions from corn fields after the application of different types of nitrogen fertilizers. Plots were established in South Kalimantan, Indonesia, and given either urea (200 kg ha?1), urea (170 kg ha?1) + dicyandiamide ([DCD] 20 kg ha?1) or controlled-release fertilizer LP-30 (214 kg ha?1) prior to the plantation of corn seeds (variety BISI 2). Each fertilizer treatment was equivalent to 90 kg N ha?1. Plots without chemical N fertilizer were also prepared as a control. The field was designed to have three replicates for each treatment with a randomized block design. Nitrous oxide fluxes were measured at 4, 8, 12, 21, 31, 41, 51, 72 and 92 days after fertilizer application (DAFA). Total N2O emission was the highest from the urea plots, followed by the LP-30 plots. The emissions from the urea + DCD plots did not differ from those from the control plots. The N2O emission from the urea + DCD plots was approximately one thirtieth of that from the urea treatment. However, fertilizer type had no effect on grain yield. Thus, the use of urea + DCD is considered to be the best mitigation option among the tested fertilizer applications for N2O emission from corn fields in Kalimantan, Indonesia.  相似文献   

14.
Nitrogen fertilizers are supposed to be a major source of nitrous oxide (N2O) emissions from arable soils. The objective of this study was to compare the effect of N forms on N2O emissions from arable fields cropped with winter wheat (Triticum aestivum L.). In three field trials in North‐West Germany (two trials in 2011/2012, one trial in 2012/2013), direct N2O emissions during a one‐year measurement period, starting after application of either urea, ammonium sulfate (AS) or calcium ammonium nitrate (CAN), were compared at an application rate of 220 kg N ha?1. During the growth season (March to August) of winter wheat, N2O emission rates were significantly higher in all three field experiments and in all treatments receiving N fertilizer than from the non‐fertilized treatments (control). At two of the three sites, cumulative N2O emissions from N fertilizer decreased in the order of urea > AS > CAN, with emissions ranging from 522–617 g N ha?1 (0.24–0.28% of applied fertilizer) for urea, 368–554 g N ha?1 (0.17–0.25%) for AS, and 242–264 g N ha?1 (0.11–0.12%) for CAN during March to August. These results suggest that mineral nitrogen forms can differ in N2O emissions during the growth period of winter wheat. Strong variations in the seasonal dynamics of N2O emissions between sites were observed which could partly be related to weather events (e.g., precipitation). Between harvest and the following spring (post‐harvest period) no significant differences in N2O emissions between fertilized and non‐fertilized treatments were detected on two of three fields. Only on one site post‐harvest emissions from the AS treatment were significantly higher than all other fertilizer forms as well as compared to the control treatment. The cumulative one‐year emissions varied depending on fertilizer form across the three field sites from 0.05% to 0.51% with one exception at one field site (AS: 0.94%). The calculated overall fertilizer induced emission averaged for the three fields was 0.38% which was only about 1/3 of the IPCC default value of 1.0%.  相似文献   

15.
ABSTRACT

Nutrient uptake and grain and straw yield of Egyptian winter wheat (Triticum aestivum L. Merr.) were evaluated for two site-years after the seed inoculation with two biofertilizer products, Phosphorien, containing the phosphorus (P)-solubilizing bacteria Bacillus megatherium, and Nitrobien, containing a combination of nitrogen (N)-fixing bacteria Azotobacter chroococcum and Azospirillum liposerum. Ammonium nitrate and polymer-coated urea fertilizers were applied to plots alone and together with the biofertilizers at rates of either 83 kg N ha?1 or 186 kg N ha?1 for comparison. The highest grain yield (5.76–6.74 Mg ha?1) and straw yield (11.49–13.32 Mg ha?1) occurred at the highest fertilizer rates with N fertilizer. There was a slight additional increase in grain and straw yields when a biofertilizer was applied along with N fertilizer. A slightly higher grain and straw yield was measured with the polymer-coated urea treatment than with the ammonium nitrate treatment. The biofertilizer materials were not as effective as N fertilizers in producing grain (4.02–4.09 Mg ha?1) or straw (7.71–8.11 Mg ha?1) for either year, although the Nitrobien + Phosphorien combination increased these parameters over the N-fertilizer control. The effect of the Nitrobien biofertilizer in increasing grain yields was equivalent to a urea application rate of about 13 kg N ha?1. Biofertilizer inoculations increased iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) concentrations in wheat tissue (at boot stage), but these higher levels did not influence grain or straw yield.  相似文献   

16.
Summary Inoculated seeds of maize (Zea mays) with 11 Azotobacter strains, sown in the fields receiving no fertilizer and fertilizers (N and P at the rate of 125 and 40 kg ha–1 respectively) increased the grain yield by 19.63% and 15.89% respectively over the corresponding control. The effect was greater in unfertilized than in fertilized soil. The increase in yield due to fertilizers was 21.2% without inoculation and 37.09% with inoculation. The correlations between total yield, and N, P and K uptake were highly significant and comparable among themselves. This indicated that increase in yield due to inoculation was not due to N2 fixation but that some other mechanisms like production of growth hormones by this bacterium may be responsible.  相似文献   

17.
不同释放期控释肥和水氮用量对冬小麦产量的综合影响   总被引:1,自引:1,他引:0  
为揭示不同释放期控释肥及其水肥用量对冬小麦产量的影响,优化冬小麦水氮管理措施,采用裂区设计进行田间试验,以灌水量为主处理,施氮量和控释肥类型分别为副处理和次副处理,其中,灌水量设30、60和90 mm;施氮量设0、75、150和225 kg/hm2的施肥梯度;控释肥类型包括释放期分别为60、120 d的聚氨酯包膜尿素(PCU60,PCU120),以普通尿素作为对照(U)。结果表明:灌水量、施氮量、控释肥类型单一因素均对冬小麦有效穗数、千粒质量、干物质质量、籽粒产量有显著影响。各因素两两之间的交互作用对籽粒产量有显著影响。相较于U处理,增加灌水使PCU60产量平均提高308 kg/hm2,PCU120产量平均下降270 kg/hm2;增施氮肥刚好相反,使PCU60产量平均下降289 kg/hm2,PCU120产量平均提高118 kg/hm2。根据所构建3种肥料的水氮生产函数可知,在U处理取得最高理论产量6 823 kg/hm2时的水氮用量下,2种释放期的控释肥PCU120和PCU60可分别获得14.31%和12.08%的增产效果。利用水氮生产函数和频率分析法得到不同控释肥类型获得较高产量的水氮用量区间,以PCU120产量最高、所需灌水量最低,分别为7 744~7 826 kg/hm2、47.72~52.28 mm;PCU60所需施氮量最低,为145.42~187.91 kg/hm2。综合考虑增产节肥节水效果,推荐PCU120为冬小麦季适宜的控释肥类型,其适宜水氮用量区间分别为47.72~52.28 mm、159.23~199.47 kg/hm2。  相似文献   

18.
Nitrogen (N) is one of the most important impact factors on development and growth of wheat. In this study the effects of nitrogen use efficiency on quantity and quality of grains were studied by agronomic management of N fertilizers on spring wheat (Triticum aestivum L.) grown under field conditions for two years. The experiments were performed at 16 combinations of N application amount and time, including four levels of N at 0, 60, 120 and 180 kg N ha?1 that were used as pre-plant fertilizers, sub-treated with four levels of the same N amount used as top-dress fertilizers. As a result, with an increase in total N fertilizers, grain yield increased in a cubic equitation, but partial factor productivity (PFPN, kg grain yield per kg N applied) decreased exponentially. With total fertilizers, N content and accumulation in vegetative tissues and grains increased linearly, but N uptake efficiency (UtEN, kg nutrient taken up per kg N applied) decreased exponentially. When N was over-applied (>360 kg N ha?1 in this study), grain yield clearly declined, due to decrease in productivity from per unit N. The high N level (240~300 kg N ha?1), the reasonable distribution between pre-plant and top dress from the same amount N fertilizer not only increased grain yield but also enhanced N use efficiency.  相似文献   

19.
Sorghum is cultivated on Vertisols in the Ethiopian Highlands. An experiment was conducted in the Gumara-Maksegnit watershed in 2013 and 2014 to assess the effect of rate and timing of nitrogen fertilizer application on the possibility to shorten the maturity period and to improve the productivity of sorghum. The experiment was laid out as Randomized Complete Block Design with three replications. Treatments were nitrogen doses between 0 and 87 kg N ha?1 as urea applied at planting, at knee-height stage or in split doses at both stages. Results showed that application of 23, 41, 64 and 87 kg ha?1 N gave a yield increase of 40, 53, 62 and 69% over the control (0 kg N ha?1), respectively. In addition, split application of 41 kg ha?1, 64 kg ha?1 and 87 kg ha?1 of nitrogen fertilizer, half at planting and half at knee height stage, gave 19%, 15% and 18% increase in sorghum grain yield over a single dose application, respectively. Applying 87 kg ha?1 nitrogen fertilizer with split application half at planting and half at knee height stage, along with 46 kg ha?1 of P2O5, gave the highest grain yield and income.  相似文献   

20.
Nitrous oxide, nitric oxide and denitrification losses from an irrigated soil amended with organic fertilizers with different soluble organic carbon fractions and ammonium contents were studied in a field study covering the growing season of potato (Solanum tuberosum). Untreated pig slurry (IPS) with and without the nitrification inhibitor dicyandiamide (DCD), digested thin fraction of pig slurry (DTP), composted solid fraction of pig slurry (CP) and composted municipal solid waste (MSW) mixed with urea were applied at a rate of 175 kg available N ha−1, and emissions were compared with those from urea (U) and a control treatment without any added N fertilizer (Control). The cumulative denitrification losses correlated significantly with the soluble carbohydrates, dissolved N and total C added. Added dissolved organic C (DOC) and dissolved N affected the N2O/N2 ratio, and a lower ratio was observed for organic fertilizers than from urea or unfertilized controls. The proportion of N2O produced from nitrification was higher from urea than from organic fertilizers. Accumulated N2O losses during the crop season ranged from 3.69 to 7.31 kg N2O-N ha−1 for control and urea, respectively, whereas NO losses ranged from 0.005 to 0.24 kg NO-N ha−1, respectively. Digested thin fraction of pig slurry compared to IPS mitigated the total N2O emission by 48% and the denitrification rate by 33%, but did not influence NO emissions. Composted pig slurry compared to untreated pig slurry increased the N2O emission by 40% and NO emission by 55%, but reduced the denitrification losses (34%). DCD partially inhibited nitrification rates and reduced N2O and NO emissions from pig slurry by at least 83% and 77%, respectively. MSW+U, with a C:N ratio higher than that of the composted pig slurry, produced the largest denitrification losses (33.3 kg N ha−1), although N2O and NO emissions were lower than for the U and CP treatments.This work has shown that for an irrigated clay loam soil additions of treated organic fertilizers can mitigate the emissions of the atmospheric pollutants NO and N2O in comparison with urea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号