首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thyroid function was assessed in euthyroid dogs (n = 20), dogs suffering from canine recurrent flank alopecia (CRFA, n = 18), and hypothyroid dogs (n = 21). Blood samples obtained from all dogs in each group were assayed for total thyroxine (TT4), thyrotropin (TSH), and thyroglobulin autoantibody (TgAA) serum concentrations. Total T4 and TSH serum concentrations were significantly decreased and increased, respectively, in the hypothyroid group compared with the other 2 groups. No significant differences in TT4 and TSH serum values were found between the euthyroid and CRFA groups. Thyroglobulin autoantibodies were detected in 10, 11.1, and 61.9% of euthyroid dogs, dogs with CRFA, and hypothyroid dogs, respectively. In conclusion, dogs suffering from CRFA have a normal thyroid function, and the determination of TT4 and TSH serum concentrations allows differentiation of these dogs from dogs with hypothyroidism, in most cases. Occasionally, the 2 diseases can be concomitant.  相似文献   

2.
Numerous factors including non-thyroidal systemic diseases and drug administration can significantly alter canine thyroid function test results. Furthermore, the importance of breed specific variations has probably been underestimated. In this study, total thyroxine (TT4), free thyroxine (FT4), canine endogenous thyroid stimulating hormone (cTSH) serum concentrations and thyroglobulin autoantibodies (TgAA) were determined in a population of healthy whippets and compared to a control group of different breeds. Mean TT4 values were significantly lower in the whippets but no significant differences were seen between whippets and control dogs for FT4 and for cTSH. The prevalence of serum TgAA in the whippets was 2%, and this was not significantly different from the controls. The results suggest a breed variation for TT4, but not for FT4, cTSH and TgAA serum concentrations in whippets. Serum thyroid hormone concentrations were also compared between trained and non-trained whippets and it was concluded that regular training did not seem to have any significant influence.  相似文献   

3.
OBJECTIVE: To determine the effects of racing and nontraining on plasma thyroxine (T4), free thyroxine (fT4), thyroid-stimulating hormone (TSH), and thyroglobulin autoantibody (TgAA) concentrations in sled dogs and compare results with reference ranges established for dogs of other breeds. DESIGN: Cross-sectional study. ANIMALS: 122 sled dogs. PROCEDURE: Plasma thyroid hormone concentrations were measured before dogs began and after they finished or were removed from the Iditarod Trail Sled Dog Race in Alaska and approximately 3 months after the race. RESULTS: Concentrations of T4 and fT4 before the race were less than the reference range for nonsled dogs in 26% and 18% of sled dogs, respectively. Immediately after racing, 92% of sled dogs had plasma T4 concentrations less than the reference range. Three months after the race, 25% of sled dogs had plasma T4 concentrations less than the reference range. For T4, fT4, TSH, and TgAA, significant differences were not detected in samples collected before the race versus 3 months later. CONCLUSIONS AND CLINICAL RELEVANCE: Plasma T4, fT4, and TSH concentrations decreased in dogs that complete a long distance sled dog race. Many clinically normal sled dogs have plasma T4 and fT4 values that are lower than the reference range for nonsled dogs. We suggest that the reference ranges for sled dogs are 5.3 to 40.3 nmol/L and 3.0 to 24.0 pmol/L for plasmaT4 and fT4 concentrations, respectively, and 8.0 to 370 mU/L for TSH.  相似文献   

4.
OBJECTIVE: To evaluate effects of trimethoprim-sulfamethoxazole (T/SMX) on thyroid function in dogs. ANIMALS: 6 healthy euthyroid dogs. PROCEDURE: Dogs were administered T/SMX (14.1 to 16 mg/kg, PO, q 12 h) for 3 weeks. Blood was collected weekly for 6 weeks for determination of total thyroxine (TT4), free thyroxine (fT4), and canine thyroid-stimulating hormone (cTSH) concentrations. Schirmer tear tests were performed weekly. Blood was collected for CBC prior to antimicrobial treatment and at 3 and 6 weeks. RESULTS: 5 dogs had serum TT4 concentrations equal to or less than the lower reference limit, and 4 dogs had serum fT4 less than the lower reference limit after 3 weeks of T/SMX administration; cTSH concentrations were greater than the upper reference limit in 4 dogs. All dogs had TT4 and fT4 concentrations greater than the lower reference limit after T/SMX administration was discontinued for 1 week, and cTSH concentrations were less than reference range after T/SMX administration was discontinued for 2 weeks. Two dogs developed decreased tear production, which returned to normal after discontinuing administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that administration of T/SMX at a dosage of 14.1 to 16 mg/kg, PO, every 12 hours for 3 weeks caused decreased TT4 and fT4 concentrations and increased cTSH concentration, conditions that would be compatible with a diagnosis of hypothyroidism. Therefore, dogs should not have thyroid function evaluated while receiving this dosage of T/SMX for >2 weeks. These results are in contrast to those of a previous study of trimethoprim-sulfadiazine.  相似文献   

5.
OBJECTIVE: To determine effects of athletic conditioning on thyroid hormone concentrations in a population of healthy sled dogs. ANIMALS: 19 healthy adult sled dogs. PROCEDURE: Serum concentrations of thyroxine (T4), triiodothyronine (T3), thyroid-stimulating hormone (TSH), free T4 (fT4), free T3 (fT3), and autoantibodies directed against T3, T4, and thyroglobulin were measured in sled dogs that were not in training (ie, nonracing season) and again after dogs had been training at maximum athletic potential for 4 months. RESULTS: Analysis revealed significant decreases in T4 and fT4 concentrations and a significant increase in TSH concentration for dogs in the peak training state, compared with concentrations for dogs in the untrained state. Serum concentrations of T4 and fT4 were less than established reference ranges during the peak training state for 11 of 19 and 8 of 19 dogs, respectively; fT4 concentration was greater than the established reference range in 9 of 19 dogs in the untrained state. CONCLUSIONS AND CLINICAL RELEVANCE: Decreased total T4 and fT4 concentrations and increased serum concentrations of TSH were consistently measured during the peak training state in healthy sled dogs, compared with concentrations determined during the untrained state. Although thyroid hormone concentrations remained within the established reference ranges in many of the dogs, values that were outside the reference range in some dogs could potentially lead to an incorrect assessment of thyroid status. Endurance training has a profound impact on the thyroid hormone concentrations of competitive sled dogs.  相似文献   

6.
The effect of oral administration of sulfadiazine and trimethoprim in combination on serum concentrations of thyroxine (T4), triiodothyronine (T3) and free thyroxine (fT4) and the thyroid hormone response to thyrotropin administration was assessed. Six dogs were administered sulfadiazine (12.5 mg/kg) and trimethoprim (2.5 mg/kg) orally for 28 days; six untreated dogs acted as controls. Serum T4, T3 and fT4 were determined weekly during and for four weeks after treatment. Thyrotropin response tests were performed prior to treatment, after four weeks of treatment and three weeks after stopping treatment. There were no significant differences in mean serum T4, T3 or fT4 concentrations between treated and control groups at any time during the study. Mean concentration of serum T4 over time did not differ significantly from baseline concentration in either group. Significant differences in the mean serum T3 and fT4 concentrations occurred at several time points in treatment and control groups, and were apparently unrelated to treatment. Significant differences in the T4 or T3 response to thyrotropin administration within or between groups were not present. Serum T3 and fT4 concentrations fluctuate in normal dogs. Administration of sulfadiazine and trimethoprim in combination does not affect tests of thyroid function in the dog.  相似文献   

7.
OBJECTIVES: To compare serum concentrations of total thyroxine (TT4), free thyroxine (fT4), and thyroid-stimulating hormone (TSH), as well as measures of thyroid follicular colloid and epithelium, between groups of healthy dogs and severely sick dogs. DESIGN: Cross-sectional study. ANIMALS: 61 healthy dogs and 66 severely sick dogs. PROCEDURE: Serum samples were obtained before euthanasia, and both thyroid lobes were removed immediately after euthanasia. Morphometric analyses were performed on each lobe, and serum TT4, fT4, and TSH concentrations were measured. RESULTS: In the sick group, serum TT4 and fT4 concentrations were less than reference range values in 39 (59%) and 21 (32%) dogs, respectively; only 5 (8%) dogs had high TSH concentrations. Mean serum TT4 and fT4 concentrations were significantly lower in the sick group, compared with the healthy group. In the healthy group, a significant negative correlation was found between volume percentage of colloid and TT4 or fT4 concentrations, and a significant positive correlation was found between volume percentage of follicular epithelium and TT4 or fT4 concentrations. A significant negative correlation was observed between volume percentages of colloid and follicular epithelium in both groups. CONCLUSIONS AND CLINICAL RELEVANCE: TT4 and fT4 concentrations are frequently less than reference range values in severely sick dogs. Therefore, thyroid status should not be evaluated during severe illness. The absence of any significant differences in mean volume percentages of follicular epithelium between healthy and severely sick dogs suggests that these 2 groups had similar potential for synthesizing and secreting thyroid hormones.  相似文献   

8.
Fifty-eight dogs with generalized dermatologic disease that had not been given glucocorticoids systemically or topically within 6 weeks of entering the study were evaluated for thyroid function by use of the thyrotropin-response test. Dogs were classified as euthyroid or hypothyroid on the basis of test results and response to thyroid hormone replacement therapy. Baseline serum thyroxine (T4), free T4 (fT4), and triiodothyronine (T3) concentrations were evaluated in the 58 dogs. Serum T4, fT4, and T3 concentrations were evaluated in 200 healthy dogs to establish normal values. Hormone concentrations were considered low if they were less than the mean -2 SD of the values for control dogs. Specificity of T4 and fT4 concentrations was 100% in predicting hypothyroidism; none of the euthyroid dogs with generalized skin disease had baseline serum T4 or fT4 concentration in the low range. Sensitivity was better for fT4 (89%) than for T4 (44%) concentration. Significant difference was not observed in serum T4 and fT4 concentrations between euthyroid dogs with generalized skin disease and healthy control dogs without skin disease. Serum T3 concentration was not accurate in predicting thyroid function; most of the euthyroid and hypothyroid dogs with skin disease had serum T3 concentration within the normal range.  相似文献   

9.
Assays were developed to detect and measure autoantibodies (AA) to thyroglobulin (Tg) and to the thyroid hormones, thyroxine (T4) and triiodothyronine (T3). An ELISA to detect AA to Tg was developed, using purified canine Tg as the antigen and goat anti-canine IgG conjugated with alkaline phosphatase as the second antibody. A highly charged agarose electrophoresis assay was used for determination of AA to T4 and T3. Sera from dogs (n = 119) with clinical signs consistent with hypothyroidism were tested for AA to Tg, T4, and T3. Autoantibodies to at least 1 of the 3 thyroid antigens were detected in 58 of the 119 (48.7%) sera tested. Autoantibodies to Tg were detected more frequently in samples with low serum concentrations of thyroid hormones than in samples with normal concentrations. The presence of AA to T4, T3, or both was not significantly associated with low thyroid hormone concentrations, but this lack of association may have been attributable to binding of AA in the measurement of thyroid hormones by radioimmunoassay.  相似文献   

10.
OBJECTIVE: To establish a sensitive test for the detection of autoantibodies against thyroid peroxidase (TPO) in canine serum samples. SAMPLE POPULATION: 365 serum samples from dogs with hypothyroidism as determined on the basis of serum concentrations of total and free triiodothyronine (T3), total and free thyroxine (T4), and thyroid-stimulating hormone, of which 195 (53%) had positive results for at least 1 of 3 thyroid autoantibodies (against thyroglobulin [Tg], T4, or T3) and serum samples from 28 healthy dogs (control samples). PROCEDURE: TPO was purified from canine thyroid glands by extraction with detergents, ultracentrifugation, and precipitation with ammonium sulfate. Screening for anti-TPO autoantibodies in canine sera was performed by use of an immunoblot assay. Thyroid extract containing TPO was separated electrophoretically, blotted, and probed with canine sera. Alkaline phosphatase-conjugated rabbit anti-dog IgG was used for detection of bound antibodies. RESULTS: TPO bands were observed at 110, 100, and 40 kd. Anti-TPO autoantibodies against the 40-kd fragment were detected in 33 (17%) sera of dogs with positive results for anti-Tg, anti-T4, or anti-T3 autoantibodies but not in sera of hypothyroid dogs without these autoantibodies or in sera of healthy dogs. CONCLUSIONS AND CLINICAL RELEVANCE: The immunoblot assay was a sensitive and specific method for the detection of autoantibodies because it also provided information about the antigen. Anti-TPO autoantibodies were clearly detected in a fraction of hypothyroid dogs. The value of anti-TPO autoantibodies for use in early diagnosis of animals with thyroid gland diseases should be evaluated in additional studies.  相似文献   

11.
Obesity and weight loss have been shown to alter thyroid hormone homeostasis in humans. In dogs, obesity is the most common nutritional problem encountered and weight loss is the cornerstone of its treatment. Therefore, it is important to clarify how obesity and weight loss can affect thyroid function test results in that species. The objectives of this study were to compare thyroid function in obese dogs and in lean dogs and to explore the effects of caloric restriction and weight loss on thyroid hormone serum concentrations in obese dogs. In the first experiment, 12 healthy lean beagles and 12 obese beagles were compared. Thyroid function was evaluated by measuring serum concentrations of total thyroxine (TT4), free thyroxine (FT4), total triiodothyronine (TT3), thyrotropin (TSH), and reverse triiodothyronine (rT3) as well as a TSH stimulation test using 75 microg i.v. of recombinant human TSH. In the second experiment, eight obese beagles were fed an energy-restricted diet [average 63% maintenance energy requirement (MER)] until optimal weight was obtained. Blood samples for determination of TT4, FT4, TT3, TSH and rT3, were taken at the start and then weekly during weight loss. Only TT3 and TT4 serum concentrations were significantly higher in obese dogs as compared to lean dogs. In the second experiment, weight loss resulted in a significant decrease in TT3 and TSH serum concentrations. Thus obesity and energy restriction significantly alter thyroid homeostasis in dogs, but the observed changes are unlikely to affect interpretation of thyroid function test results in clinics.  相似文献   

12.
OBJECTIVE: To evaluate thyroid function in healthy Greyhounds, compared with healthy non-Greyhound pet dogs, and to establish appropriate reference range values for Greyhounds. ANIMALS: 98 clinically normal Greyhounds and 19 clinically normal non-Greyhounds. PROCEDURES: Greyhounds were in 2 groups as follows: those receiving testosterone for estrus suppression (T-group Greyhounds) and those not receiving estrus suppressive medication (NT-group Greyhounds). Serum thyroxine (T4) and free thyroxine (fT4) concentrations were determined before and after administration of thyroid-stimulating hormone (TSH) and thyroid-releasing hormone (TRH). Basal serum canine thyroid stimulating hormone (cTSH) concentrations were determined on available stored sera. RESULTS: Basal serum T4 and fT4 concentrations were significantly lower in Greyhounds than in non-Greyhounds. Serum T4 concentrations after TSH and TRH administration were significantly lower in Greyhounds than in non-Greyhounds. Serum fT4 concentrations after TSH and TRH administration were significantly lower in NT-group than T-group Greyhounds and non-Greyhounds. Mean cTSH concentrations were not different between Greyhounds and non-Greyhounds. CONCLUSIONS AND CLINICAL RELEVANCE: Previously established canine reference range values for basal serum T4 and fT4 may not be appropriate for use in Greyhounds. Greyhound-specific reference range values for basal serum T4 and fT4 concentrations should be applied when evaluating thyroid function in Greyhounds. Basal cTSH concentrations in Greyhounds are similar to non-Greyhound pet dogs.  相似文献   

13.
BACKGROUND: Differentiation between hypothyroidism and nonthyroidal illness in dogs poses specific problems, because plasma total thyroxine (TT4) concentrations are often low in nonthyroidal illness, and plasma thyroid stimulating hormone (TSH) concentrations are frequently not high in primary hypothyroidism. HYPOTHESIS: The serum concentrations of the common basal biochemical variables (TT4, freeT4 [fT4], and TSH) overlap between dogs with hypothyroidism and dogs with nonthyroidal illness, but, with stimulation tests and quantitative measurement of thyroidal 99mTcO4(-) uptake, differentiation will be possible. ANIMALS: In 30 dogs with low plasma TT4 concentration, the final diagnosis was based upon histopathologic examination of thyroid tissue obtained by biopsy. Fourteen dogs had primary hypothyroidism, and 13 dogs had nonthyroidal illness. Two dogs had secondary hypothyroidism, and 1 dog had metastatic thyroid cancer. METHODS: The diagnostic value was assessed for (1) plasma concentrations of TT4, fT4, and TSH; (2) TSH-stimulation test; (3) plasma TSH concentration after stimulation with TSH-releasing hormone (TRH); (4) occurrence of thyroglobulin antibodies (TgAbs); and (5) thyroidal 99mTcO4(-) uptake. RESULTS: Plasma concentrations of TT4, fT4, TSH, and the hormone pairs TT4/TSH and fT4/TSH overlapped in the 2 groups, whereas, with TgAbs, there was 1 false-negative result. Results of the TSH- and TRH-stimulation tests did not meet earlier established diagnostic criteria, overlapped, or both. With a quantitative measurement of thyroidal 99mTcO4(-) uptake, there was no overlap between dogs with primary hypothyroidism and dogs with nonthyroidal illness. CONCLUSIONS AND CLINICAL IMPORTANCE: The results of this study confirm earlier observations that, in dogs, accurate biochemical diagnosis of primary hypothyroidism poses specific problems. Previous studies, in which the TSH-stimulation test was used as the "gold standard" for the diagnosis of hypothyroidism may have suffered from misclassification. Quantitative measurement of thyroidal 99mTcO- uptake has the highest discriminatory power with regard to the differentiation between primary hypothyroidism and nonthyroidal illness.  相似文献   

14.
OBJECTIVE: To determine the effects of endotoxin administration on thyroid function test results and serum tumor necrosis factor-alpha (TNF-alpha) activity in healthy dogs. ANIMALS: 6 healthy adult male dogs. PROCEDURES: Serum concentrations of thyroxine (T4), 3,5,3'-triiodothyronine (T3), 3,3'5'-triiodothyronine (rT3), free T4 (fT4), and endogenous canine thyroid stimulating hormone (TSH), and TNF-alpha activity were measured before (day-1; baseline), during (days 0 to 3), and after (days 4 to 24) IV administration of endotoxin every 12 hours for 84 hours. RESULTS: Compared with baseline values, serum T3 concentration decreased significantly, whereas rT3 concentration increased significantly 8 hours after initial endotoxin administration. Serum T4 concentration decreased significantly at 8 and 12 hours after initiating endotoxin administration. Serum T4 concentration returned to reference range limits, then decreased significantly on days 6 to 12 and 16 to 20. Serum fT4 concentration increased significantly at 12, 24, and 48 hours after cessation of endotoxin treatment, compared with baseline values. Serum rT3 concentration returned to reference range, then decreased significantly days 5 and 7 after stopping endotoxin treatment. Serum TNF-alpha activity was significantly increased only 4 hours after initial endotoxin treatment, compared with baseline activity. CONCLUSIONS AND CLINICAL RELEVANCE: Endotoxin administration modeled alterations in thyroid function test results found in dogs with spontaneous nonthyroidal illness syndrome. A decrease in serum T4 andT3 concentrations and increase in serum rT3 concentration indicate impaired secretion and metabolism of thyroid hormones. The persistent decrease in serum T4 concentration indicates that caution should be used in interpreting serum T4 concentrations after resolution of an illness in dogs.  相似文献   

15.
OBJECTIVE: To evaluate the effects of deracoxib and aspirin on serum concentrations of thyroxine (T4), 3,5,3'-triiodothyronine (T3), free thyroxine (fT4), and thyroid-stimulating hormone (TSH) in healthy dogs. ANIMALS: 24 dogs. PROCEDURE: Dogs were allocated to 1 of 3 groups of 8 dogs each. Dogs received the vehicle used for deracoxib tablets (PO, q 8 h; placebo), aspirin (23 to 25 mg/kg, PO, q 8 h), or deracoxib (1.25 to 1.8 mg/kg, PO, q 24 h) and placebo (PO, q 8 h) for 28 days. Measurement of serum concentrations of T4, T3, fT4, and TSH were performed 7 days before treatment (day -7), on days 14 and 28 of treatment, and 14 days after treatment was discontinued. Plasma total protein, albumin, and globulin concentrations were measured on days -7 and 28. RESULTS: Mean serum T4, fT4, and T3 concentrations decreased significantly from baseline on days 14 and 28 of treatment in dogs receiving aspirin, compared with those receiving placebo. Mean plasma total protein, albumin, and globulin concentrations on day 28 decreased significantly in dogs receiving aspirin, compared with those receiving placebo. Fourteen days after administration of aspirin was stopped, differences in hormone concentrations were no longer significant. Differences in serum TSH or the free fraction of T4 were not detected at any time. No significant difference in any of the analytes was detected at any time in dogs treated with deracoxib. CONCLUSIONS AND CLINICAL RELEVANCE: Aspirin had substantial suppressive effects on thyroid hormone concentrations in dogs. Treatment with high dosages of aspirin, but not deracoxib, should be discontinued prior to evaluation of thyroid function.  相似文献   

16.
The efficacy of thyroid hormone replacement therapy (THRT) as treatment for owner-directed aggression in client-owned dogs with borderline low thyroid hormone levels was evaluated by means of a 6-week-long, parallel design, double-blind placebo-controlled study. The designation of “borderline hypothyroid” was made if the dog's free normal thyroxine (T4) value was frankly low or in the bottom 20th percentile of the normal range and either total T4, total triiodothyronine (T3), or free T3 was frankly low or in the bottom 30th percentile of the normal range. The presence of thyroid autoantibodies also qualified a dog for enrollment. Owners recorded the number of aggressive episodes directed toward family members on a daily basis for 8 weeks (2-week baseline phase and 6-week study phase). Twenty-nine dogs completed the study; 14 in a treatment group and 15 in a placebo group. The median number of aggressive episodes per day decreased significantly from baseline in both treated and placebo group dogs in weeks 1-2, 3-4, 5-6, and week 6 (treatment, χ2 = 24.8, P < 0.001; placebo, χ2 = 20.2, P < 0.001), however the median frequency of aggression was significantly lower in the treatment group (1.21 episodes/day) than in the placebo group (1.71 episodes/day) during week 6 of the study (χ2 = 4.047, P = 0.044). Three thyroxine-treated dogs had borderline-low thyroid levels on the final day of the study (day 42). When aggression frequency was compared between the treatment and placebo groups after the removal of 3 thyroxine-treated dogs, the treatment group did not have a significantly lower aggression frequency than the placebo group during week 6 (Kruskal–Wallis statistic: χ2 = 3.035, n = 26, P = 0.08). The authors discuss the role of thyroid hormones in the regulation of aggression and other cognitive issues and provide rationale for using THRT in dogs exhibiting owner-directed aggression that also have low normal or baseline thyroid hormone levels.  相似文献   

17.
OBJECTIVE: To determine the effects of etodolac administration on results of thyroid function tests and concentrations of plasma proteins in clinically normal dogs. Animals: 19 healthy random-source mixed-breed dogs. PROCEDURE: Blood samples for measurement of serum thyroxine (T4), 3,5,3'-triiodothyronine (T3), free T4 (fT4), and endogenous canine thyroid stimulating hormone (cTSH) were measured twice before as well as on days 14 and 28 of etodolac administration (mean dosage, 13.7 mg/kg, PO, q 24 h). Plasma total protein, albumin, and globulin concentrations and serum osmolality were measured once before as well as on days 14 and 28 of etodolac administration. RESULTS: Etodolac administration did not significantly affect serum T4, T3, fT4, or cTSH concentrations or serum osmolality. Significant decreases in plasma total protein, albumin, and globulin concentrations were detected on days 14 and 28 of administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results of thyroid function tests are not altered when etodolac is administered for up to 4 weeks. Therefore, interpretation of results of these tests should accurately reflect thyroid function during etodolac treatment. Plasma total protein, albumin, or globulin concentrations that are less than the respective reference range in a dog administered etodolac for > or = 2 weeks may be an effect of treatment rather than an unrelated disease process. A decrease in plasma protein concentrations may reflect subclinical injury of the gastrointestinal tract.  相似文献   

18.
Measurement of serum-free thyroxine (fT4) concentration provides a more accurate assessment of thyroid gland function than serum thyroxine (T4) or 3,5,3'-triiodothyronine (T3). Techniques for measuring serum fT4 concentration include standard equilibrium dialysis (SED), radioimmunoassay (RIA), and a combination of both (modified equilibrium dialysis [MED]). This study compared results of serum fT4 measurements by means of SED, MED, and 5 RIAs in 30 healthy dogs, 10 dogs with hypothyroidism, and 31 euthyroid dogs with concurrent illness for which hypothyroidism was a diagnostic consideration. Serum fT4 concentrations were comparable when determined by the SED and MED techniques, and mean serum fT4 concentrations were significantly (P < .01) lower in dogs with hypothyroidism than in healthy dogs and euthyroid dogs with concurrent illness. Significant (P < .05) differences in fT4 concentrations were identified among the 5 RIAs and among the RIAs and MED and SED. Serum fT4 concentrations were consistently lower when fT4 was determined by the RIAs, compared with either equilibrium dialysis technique. Serum fT4 concentrations were significantly lower (P < .01) in dogs with hypothyroidism than in healthy dogs for all RIAs; were significantly lower (P < .05) in dogs with hypothyroidism than in euthyroid dogs with concurrent illness for 4 RIAs; and were significantly lower (P < .01) in euthyroid dogs with concurrent illness than in healthy dogs for 4 RIAs. RIAs had the highest number of low serum fT4 concentrations in euthyroid dogs with concurrent illness. This study documented differences in test results among fT4 assays, emphasizing the importance of maintaining consistency in the assay used to measure serum fT4 concentrations in the clinical or research setting.  相似文献   

19.
The short-term effects of prednisone and phenobarbital on serum total thyroxine (tT4), free thyroxine (fT4), and thyroid stimulating hormone (TSH) were evaluated in euthyroid dogs. Twenty-six beagles were randomly divided into 3 groups receiving, respectively, a placebo, prednisone (1.2 to 2 mg/kg body weight, per os, every 12 hours for 3 weeks), or phenobarbital (1.8 to 3 mg/kg body weight for 1 week, then 2.7 to 4.5 mg/kg body weight, per os, every 12 hours for 2 weeks). Blood samples taken over a 6-week period were assayed for serum tT4, fT4, and TSH. Phenobarbital therapy in our study did not affect serum tT4, fT4, or TSH concentrations. Prednisone therapy, however, significantly decreased serum tT4 and fT4, but did not affect serum TSH concentrations.  相似文献   

20.
The aim of this case controlled study was to determine whether dogs with behavioral problems have evidence of abnormal thyroid function on routine screening tests for hypothyroidism. The hypothesis of the study was that thyroid function, as assessed by serum total thyroxine (TT4) and serum thyroid stimulating hormone (thyrotropin) (TSH) concentrations, is normal in most dogs with behavioral problems. Concentrations of TT4 and TSH in 39 dogs with behavior problems presenting to a veterinary behavior referral clinic (abnormal behavior group), were compared with TT4 and TSH concentrations in 39 healthy control dogs without behavior problems presenting to 5 community veterinary practices (control group). Dogs in the control group were matched for age and breed with the abnormal behavior group. Dogs with behavioral problems had higher TT4 concentrations than dogs without behavioral problems (t-test: t = 2.77, N = 39, P = 0.009), however none of the TT4 values were outside the reference range. There was no significant difference in TSH concentration between the 2 groups. Two dogs with behavior problems and 1 dog without behavior problems had results suggestive of hypothyroidism. All other dogs were considered to be euthyroid. There was no evidence to support a diagnosis of hypothyroidism in the majority of dogs with behavior problems in this study. The higher concentration of TT4 in dogs with behavior problems suggests, however, that alteration in thyroid hormone production or metabolism may occur in some dogs with behavior problems. Further studies that include additional indicators of thyroid status such as serum total triiodothyronine, serum, free thyroxine, and anti-thyroid antibody concentrations are necessary to further evaluate the significance of this finding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号