首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many epidemiological studies suggest that vegetable oils and especially olive oil present a protective effect against atherosclerosis. In this study, total lipids (TL) of Greek olive oils and seed oils of four kinds, namely, soybean, corn, sunflower, and sesame oil, were separated into total polar lipids (TPL) and total neutral lipids (TNL) via a novel extraction procedure. TPL and TNL of olive oil were fractionated by HPLC for further study. Each lipid fraction from HPLC separation along with TL, TPL, and TNL lipid samples from oils were tested in vitro for their capacity to induce or to inhibit washed rabbit platelet aggregation. Comparison between olive and seed oils supports the superiority of olive oil as high levels of platelet activating factor (PAF) antagonists have been detected, mainly in TPL. In addition, the structure of the most active fraction from olive oil was elucidated, as a glycerol-glycolipid. Because it has already been reported that PAF plays a pivotal role in atherogenesis, the existence of PAF agonists and antagonists in vegetable oils may explain their protective role against atherosclerosis.  相似文献   

2.
A simple method is proposed for determination of aflatoxins in vegetable oils. The method was successfully applied to both crude and degummed oils. The oil sample, dissolved in hexane, was applied to a silica column and washed with ether, toluene, and chloroform; aflatoxins were eluted from the column with chloroform-methanol (97 + 3). As quantitated by thin layer chromatography and liquid chromatography, the oils analyzed contained aflatoxin B1 at levels of 5-200 micrograms/kg. Recoveries of aflatoxin B1 standards added to aflatoxin-free oils were between 89.5 and 93.5%, with coefficients of variation of 6.3-8.0%.  相似文献   

3.
A novel screening method using an automated flow injection electrospray ionization tandem mass spectrometry system is proposed for the simultaneous determination of five nonprotein amino acids (β-alanine, alloisoleucine, ornithine, citrulline, pyroglutamic acid) and three betaines (glycine betaine, trigonelline, proline betaine) after derivatization with butanolic HCl. MS/MS experiments were carried out in a triple-quadrupole instrument using multiple reaction monitoring mode in <2 min. The proposed method provided high fingerprinting power to identify the presence of five of the studied compounds in different types of vegetable oils (soybean, sunflower, corn, olive) with LODs at parts per billion levels. The method was validated, and different mixtures of extra virgin olive oil with seed oils were analyzed, achieving the typification for the detection of adulterations in extra virgin olive oils up to 2% w/w. The nonprotein amino acid ornithine was confirmed as a marker for adulteration in the olive oils analyzed.  相似文献   

4.
alpha-Tocopherol, the main tocopherol homologue found in olive oil, was determined using normal phase HPLC. Ninety Greek virgin olive oils, selected according to a designed sampling protocol from different cultivars and regions all over Greece for three successive crop years, were analyzed. For a specific olive cultivar, which is widely used for the production of olive oil in Greece, additional measurements were made to study the effect of milling conditions on alpha-tocopherol concentration. Finally, a significant number of commercial olive oil samples (25) obtained from the retail market were analyzed. High concentrations of alpha-tocopherol were observed in most of the samples selected from various regions. Values ranging between 98 and 370 mg/kg were found (>200 mg/kg in 60% of samples). Extraction conditions were not found to influence alpha-tocopherol level. alpha-Tocopherol content of retail market samples was high, ranging from 120 to 250 mg/kg of oil (>180 mg/kg in 60% of samples). Storage of samples under domestic conditions for two years showed that good handling is quite important for retaining high alpha-tocopherol levels and for increasing, thus, the storage life and nutritional value of this exquisite oil.  相似文献   

5.
The stability of the antioxidant fraction in edible vegetable oils has been evaluated during a simulated deep frying process at 180 °C. Four edible oils (i.e., extra-virgin olive oil with a 400 μg/mL overall content in naturally existing phenols; high-oleic sunflower oil without natural content of these compounds but enriched either with hydrophilic antioxidants isolated from olive pomace or with an oxidation inhibitor, dimethylsiloxane; and sunflower oil without enrichment) were subjected to deep heating consisting of 20 cycles at 180 °C for 5 min each. An oil aliquot was sampled after each heating cycle to study the influence of heating on the antioxidant fraction composed of hydrophilic and lipophilic antioxidants such as phenols and tocopherols, respectively. The decomposition curves for each group of compounds caused by the influence of deep heating were studied to compare their resistance to oxidation. Thus, the suitability of olive pomace as raw material to obtain these compounds offers an excellent alternative to the use of olive-tree materials different from leaves. The enrichment of refined edible oils with natural antioxidants from olive pomace is a sustainable strategy to take benefits from this residue.  相似文献   

6.
The authenticity of vegetable oils consumed in Slovenia and Croatia was investigated by carbon isotope analysis of the individual fatty acids by the use of gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS), and through carbon isotope analysis of the bulk oil. The fatty acids from samples of olive, pumpkin, sunflower, maize, rape, soybean, and sesame oils were separated by alkaline hydrolysis and derivatized to methyl esters for chemical characterization by capillary gas chromatography/mass spectrometry (GC/MS) prior to isotopic analysis. Enrichment in heavy carbon isotope ((13)C) of the bulk oil and of the individual fatty acids are related to (1) a thermally induced degradation during processing (deodorization, steam washing, or bleaching), (2) hydrolytic rancidity (lipolysis) and oxidative rancidity of the vegetable oils during storage, and (3) the potential blend with refined oil or other vegetable oils. The impurity or admixture of different oils may be assessed from the delta(13)C(16:0) vs. delta(13)C(18:1) covariations. The fatty acid compositions of Slovenian and Croatian olive oils are compared with those from the most important Mediterranean producer countries (Spain, Italy, Greece, and France).  相似文献   

7.
Phenolic compounds in Spanish virgin olive oils were characterized by HPLC. Simple phenols such as hydroxytyrosol, tyrosol, vanillic acid, p-coumaric acid, ferulic acid, and vanillin were found in most of the oils. The flavonoids apigenin and luteolin were also found in most of the oils. The dialdehydic form of elenolic acid linked to tyrosol and hydroxytyrosol was also detected, as were oleuropein and ligstroside aglycons. The structure of a new compound was elucidated by MS and NMR as being that of 4-(acetoxyethyl)-1,2-dihydroxybenzene. Changes of phenolic compounds in virgin olive oils with maturation of fruits were also studied. Hydroxytyrosol, tyrosol, and luteolin increased their concentration in oils with maturation of fruits. On the contrary, glucoside aglycons diminished their concentration with maturation. No clear tendency was observed for the rest of the phenolic compounds identified.  相似文献   

8.
Vegetable oils are promising candidates as substitutes for petroleum base oils in lubricant applications, such as total loss lubrication, military applications, and outdoor activities. Although vegetable oils have some advantages, they also have poor oxidation and low temperature stability. One of the ways to address these issues is chemical modification of fatty acid chain of triglyceride. We report a one-pot synthesis of a novel class of chemically modified vegetable oils from epoxidized triacylglycerols and various anhydrides. In an anhydrous solvent, boron trifluoride etherate is used as catalyst to simultaneously open the oxirane ring and activate the anhydride. The reaction was monitored and products confirmed by NMR, FTIR, GPC, and TGA analysis. Experimental conditions were optimized for research quantity and laboratory scale-up (up to 4 lbs). The resultant acyl derivatives of vegetable oil, having diester substitution at the sites of unsaturation, have potential in formulation of industrial fluids such as hydraulic fluids, lubricants, and metal working fluids.  相似文献   

9.
The phenolic composition of "lampante olive oil", "crude olive pomace oil", and "second centrifugation olive oil" was characterized by high-performance liquid chromatography with UV, fluorescence, and mass spectrometry detection. The phenolic profile of these olive oils intended for refining was rather similar to that previously reported for virgin olive oil. However, a new compound was found in these oils, which is mainly responsible of their foul odor. It was identified as 4-ethylphenol by comparison of its UV and mass spectra with those of a commercial standard. Although 4-ethylphenol was discovered in all oils intended for refining, its presence was particularly significant in "second centrifugation olive oils", its concentration increasing with time of olive paste storage. Similar trends were observed for hydroxytyrosol, hydroxytyrosol acetate, tyrosol, and catechol, the concentration of these substances reaching values of up to 600 mg/kg of oil, which makes their recovery for food, cosmetic, or pharmaceutical purposes attractive.  相似文献   

10.
酶法脱胶作为一种新型的植物油脂脱胶工艺,与传统脱胶工艺相比,具有脱胶完全、用水量和废水排放少、耗能低、精炼得率高等经济、环保的优点,因而备受各国油脂加工业的关注。随着酶法脱胶技术的发展,已有多种磷脂酶(A1、A2、B、C)应用于植物油脂脱胶;酶法脱胶工艺也从简单地优化基本参数(脱胶温度、酶添加量、pH值和加水量等)到结合优化酸预处理、水酶和油脂混合程度来提高脱胶效率,从单一酶脱胶工艺发展到复合酶脱胶工艺,由游离酶脱胶发展到固定化酶脱胶。该文介绍了植物油脂酶法脱胶工艺中使用的磷脂酶,综述分析了酶法脱胶工艺设计与应用现状及存在的问题。提出需综合考虑脱胶效果、磷脂改性副产品加工价值及植物毛油品质等因素,选择合适的磷脂酶和脱胶工艺才能使酶法脱胶同时达到低耗和经济的效果。目前制约酶法脱胶工艺大规模应用的一个重要因素是现有磷脂酶催化性能差,可通过酶人工改造技术提高磷脂酶活性和抗逆性从而解决目前酶法脱胶时间长,脱胶温度低等问题。因此开发性能优良的磷脂酶,并且相应地设计更节能、环保的脱胶工艺是未来植物油脂酶法脱胶研究的主要目标。  相似文献   

11.
The antimicrobial activity of different edible vegetable oils was studied. In vitro results revealed that the oils from olive fruits had a strong bactericidal action against a broad spectrum of microorganisms, this effect being higher in general against Gram-positive than Gram-negative bacteria. Thus, olive oils showed bactericidal activity not only against harmful bacteria of the intestinal microbiota (Clostridium perfringens and Escherichia coli) also against beneficial microorganisms such as Lactobacillus acidophilus and Bifidobacterium bifidum. Otherwise, most of the foodborne pathogens tested (Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, Yersinia sp., and Shigella sonnei) did not survive after 1 h of contact with olive oils. The dialdehydic form of decarboxymethyl oleuropein and ligstroside aglycons, hydroxytyrosol and tyrosol, were the phenolic compounds that statistically correlated with bacterial survival. These findings were confirmed by testing each individual phenolic compound, isolated by HPLC, against L. monocytogenes. In particular, the dialdehydic form of decarboxymethyl ligstroside aglycon showed a potent antimicrobial activity. These results indicate that not all oils classified as "olive oil" had similar bactericidal effects and that this bioactivity depended on their content of certain phenolic compounds.  相似文献   

12.
In this study, the diglyceride contents of 96 samples of virgin olive oils from the regions of Crete, Lesvos, Messinia, Pilion, Zakynthos, Halkidiki, and Ilia, 15 samples of commercial extra virgin and pure olive oils, and 3 samples each of refined olive oils and pomace oils were determined by a facile method introduced in a previous publication. This method is based on the phosphitylation of the free hydroxyls of the diglycerides with 2-chloro-4,4,5,5-tetramethyldioxaphospholane and the integration of the appropriate peaks in the (31)P NMR spectra. This preliminary study showed interesting trends in the diglyceride content of the virgin olive oils from the various regions of Greece that can be used as simple criteria to assess the olive oil characteristics. Analysis of variance has been carried out for the diglyceride content of each region in an attempt to detect possible differences in the diglyceride levels among the various regions. Finally, the relationship between the ratio of 1,2-diglycerides to the total amount of diglycerides and the total amount of diglycerides has been used to monitor the quality of virgin olive oils, commercial olive oils, refined olive oils, and pomace oils.  相似文献   

13.
The phenol content and antioxidant activity of extra virgin olive oils (EVOOs) differing in their origins and degradation degrees were studied. The o-diphenolic compounds typical of olive oil, namely, the oleuropein derivatives hydroxytyrosol (3',4'-dihydroxyphenylethanol, 3',4'-DHPEA), the dialdehydic form of elenolic acid linked to 3',4'-DHPEA (3',4'-DHPEA-EDA), and an isomer of oleuropein aglycon (3',4'-DHPEA-EA), were analyzed by HPLC. The antioxidant activity was studied by (a) the xanthine oxidase (XOD)/xanthine system, which generates superoxide radical and hydrogen peroxide; (b) the diaphorase (DIA)/NADH/juglone system, which generates superoxide radical and semiquinonic radical; and (c) the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) test. Results showed that EVOOs with a low degradation level (as evaluated by acidity, peroxide number, and spectroscopic indices K(232), K(270), and deltaK according to the EU Regulation) had a higher content of 3',4'-DHPEA-EDA and a lower content of 3',4'-DHPEA than oils having intermediate and advanced degradation levels. EVOOs with a low degradation degree were 3-5 times more efficient as DPPH scavengers and 2 times more efficient as inhibitors of the XOD-catalyzed reaction than oils with intermediate and advanced degradation levels. The DIA-catalyzed reaction was inhibited by EVOOs having low or intermediate degradation levels but not by the most degraded oils.  相似文献   

14.
The environment must be protected against pollution caused by lubricants based on petroleum oils. The pollution problem is so severe that approximately 50% of all lubricants sold worldwide end up in the environment via volatility, spills, or total loss applications. This threat to the environment can be avoided by either preventing undesirable losses, reclaiming and recycling mineral oil lubricants, or using environmentally friendly lubricants. Vegetable oils are recognized as rapidly biodegradable and are thus promising candidates as base fluids in environment friendly lubricants. Lubricants based on vegetable oils display excellent tribological properties, high viscosity indices, and flash points. To compete with mineral-oil-based lubricants, some of their inherent disadvantages, such as poor oxidation and low-temperature stability, must be corrected. One way to address these problems is chemical modification of vegetable oils at the sites of unsaturation. After a one-step chemical modification, the chemically modified soybean oil derivatives were studied for thermo-oxidative stability using pressurized differential scanning calorimetry and a thin-film micro-oxidation test, low-temperature fluid properties using pour-point measurements, and friction-wear properties using four-ball and ball-on-disk configurations. The lubricants formulated with chemically modified soybean oil derivatives exhibit superior low-temperature flow properties, improved thermo-oxidative stability, and better friction and wear properties. The chemically modified soybean oil derivatives having diester substitution at the sites of unsaturation have potential in the formulation of industrial lubricants.  相似文献   

15.
Thermal properties of monovarietal extra virgin olive oils were evaluated by means of differential scanning calorimetry (upon cooling) and related to their chemical composition (triacylglycerols, diacylglycerols, total and free fatty acids, oxidation status). The overall crystallization enthalpy did not significantly differ among samples and did not account for the differences observed in chemical compositions. On the contrary, a higher degree of unsaturation in the lipid profile induced a shift of the crystallization onset towards lower temperatures and narrowing of the crystallization temperature range. The presence of triacylglycerol lysis and lipid oxidation products shifted the crystallization towards higher temperatures and the phase transition developed over a larger temperature range. Differential scanning calorimetry thermograms were deconvoluted into three constituent exothermic peaks for all samples. The area of the two lower-temperature exotherms was found to be statistically correlated with the amount of triunsaturated and monosaturated triacylglycerols present in the oil. Thermal properties of extra virgin olive oil were found to be affected by oil chemical composition.  相似文献   

16.
The evolution of 1,3- and 1,2-isomers of diacylglycerols (DGs) in olive oils obtained from healthy olives and the influence of the olive quality was studied. Healthy olive fruits yielded oils containing almost exclusively 1,2-isomers whereas altered olives produced oils with significant amounts of 1,3-isomers. Virgin olive oils obtained from various olive cultivars and stored at different temperatures showed triacylglycerol hydrolysis and diacylglycerol isomerization depending on the acidity and temperature. The results indicated that the relationship between acidity and total diacylglycerol content has scarce utility for detecting mild refined oil in virgin olive oil. On the other hand, the 1,3-/1,2-DG isomers ratio is useful for assessing the genuineness of virgin olive oils with low acidities during the early stages of storage.  相似文献   

17.
The antioxidant activity (IC(50)) of extra virgin olive oil (EVOO), commercial olive oil, and other vegetable oils (soybean, sunflower, and corn oil) was determined by UV-vis and by electron paramagnetic resonance (EPR) spectroscopy of the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). Also, we studied the antioxidant activity of the methanol soluble phase (methanolic, MF) and the nonsoluble phase (lipidic, LF) of oils by the same methods. Similarly, we studied the effect of heating on the antioxidant activity at 160 and 190 degrees C. Also, the MF, containing the polyphenolic substances, was used for measurements of the radical scavenging capacity toward the most important oxygen free radicals, superoxide anion (O(2)(*)(-)) and hydroxyl (HO(*)) radicals. Results showed that soybean oil and EVOO had the highest antioxidant potential and thermal stability. In the case of soybean oil, the antioxidant capacity is the result of its high content of gamma- and delta-tocopherols (with the highest antioxidant capacity and thermostabilities), whereas in EVOO, the antioxidant potential is the result of the combination of specific antioxidant polyphenols, which are acting additionally as effective stabilizers of alpha-tocopherol. The high content of EVOO in tyrosol, hydrotyrosol, and oleuropein and other polyphenolics with radical scavenging abilities toward superoxide anion and hydroxyl radical suggests that olive oil possesses biological properties that could partially account for the observed beneficial health effects of the Mediterranean diet.  相似文献   

18.
The most abundant phenolic compounds in olive oils are the phenethyl alcohols hydroxytyrosol and tyrosol. An optimized method to quantify the total concentration of these substances in olive oils has been described. It consists of the acid hydrolysis of the aglycons and the extraction of phenethyl alcohols with a 2 M HCl solution. Recovery of the phenethyl alcohols from oils was very high (<1% remained in the extracted oils), and the limits of quantification (LOQ) were 0.8 and 1.4 mg/kg for hydroxytyrosol and tyrosol, respectively. Precision values, both intraday and interday, remained below 3% for both compounds. The final optimized method allowed for the analysis of several types of commercial olive oils to evaluate their hydroxytyrosol and tyrosol contents. The results show that this method is simple, robust, and reliable for a routine analysis of the total concentration of these substances in olive oils.  相似文献   

19.
A simple and precise analytical method for the determination of hydroxy pentacyclic triterpene acids (HPTAs) in vegetable oils was developed. The acidic fraction was isolated by solid-phase extraction using bonded aminopropyl cartridges, and the extract was silylated and analyzed by gas chromatography. Repeatability and recovery of the method were determined. In virgin olive oils, similar amounts of oleanolic (3beta-hydroxyolean-12-en-28-oic) and maslinic (2alpha,3beta-dihydroxyolean-12-ene-28oic) acids and traces of ursolic (3beta-hydroxyurs-12-en-28-oic) acid were found. The main factor affecting HPTA concentration was the oil quality since that increases as the quality decreases, while olive variety, olive ripeness, and oil extraction system had less influence. In crude olive pomace oils, the concentrations were very much higher than in virgin olive oils. During refining processes, total or significant losses of HPTAs were observed. Esterified derivatives of HPTAs were not found.  相似文献   

20.
The authentication of extra virgin olive oil and its adulteration with lower-priced oils are serious problems in the olive oil industry. In addition to the obvious effect on producer profits, adulteration can also cause severe health and safety problems. A number of techniques, including chromatographic and spectroscopic methods, have recently been employed to assess the purity of olive oils. In this study Raman spectroscopy together with multivariate and evolutionary computational-based methods have been employed to assess the ability of Raman spectroscopy to discriminate between chemically very closely related oils. Additionally, the levels of hazelnut oils used to adulterate extra virgin olive oil were successfully quantified using partial least squares and genetic programming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号