首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 264 毫秒
1.
Drying–rewetting cycles (D/W) occur frequently in topsoils and may mobilize phosphorus (P). We investigated the effect of repeated D/W on the release of dissolved inorganic (DIP) and organic P (DOP) from forest floors and A horizons. Samples were taken from 3 European beech sites and from 3 Norway spruce sites. Soils were desiccated up to pF 6 (–100 MPa) in three D/W cycles in the laboratory, while the controls were kept permanently at 50% water holding capacity. After each drying, P was extracted from the soils in water. D/W caused the release of DIP and DOP especially from O layers. There was no general difference in response to D/W between samples from beech and spruce. The net release of DIP after D/W was largest from the Oe horizons (average 50–60 mg P kg?1) for both beech and spruce forest soils. The net release of DIP from Oi layers was on average 7.8 mg P kg?1 and from spruce Oa layers 21.1 mg P kg?1. In the A horizons, net DIP release was similar in beech and spruce soils with 0.4 mg P kg?1. The release of DOP was less than the release of DIP except for the A horizons. Repeated cycles did not increase the release of DIP and DOP. The release of DIP and DOP was positively correlated with the microbial biomass in Oe and Oa layers but not in Oi layers. Our results suggest that D/W may significantly influence the short term availability of dissolved P in both beech and spruce forest soils.  相似文献   

2.
Drying and rewetting (D/W) of soils often resulted in the release of soluble phosphorus (P) and nitrogen (N), thereby changing the availability of both nutrients. Most experiments on D/W have been conducted with disturbed mineral soil samples and with rewetting of the soil samples by abrupt change in the water potential. Here, we studied the effect of D/W on the leaching of P and N from undisturbed forest floors of a European beech and a Norway spruce site under near field conditions of desiccation and rewetting. We hypothesized that even under realistic rewetting of undisturbed forest floors, the leaching of P and N is increased after D/W and that the effects are less pronounced for spruce than for beech because of the larger hydrophobicity of the spruce forest floor. Undisturbed forest floor columns were subjected to desiccation at 20°C until a matrix potential of –100 MPa (pF 6.0) was reached, while controls were kept at moist conditions. Columns were irrigated by 22 mm day?1 from day 1–3 and by 10 mm day?1 from day 4–14 given in automated short pulses. Leachates from the soil columns were analyzed for orthophosphate, total P, NH4, NO3, and total N. In the spruce forest floor the concentrations of total P in leachates and the leachate fluxes were strongly increased after D/W. The increase of solute P was less for beech than for spruce coinciding with less actual rewetting of the beech forest floor. Leaching of total N from the spruce forest floor was not affected by D/W, however, concentrations and leaching of NH4 increased, while leaching of NO3 decreased. For beech the leaching of total N and NH4 increased after D/W, while NO3 leaching decreased. The results indicate that also under realistic conditions, D/W of forest floors increases solute P and leads to changes in the ratio of NH4/NO3 in solution, thereby altering the availability of the nutrients.  相似文献   

3.
Little is known about the effects of temperature and drying–rewetting on soil phosphorus (P) fractions and microbial community composition in regard to different fertilizer sources. Soil P dynamics and microbial community properties were evaluated in a soil not fertilized or fertilized with KH2PO4 or swine manure at two temperatures (10 and 25 °C) and two soil water regimes (continuously moist and drying–rewetting cycles) in laboratory microcosm assays. The P source was the dominant factor determining the sizes of labile P fractions and microbial community properties. Manure fertilization increased the content of labile P, microbial biomass, alkaline phosphomonoesterase activity, and fatty acid contents, whereas KH2PO4 fertilization increased the content of labile inorganic P and microbial P. Water regimes, second to fertilization in importance, affected more labile P pools, microbial biomass, alkaline phosphomonoesterase activity, and fatty acid contents than temperature. Drying–rewetting cycles increased labile P pools, decreased microbial biomass and alkaline phosphomonoesterase activity, and shaped the composition of microbial communities towards those with greater percentages of unsaturated fatty acids, particularly at 25 °C in manure-fertilized soils. Microbial C and P dynamics responded differentially to drying–rewetting cycles in manure-fertilized soils but not in KH2PO4-fertilized soils, suggesting their decoupling because of P sources and water regimes. Phosphorus sources, temperature, and water regimes interactively affected the labile organic P pool in the middle of incubation. Overall, P sources and water availability had greater effects on P dynamics and microbial community properties than temperature.  相似文献   

4.
The chemical composition of organic layers of forest soils shows a high spatial variability and fast methods may be required for its study at a landscape level. The objective was to assess the applicability of near infrared spectroscopy (NIRS) to measure several chemical and biological properties of organic layers in spruce, beech, and mixed spruce‐beech stands. Spectra in the VIS‐NIR region (400—2500 nm) were recorded for 406 samples representing Oi, Oe, and Oa layers of forest soils from Solling (Germany), 195 of them were used for calibration and 211 for validation. The calibration equations for each constituent were developed using the whole spectrum (0th to 3rd derivative). Humus samples were analyzed for contents of C and N and contents of P, S, Na, K, Ca, Mg, Mn, Fe, and Al after pressure digestion in HNO3. Additionally, basal respiration and microbial C (Cmic) were measured. NIRS predicted well the contents of C, N, P, S, Ca, Na, K, Fe, and Al and C/N and C/P ratios: the regression coefficients (a) of a linear regression (measured against predicted values) ranged from 0.9 to 1.1, and the correlation coefficients (r) were greater or equal 0.9. Cmic (a = 0.87, r = 0.83) was predicted satisfactorily, whereas the prediction of the basal respiration (a = 0.74, r = 0.87) was less satisfactory. Due to liming of some of the plots NIRS failed to predict contents of Mg (a = 1.27, r = 0.68). For all chemical and biological characteristics the best prediction performances were achieved using the whole sample population. Splitting the samples into smaller groups according to a dominant tree species or an organic layer did not improve the predictions.<?show $6#>  相似文献   

5.
The forest floor represents the major source of dissolved organic carbon (DOC) and nitrogen (DON) in forest soils. The release mechanisms of DOC and DON from forest floors and their environmental controls as well as the dynamics of concentrations and fluxes are still poorly understood. We investigated the effect of drying and rewetting on the release of DOC and DON from a Norway spruce forest floor. Undisturbed soil columns of 17 cm diameter and 15—20 cm height were taken with 7 replicates from the forest floor of a mature Norway spruce (Picea abies [L.] Karst.) site and established at 10°C in the laboratory. Columns were exposed to different periods of drying (3, 5, 10, 20 days). Each drying period was followed by a rewetting for 5 days at an irrigation rate of 10 mm d—1 with a natural throughfall solution. The percolates from the forest floor were collected daily and analyzed for DOC, total N, NH4, NO3, pH, electrical conductivity and major ions. Drying for 10 and 20 days decreased the water content of the Oi horizon from 280% dry weight to about 30%. The water content of the Oe and the Oa horizon only changed from about 300% to 200%. The fluxes of DOC from the forest floor were moderately effected by drying and rewetting with an increase after 3 and 5 days of drying, but a decrease after 10 and 20 days. On the contrary, the drying for 10 and 20 days resulted in a drastic increase of the DON fluxes and a subsequent decrease of the DOC/DON ratios in the forest floor percolates from about 50 to 3.3. These results suggest that the mechanisms for DOC release in forest floors differ from those for DON and that drying and rewetting cause temporal variations in the DOC/DON ratios in forest floor percolates.  相似文献   

6.
Forest floors in the temperate climate zone are frequently subjected to strong changes in soil moisture, but the consequences for the soil N cycle are poorly known. In a field experiment we tested the hypotheses that soil drying leads to a decrease of gross N turnover and that natural rewetting causes a pulse of gross N turnover and an increase of N leaching from the forest floor. A further hypothesis was that optimal water availability induced by irrigation causes maximum N turnover and N leaching. Replicated control, throughfall exclusion and irrigation plots were established in a Norway spruce forest to simulate different precipitation patterns during a growing season. Gross N turnover rates were determined in undisturbed soil cores from Oi + Oe and Oa + EA horizons by the 15N pool dilution technique. Forest floor percolates were periodically collected by suction plates. After 142 mm throughfall was excluded, the median soil water potential at the throughfall exclusion plots increased from pF 1.9 to 4.5 in the Oi + Oe horizon and from pF 1.8 to 3.8 in the Oa + EA horizon. Gross ammonification ranged from 14 to 45 mg N kg−1 soil day−1 in the Oi + Oe horizon and from 4.6 to 11.4 mg N kg−1 soil day−1 in the Oa + EA horizon. Gross ammonification of both horizons was smallest in the throughfall exclusion plots during the manipulation, but the differences between all treatments were not statistically significant. Gross nitrification in both horizons was very small, ranging from 1.6 to 11.1 mg N kg−1 soil day−1. No effects of decreasing water potential and rewetting on gross nitrification rates were observed because of the small rates and huge spatial variations. Irrigation had no effect as the differences from the control in soil water potential remained small. N leaching from the forest floor was not affected by the treatments. Our findings suggest that ammonification in forest floors continues at considerable rates even at small water potentials. The hypotheses of increased N turnover and N leaching following rewetting of dry forest floor or irrigation were not confirmed.  相似文献   

7.
Composition and effects of additions of fibric (Oi) and hemic/sapric (Oe + Oa) layer extracts collected from a 20-year-old stand of radiata pine (Pinus radiata) on soil carbon dioxide (CO2) evolution were investigated in a 94-day aerobic incubation. The 13C nuclear magnetic resonance spectroscopy indicated that Oi layer extract contained greater concentrations of alkyl C while Oe + Oa layer extract was rich in carboxyl C. Extracts from Oi and Oe + Oa layers were added to a forest soil at two different polyphenol concentrations (43 and 85 μg g−1 soil) along with tannic acid (TA) and glucose solutions to evaluate effects on soil CO2 efflux. CO2 evolution was greater in amended soils than control (deionized water) indicating that water-soluble organic carbon (WSOC) was readily available to microbial degradation. However, addition of WSOC extracted from both Oi and Oe + Oa layers containing 85 μg polyphenols g−1 soil severely inhibited microbial activity. Soils amended with extracts containing lower concentrations of polyphenols (43 μg polyphenols g−1 soil), TA solutions, and glucose solutions released 2 to 22 times more CO2-C than added WSOC, indicating a strong positive priming effect. The differences in CO2 evolution rates were attributed to chemical composition of the forest floor extracts.  相似文献   

8.
The aims of this study were to determine the degree of lignin degradation and to investigate changes in the chemical composition of the organic matter in the forest floor in an N fertilized Norway spruce forest soil. Needle litter and mor humus were collected from the field experiment at Skogaby in southern Sweden (56°33′N; 13°13′E). The spruce stand had been fertilized for 11 years with 100 kg N ha−1 yr−1 as (NH4)2SO4. The degree of lignin degradation was determined with alkaline CuO oxidation followed by HPLC analysis. The chemical composition of the organic matter was characterized by CPMAS 13C NMR. Tannin was specifically analyzed using dipolar dephasing CPMAS 13C NMR and the N distribution was studied by CPMAS 15N NMR.The C-to-N ratios in the fertilized Oi and Oe layers were significantly lower than in the unfertilized layers (24 compared to 34 and 23 compared to 27, respectively). Neither the sum of the CuO oxidation products (Vanillyls+Syringyls+Cinnamyls expressed as VSC) nor the acid-to-aldehyde ratio ((Ac/Al)V) showed any significant treatment effects. The content of aromatic C (including phenolic C) was significantly lower in the unfertilized than in the fertilized Oi layer (18 versus 21%). In the unfertilized soil, VSC was positively correlated (r=+0.63, p<0.05) with the C-to-N ratio, whereas the phenolic C content was negatively correlated (r=−0.61, p<0.05). The tannin index showed a tendency of increasing from Oi to Oe layers in both treatments. Most of the organic N was found as amide-N, whereas no heterocyclic N was detected. We have not been able to show any major C structural changes due to N fertilization. We suggest that the significantly higher content of aromatic and phenolic C in the fertilized Oi layer is due to an initial stimulation of the microbial community.  相似文献   

9.
Landscape level factors such as overstory canopy composition can have a profound effect on the ecology of microbial communities in boreal forest floors. However, factors influencing community composition at the microsite scale are still poorly described and understood. Here we explored moisture effects on microbial communities in forest floor derived from undisturbed trembling aspen and white spruce stands, two of the dominant trees in the boreal forest of western Canada. Forest floor samples were incubated in a laboratory experiment for a period of one month under a moisture regime ranging from moist to dry (field capacity, 60% of field capacity and wilting point). As in previous studies we found that the origin of the forest floor material had a strong effect on the microbial community. Additionally, we found that moisture manipulation did not alter the microbial communities of the white spruce forest floor. On the other hand, the moisture had a profound effect on the aspen forest floor, and resulted in structurally and functionally distinct microbial communities. This different response to moisture could be linked to the adaptation of microbial groups to the physical environment inherent to the aspen and spruce forest floors and provides an avenue to further work into microbial mediated biogeochemical processes in the boreal forest.  相似文献   

10.
In temperate forest soils, N net mineralization has been extensively investigated during the growing season, whereas N cycling during winter was barely addressed. Here, we quantified net ammonification and nitrification during the dormant season by in situ and laboratory incubations in soils of a temperate European beech and a Norway spruce forest. Further, we compared temperature dependency of N net mineralization in in situ field incubations with those from laboratory incubations at controlled temperatures. From November to April, in situ N net mineralization of the organic and upper mineral horizons amounted to 10.9 kg N (ha · 6 months)–1 in the spruce soil and to 44.3 kg N (ha · 6 months)–1 in the beech soil, representing 65% (beech) and 26% (spruce) of the annual above ground litterfall. N net mineralization was largest in the Oi/Oe horizon and lowest in the A and EA horizons. Net nitrification in the beech soil [1.5 kg N (ha · 6 months)–1] was less than in the spruce soil [5.9 kg N (ha · 6 months)–1]. In the range of soil temperatures observed in the field (0–8°C), the temperature dependency of N net mineralization was generally high for both soils and more pronounced in the laboratory incubations than in the in situ incubations. We suggest that homogenization of laboratory samples increased substrate availability and, thus, enhanced the temperature response of N net mineralization. In temperate forest soils, N net mineralization during the dormant season contributes substantially to the annual N cycling, especially in deciduous sites with large amounts of litterfall immediately before the dormant season. High Q10 values of N net mineralization at low temperatures suggest a huge effect of future increasing winter temperature on the N cycle in temperate forests.  相似文献   

11.
How the mixture of tree species modifies short-term decomposition has been well documented using litterbag studies. However, how litter of different tree species interact in the long-term is obscured by our inability to visually recognize the species identity of residual decomposition products in the two most decomposed layers of the forest floor (i.e. the Oe and Oa layers respectively). To overcome this problem, we used Near Infrared Reflectance Spectroscopy (NIRS) to determine indirectly the species composition of forest floor layers. For this purpose, controlled mixtures of increasing complexity comprising beech and spruce foliage materials at various stages of decomposition from sites differing in soil acid-base status were created. In addition to the controlled mixtures, natural mixtures of litterfall from mixed stands were used to develop prediction models. Following a calibration/validation procedure, the best regression models to predict the actual species proportion from spectral properties were selected for each tree species based on the highest coefficient of determination (R2) and the lowest root mean square error of prediction (RMSEP). For the validation, the R2 (predictions versus true proportions) were 0.95 and 0.94 for both beech and spruce components in mixtures of materials at all stages of decomposition from the gradient of sites. The R2 decreased only marginally by 0.04 when models were tested on independent samples of similar composition. The best models were used to predict the beech-spruce proportion in Oe and Oa layers of unknown composition. They provided in most cases plausible predictions when compared to the composition of the canopy above the sampling points. Thus, tedious and potentially erroneous hand sorting of forest floor layers may be replaced by the use of NIRS models to determine species composition, even at late stages of decomposition.  相似文献   

12.
Potential microbial nitrogen and phosphorus availability in forest floors   总被引:2,自引:0,他引:2  
The potential availability of nitrogen and phosphorus to microorganisms in forest floors was studied by means of a bioassay. Microbial N and P availability was assessed by analyzing the respiration rate response to addition of different amounts of N and P when glucose and other nutrients were added in excess. Forest floors of Norway spruce, Sitka spruce, Douglas-fir, beech, and oak from three sites of different nutrient status were studied. Oak forest floors had higher microbial N and P availability than forest floors of the other species, and P availability was lowest in Norway spruce forest floors. Sites differed only slightly in microbial P availability. The site with the most P rich soil also had the highest P availability in forest floors. The microbially-available proportion of total P was very high, and much higher than the available proportion of total N. Microbially-available N was not significantly related to KCl-extractable N, total N concentrations or C-to-N ratios, nor was microbially-available P related to concentrations of total P or C-to-P ratios. Basal respiration rates were positively related to microbial N and P availability. The bioassay assessed simple organic N compounds fairly well when these were added to forest floor material in low amounts. Microbial N and P availability in forest floors may be more dependent on other quality variables than total N and P concentrations, e.g. the organic forms of N and P.  相似文献   

13.
Rainfall in Mediterranean climates may affect soil microbial processes and communities differently in agricultural vs. grassland soils. We explored the hypothesis that land use intensification decreases the resistance of microbial community composition and activity to perturbation. Soil carbon (C) and nitrogen (N) dynamics and microbial responses to a simulated Spring rainfall were measured in grassland and agricultural ecosystems. The California ecosystems consisted of two paired sets: annual vegetable crops and annual grassland in Salinas Valley, and perennial grass agriculture and native perennial grassland in Carmel Valley. Soil types of the respective ecosystem pairs were derived from granitic parent material and had sandy loam textures. Intact cores (30 cm deep) were collected in March 1999. After equilibration, dry soil cores (approx. −1 to −2 MPa) were exposed to a simulated Spring rainfall of 2.4 cm, and then were measured at 0, 6, 24, and 120 h after rewetting. Microbial biomass C (MBC) and inorganic N did not respond to rewetting. N2O and CO2 efflux and respiration increased after rewetting in all soils, with larger responses in the grassland than in the agricultural soils. Phospholipid fatty acid (PLFA) profiles indicated that changes in microbial community composition after rewetting were most pronounced in intensive vegetable production, followed by the relict perennial grassland. Changes in specific PLFA markers were not consistent across all sites. There were more similarities among microbial groups associated with PLFA markers in agricultural ecosystems than grassland ecosystems. Differences in responses of microbial communities may be related to the different plant species composition of the grasslands. Agricultural intensification appeared to decrease microbial diversity, as estimated from numbers of individual PLFA identified for each ecosystem, and reduce resistance to change in microbial community composition after rewetting. In the agricultural systems, reductions in both the measures of microbial diversity and the resistance of the microbial community composition to change after a perturbation were associated with lower ecosystem function, i.e. lower microbial responses to increased moisture availability.  相似文献   

14.
The decomposition of spruce needles and beech leaves was investigated in a 30- and 120-yr-old beech, spruce and mixed (beech/spruce) forest using 1 mm mesh litterbags. The mass loss, content of C, N and water and microbial biomass, basal respiration and specific respiration of the litter materials were analyzed after exposure for 1.5, 3, 6, 9, 12, 18 and 24 months in the field. Decomposition of both types of litter was faster in beech than in spruce stands and after 24 months loss of C from litter materials was at a maximum in beech stands (>60%) and considerably less in the spruce and mixed stands (ca. 40%). Generally, spruce needles decomposed more rapidly than beech leaves, but the faster decay was not associated with higher N concentrations. Rather, N was accumulated more rapidly in beech leaves. Concomitantly, in beech stands microbial biomass of beech leaves exceeded that of spruce needles indicating that beech leaves consist of more favorable resources for microorganisms than spruce needles. Differences in decomposition between beech leaves and spruce needles were most pronounced in beech stands, intermediate in mixed stands and least pronounced in spruce stands. Decomposition, N content and microbial biomass in litter materials exposed in the 120-yr-old stand consistently exceeded that in the 30-yr-old stand indicating adverse conditions for litter decay in regrowing stands. Generally, mixed stands ranked intermediate between spruce and beech monocultures for most of the variables measured indicating that the adverse conditions for litter decay and microorganisms in spruce forest are effectively counteracted by admixture of beech to spruce monocultures. It is concluded that the accumulation of litter materials in spruce forests is not due to the recalcitrance of spruce needles to decay. Rather, adverse environmental conditions such as high polyphenol contents in the litter layer of spruce stands retard decomposition processes; spruce needles appear to be more sensitive to this retardation than beech leaves.  相似文献   

15.
On sunny summer days, the top 10 cm of soil in southern Australia are heated to temperatures between 50 and 80 °C for a few hours a day, often for several successive days. These extreme temperature events are likely to have profound effects on the microbiota in these soils, but we do not know how this recurrent heat exposure influences microbial dynamics and associated nutrient cycling. In this study, an air-dry soil from southern Australia was exposed to one or two diurnal heating events with maximum temperature of 50 or 70 °C. The control was left at ambient temperature (Amb). All soils were rapidly rewet. Soil respiration was measured for 7 days after rewetting; microbial biomass C, available N and P were determined before rewetting and 1 and 7 days after rewetting. After heating and before rewetting compared to Amb, microbial biomass C (MBC) was 50–80% lower, but available P was 25% higher in heated soils. Available N differed little between Amb and heated soils. Rewetting resulted in a flush of respiration in Amb and soils heated once, but there was no respiration flush in soils heated twice. Cumulative respiration compared to Amb was about 10% higher in soils heated once and about 25% lower in soils heated twice. In Amb, MBC 1 day after rewetting was similar as before rewetting. But in heated soils, MBC increased from before rewetting to 1 day after rewetting about fourfold. Compared to Amb, available N 1 day after rewetting was 20–30% higher in soils heated to 70 °C. Seven days after rewetting, available N was 10% higher than Amb only in soils heated twice to 70 °C. It can be concluded that diurnal heating kills a large proportion of the microbial biomass and influences soil respiration and nutrient availability after rewetting of soils. The effect of heating depends on both maximum temperature and number of events.  相似文献   

16.
Clear‐cutting of forest provides a unique opportunity to study the response of dynamic controls on dissolved organic matter. We examined differences in concentrations, fluxes and properties of dissolved organic matter from a control and a clear‐cut stand to reveal controlling factors on its dynamics. We measured dissolved organic C and N concentrations and fluxes in the Oi, Oe and Oa horizons of a Norway spruce stand and an adjacent clear‐cutting over 3 years. Aromaticity and complexity of organic molecules were determined by UV and fluorescence spectroscopy, and we measured δ13C ratios over 1 year. Annual fluxes of dissolved organic C and N remained unchanged in the thin Oi horizon (~ 260 kg C ha?1, ~ 8.5 kg N ha?1), despite the large reduction in fresh organic matter inputs after clear‐cutting. We conclude that production of dissolved organic matter is not limited by lack of resource. Gross fluxes of dissolved organic C and N increased by about 60% in the Oe and 40% in the Oa horizon upon clear‐cutting. Increasing organic C and N concentrations and increasing water fluxes resulted in 380 kg C ha?1 year?1 and 10.5 kg N ha?1 year?1 entering the mineral soil of the clear‐cut plots. We found numerous indications that the greater microbial activity induced by an increased temperature of 1.5°C in the forest floor is the major factor controlling the enhanced production of dissolved organic matter. Increasing aromaticity and complexity of organic molecules and depletion of 13C pointed to an accelerated processing of more strongly decomposed parts of the forest floor resulting in increased release of lignin‐derived molecules after clear‐cutting. The largest net fluxes of dissolved organic C and N were in the Oi horizon, yet dissolved organic matter sampled in the Oa horizon did not originate mainly from the Oi horizon. Largest gross fluxes in the Oa horizon (control 282 kg C ha?1) and increased aromaticity and complexity of the molecules with increasing depth suggested that dissolved organic matter was derived mainly from decomposition, transformation and leaching of more decomposed material of the forest floor. Our results imply that clear‐cutting releases additional dissolved organic matter which is sequestered in the mineral soil where it has greater resistance to microbial decay.  相似文献   

17.
Phospholipid fatty acid (PLFA) patterns were used to describe the composition of the soil microbial communities under 12 natural forest stands including oak and beech, spruce-fir-beech, floodplain and pine forests. In addition to the quantification of total PLFAs, soil microbial biomass was measured by substrate-induced respiration and chloroform fumigation-extraction. The forest stands possess natural vegetation, representing an expression of the natural site factors, and we hypothesised that each forest type would support a specific soil microbial community. Principal component analysis (PCA) of PLFA patterns revealed that the microbial communities were compositionally distinct in the floodplain and pine forests, comprising azonal forest types, and were more similar in the oak, beech and spruce-fir-beech forests, which represent the zonal vegetation types of the region. In the nutrient-rich floodplain forests, the fatty acids 16:1ω5, 17:0cy, a15:0 and a17:0 were the most prevalent and soil pH seemed to be responsible for the discrimination of the soil microbial communities against those of the zonal forest types. The pine forest soils were set apart from the other forest soils by a higher abundance of PLFA 18:2ω6,9, which is typical of fungi and may also indicate ectomycorrhizal fungi associated with pine trees, and high amounts of PLFA 10Me18:0, which is common in actinomycetes. These findings suggest that the occurrence of azonal forest types at sites with specific soil conditions is accompanied by the development of specific soil microbial communities. The study provides information on the microbial communities in undisturbed forest soils which may facilitate interpretation of data derived from managed or even damaged or degraded forests.  相似文献   

18.
Collembolan communities were studied in 41 microhabitats in beech and spruce forests of south ( ofín and umava) and central (Jevany) Bohemia. The communities of Collembola were analysed using TWINSPAN and CANOCO programs. The aim of this study was to establish differences between patch (microhatitat) communities and the main forest community in spruce and beech forests, the differences between both types of forests and among different regions of Bohemia. Further questions were: is there a difference in microhabitat communities during secondary forest succession? do some species live exclusively in one or few microhabitats? and does microhabitat diversity influence the biodiversity in forest soils? Material comprising  25 590 specimens of Collembola belonging to 142 species was analysed. Highly significant differences were determined between microhabitat communities in beech and spruce forests, as well as among forests in different regions of Bohemia. Significant differences were also found among microhabitats in forests of different ages. Also, some microhabitat communities of Collembola, e.g. moss on boulders, were significantly different from their main forest community. Certain collembolan species existed exclusively in one or two microhabitats. Patches therefore influenced substantially biodiversity in these forest soils.  相似文献   

19.
Temporal dynamics of edaphic communities affect numerous processes in forests and also strongly influence the soil's organic matter status. We have linked long-term changes in the formation of organic matter (using humus micromorphological analyses) to changes in the soil's community structure during a spruce forest cycle on acid soil. The study was carried out at four sites of different age-classes in the Tharandter forest, Germany. The composition of the deeper humus layers (OH, A) was stable. Herbaceous litter, recent spruce litter, fragmented spruce litter, decomposed litter and faeces and fungi, which contributed to the organic layer (OL and OH horizon), significantly changed during the forestry cycle, especially with the shift from the early stage to intermediate stages. Parallel changes of the faunal assemblage of the soil showed quantitative relations between major stages of the forest development, humus dynamics and soil community composition. The herbaceous litter was correlated with surface-dwelling Collembola and microbial properties with faeces and fungi. Our results suggest that the long-term stability of deep organic layers provides a refuge for decomposers and detritivores that allows a rapid response to both adverse and favourable conditions, taking place in OL and OF layers. Furthermore, the opening of the canopy in mature stands allows the decomposers to adapt to changes in resource input long before the collapse of the forest.  相似文献   

20.
In permanent observation plots across Switzerland, nitrogen (N) concentration in the foliage of mature beech has increased by 15% and phosphorus (P) concentrations in beech and mature Norway spruce decreased by 12 and 13% respectively between 1984 and 1995, leading to increased N:P ratios. Modelled N deposition was correlated with stem increment in both beech and spruce, with indications of P limitation in some beech plots. Experimental application of 0-160 kg N ha-1> yr-1> over four to five years caused nutrient imbalances in various afforestation plots comparable to those observed in the permanent observation plots. The changes in the trees caused by N treatment led to increased attacks by parasites such as Apiognomonia errabunda, Phomopsis sp., Phyllaphis fagi in beech and Botrytis cinerea, Sacchiphantes abietis and Cinara pilicornis in Norway spruce. The results suggest current N deposition in Switzerland induces significant changes in the forest ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号