首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate Change During the Last Deglaciation in Antarctica   总被引:1,自引:0,他引:1  
Greenland ice core records provide clear evidence of rapid changes in climate in a variety of climate indicators. In this work, rapid climate change events in the Northern and Southern hemispheres are compared on the basis of an examination of changes in atmospheric circulation developed from two ice cores. High-resolution glaciochemical series, covering the period 10,000 to 16,000 years ago, from a central Greenland ice core and a new site in east Antarctica display similar variability. These findings suggest that rapid climate change events occur more frequently in Antarctica than previously demonstrated.  相似文献   

2.
Records of ice-rafted detritus (IRD) concentration in deep-sea cores from the southeast Atlantic Ocean reveal millennial-scale pulses of IRD delivery between 20,000 and 74,000 years ago. Prominent IRD layers correlate across the Polar Frontal Zone, suggesting episodes of Antarctic Ice Sheet instability. Carbon isotopes (delta(13)C) of benthic foraminifers, a proxy of deepwater circulation, reveal that South Atlantic IRD events coincided with strong increases in North Atlantic Deep Water (NADW) production and inferred warming (interstadials) in the high-latitude North Atlantic. Sea level rise or increased NADW production associated with strong interstadials may have resulted in destabilization of grounded ice shelves and possible surging in the Weddell Sea region of West Antarctica.  相似文献   

3.
High-resolution analyses of lake sediment from southwestern Alaska reveal cyclic variations in climate and ecosystems during the Holocene. These variations occurred with periodicities similar to those of solar activity and appear to be coherent with time series of the cosmogenic nuclides 14C and 10Be as well as North Atlantic drift ice. Our results imply that small variations in solar irradiance induced pronounced cyclic changes in northern high-latitude environments. They also provide evidence that centennial-scale shifts in the Holocene climate were similar between the subpolar regions of the North Atlantic and North Pacific, possibly because of Sun-ocean-climate linkages.  相似文献   

4.
A north atlantic climate pacemaker for the centuries   总被引:10,自引:0,他引:10  
Kerr RA 《Science (New York, N.Y.)》2000,288(5473):1984-1985
Although El Ni?o and La Ni?a are the largest single sources of global interannual climate variability, climate shifts on longer time scales than El Ni?o's 2 to 7 years are also drawing the attention of researchers. On multidecadal time scales of 40 to 80 years, a restless North Atlantic seems to be at work, alternately countering and enhancing humankind's alterations of climate. The evidence for this is turning up in such records as tree rings, ice cores, and corals.  相似文献   

5.
Research in Antarctica is becoming increasingly important in the large interdisciplinary studies of connections within the earth's geosphere-biosphere system. Four examples of broad research areas are discussed. Upper atmosphere research explores the sun-earth interactions, which are most intense in the polar regions. The mass balance and dynamics of the large Antarctic ice sheet, and its paleoclimatic records recovered from deep ice cores, are important indicators of past and present global changes. Antarctica and sediment cores from the Southern Ocean contain the history of inception and growth of the ice masses and their subsequent fluctuations, and the long-term history of paleoclimate. The remarkable adaptations of Antarctic biota to extreme cold and drought may allow, through biotic monitoring, the detection of changes in the ocean and climate of Antarctica.  相似文献   

6.
Proxies from Greenland ice cores and North Atlantic marine sediment cores document repeated extreme climate swings of a few decades to millennia during the last glacial cycle, including periods of intense ice rafting called Heinrich events (HEs). We have found similar oxygen isotope variations recorded in mixed-layer-and thermocline-dwelling planktonic foraminifera during HEs 0, 1, and 4, suggesting that three foraminiferal taxa calcified their shells at similar temperatures in a homogenized upperwater column. This implies that the surface mixed layer was deeper during HEs. Similar deepening occurred on the northern margin of the ice-rafted-debris belt, implying that these deep mixed layers during HEs were widespread in the region. We suggest that an increase in storminess during HEs intensified the vertical mixing of meltwater from ice rafting in the upper ocean.  相似文献   

7.
An interdependence between the geographical distribution of dextral and sinistral populations of the planktonic foraminifer, Globigerina pachyderma, and sea surface-temperatures is demonstrated. It is inferred that changes in dominant coiling direction at lower levels in sediment cores from the North Atlantic record southward shifts of isotherms during the last ice age.  相似文献   

8.
Evidence from high-sedimentation-rate South Atlantic deep-sea cores indicates that global and Southern Ocean carbon budget shifts preceded thermohaline circulation changes during the last ice age initiation and termination and that these were preceded by ice-sheet growth and retreat, respectively. No consistent lead-lag relationships are observed during abrupt millennial warming events during the last ice age, allowing for the possibility that ocean circulation triggered some millenial climate changes. At the major glacial-interglacial transitions, the global carbon budget and thermohaline ocean circulation responded sequentially to the climate changes that forced the growth and decline of continental ice sheets.  相似文献   

9.
The oxygen-18/oxygen-16 ratio of molecular oxygen trapped in ice cores provides a time-stratigraphic marker for transferring the absolute chronology for the Greenland Ice Sheet Project (GISP) II ice core to the Vostok and Byrd ice cores in Antarctica. Comparison of the climate records from these cores suggests that, near the beginning of the last deglaciation, warming in Antarctica began approximately 3000 years before the onset of the warm B?lling period in Greenland. Atmospheric carbon dioxide and methane concentrations began to rise 2000 to 3000 years before the warming began in Greenland and must have contributed to deglaciation and warming of temperate and boreal regions in the Northern Hemisphere.  相似文献   

10.
In contrast to the relatively stable climate of the past 10,000 years, during glacial times the North Atlantic region experienced large-amplitude transitions between cold (stadial) and warm (interstadial) states. In this modeling study, we demonstrate that hydrological interactions between the Atlantic thermohaline circulation (THC) and adjacent continental ice sheets can trigger abrupt warming events and also limit the lifetime of the interstadial circulation mode. These interactions have the potential to destabilize the THC, which is already more sensitive for glacial conditions than for the present-day climate, thus providing an explanation for the increased variability of glacial climate.  相似文献   

11.
The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.  相似文献   

12.
Evidence from the Irish Sea basin supports the existence of an abrupt rise in sea level (meltwater pulse) at 19,000 years before the present (B.P.). Climate records indicate a large reduction in the strength of North Atlantic Deep Water formation and attendant cooling of the North Atlantic at this time, indicating a source of the meltwater pulse from one or more Northern Hemisphere ice sheets. Warming of the tropical Atlantic and Pacific oceans and the Southern Hemisphere also began at 19,000 years B.P. These responses identify mechanisms responsible for the propagation of deglacial climate signals to the Southern Hemisphere and tropics while maintaining a cold climate in the Northern Hemisphere.  相似文献   

13.
During the past decade, geochemical paleoceanographers have begun to explore the changes in the circulation of the deep ocean that occurred during the glacial-interglacial cycles of the earth's recent history. The deep ocean was significantly colder during the glacial maximum. The distributions of biologically utilized elements (such as carbon and phosphorus) were significantly different as well; higher concentrations of these elements occurred in the deep (>2500 meters depth) North Atlantic, and lower concentrations occurred in the upper (<2500 meters depth) waters of the North Atlantic and possibly in all of the major ocean basins. In contrast, relatively subtle changes have been observed in the radiocarbon ages of deep waters. Slow deepwater changes are statistically linked to variations in the earth's orbit, but rapid changes in deepwater circulation also have occurred. Deepwater chemistry and circulation changes may control the variability in atmospheric CO(2) levels that have been documented from studies of air bubbles in polar ice cores.  相似文献   

14.
Bond GC  Lotti R 《Science (New York, N.Y.)》1995,267(5200):1005-1010
High-resolution studies of North Atlantic deep sea cores demonstrate that prominent increases in iceberg calving recurred at intervals of 2000 to 3000 years, much more frequently than the 7000-to 10,000-year pacing of massive ice discharges associated with Heinrich events. The calving cycles correlate with warm-cold oscillations, called Dansgaard-Oeschger events, in Greenland ice cores. Each cycle records synchronous discharges of ice from different sources, and the cycles are decoupled from sea-surface temperatures. These findings point to a mechanism operating within the atmosphere that caused rapid oscillations in air temperatures above Greenland and in calving from more than one ice sheet.  相似文献   

15.
The climatic warming of 10,000 years ago is now affecting the central portions of ice sheets, causing ice-flow acceleration. This process explains the present-day thinning of the ice sheet in West Antarctica. Former ice sheets must have also responded to climatic warming with a delay of thousands of years. This lag in response is important in the climatic interpretation of glacial deposits and of changes in ice volume obtained from deep-sea cores.  相似文献   

16.
The last deglaciation was marked by large, hemispheric, millennial-scale climate variations: the B?lling-Aller?d and Younger Dryas periods in the north, and the Antarctic Cold Reversal in the south. A chronology from the high-accumulation Law Dome East Antarctic ice core constrains the relative timing of these two events and provides strong evidence that the cooling at the start of the Antarctic Cold Reversal did not follow the abrupt warming during the northern B?lling transition around 14,500 years ago. This result suggests that southern changes are not a direct response to abrupt changes in North Atlantic thermohaline circulation, as is assumed in the conventional picture of a hemispheric temperature seesaw.  相似文献   

17.
Oxygen isotope analysis of benthic foraminifera in deep sea cores from the Atlantic and Southern Oceans shows that during the last interglacial period, North Atlantic Deep Water (NADW) was 0.4 degrees +/- 0.2 degrees C warmer than today, whereas Antarctic Bottom Water temperatures were unchanged. Model simulations show that this distribution of deep water temperatures can be explained as a response of the ocean to forcing by high-latitude insolation. The warming of NADW was transferred to the Circumpolar Deep Water, providing additional heat around Antarctica, which may have been responsible for partial melting of the West Antarctic Ice Sheet.  相似文献   

18.
Sedimentary time series of color reflectance and major element chemistry from the anoxic Cariaco Basin off the coast of northern Venezuela record large and abrupt shifts in the hydrologic cycle of the tropical Atlantic during the past 90,000 years. Marine productivity maxima and increased precipitation and riverine discharge from northern South America are closely linked to interstadial (warm) climate events of marine isotope stage 3, as recorded in Greenland ice cores. Increased precipitation at this latitude during interstadials suggests the potential for greater moisture export from the Atlantic to Pacific, which could have affected the salinity balance of the Atlantic and increased thermohaline heat transport to high northern latitudes. This supports the notion that tropical feedbacks played an important role in modulating global climate during the last glacial period.  相似文献   

19.
Atlantic Ocean forcing of North American and European summer climate   总被引:6,自引:0,他引:6  
Recent extreme events such as the devastating 2003 European summer heat wave raise important questions about the possible causes of any underlying trends, or low-frequency variations, in regional climates. Here, we present new evidence that basin-scale changes in the Atlantic Ocean, probably related to the thermohaline circulation, have been an important driver of multidecadal variations in the summertime climate of both North America and western Europe. Our findings advance understanding of past climate changes and also have implications for decadal climate predictions.  相似文献   

20.
Situated adjacent to the largest Northern Hemispher ice sheets of the ice ages, the mid-latitude North Atlantic Ocean has an important role in the earth's climate history. It provides a significant local source of moisture for the atmosphere and adjacent continents, forms a corridor that guides moisture-bearing storms northward from low latitudes, and at times makes direct contact along its shorelines with continental ice masses. Evidence of major ice-ocean-air interactions involving the North Atlantic during the last 250,000 years is summarized. Outflow of icebergs and meltwater initially driven by summer insolation over the ice sheets affects midlatitude ocean temperatures, summer heat storage, winter sea-ice extent, and global sea level. These oceanic responses in turn influence the winter moisture flux back to the ice sheets, as well as ablation of land ice by calving. Spectral data indicate that the oceanic moisture and sea-level feedbacks, in part controlled by glacial melt products, amplify Milankovitch (insolation) forcing of the volumetrically dominant mid-latitude ice sheets at the 23,000-year precessional cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号