首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we describe the generation of monoclonal antibodies (mAbs), which recognize different epitopes of the equine IgE constant heavy chain. Equi-murine recombinant IgE (rIgE), composed of the murine V(H)186.2 heavy chain variable region, linked to the equine IgE constant heavy chain and expressed together with the murine lambda(1) chain in J558L cells was used to immunize BALB/C mice. A total of 17 different mAbs were obtained, which recognized the rIgE heavy chain constant region. None of the mAbs reacted with monoclonal equine isotypes IgM, IgG1 (IgGa), IgG3 (IgG(T)), IgG4 (IgGb) or isolated equine light chains, IgGc and IgA from horse serum, or the native mAb B1-8delta, expressing the same heavy chain variable regions and light chains. One of the mAbs (alphaIgE-132) recognized the recombinant equine IgE, but did not recognize any protein in equine serum, i.e. native IgE. A total of 16 mAbs detected a serum protein of approximately 210,000Da on Western blots, corresponding to the expected MW of native IgE. In addition, one of the mAbs (alphaIgE-176) detected a protein of 76,000Da under reducing conditions, most likely the equine IgE heavy chain. According to binding inhibition studies, the equine IgE specific mAbs recognize at least two different epitopes of the equine IgE. In an ELISA using two anti-IgE mAbs which recognized different epitopes, no significant differences in the concentration of total serum IgE could be detected between adult Icelandic horses with IgE-mediated type I allergy (summer eczema) and healthy control animals. In Icelandic horse foals, no serum IgE could be measured 6 months post partum. All anti-IgE mAbs recognized a small population (1.3+/-0.5%) of leukocytes from adult Icelandic horses by surface immunofluorescence, but no cells could be detected in foal blood. The stained leukocytes from adult horses could be enriched by magnetic cell sorting and contained 32% basophils, 53% monocytes and/or large lymphocytes, 13% small lymphocytes and 2% eosinophils.  相似文献   

2.
Immunoglobulin E forms a minor component of serum antibody in mammals. In tissues IgE is bound by FcvarepsilonRI receptors on the surface of mast cells and mediates their release of inflammatory substances in response to antigen. IgE and mast cells have a central role in immunity to parasites and the pathogenesis of allergic diseases in horses and other mammals. This paper describes the production of several novel monoclonal antibodies that detect native equine IgE in immunohistology, ELISA and Western blotting. An antigen capture ELISA to quantify equine IgE in serum has been developed using two of these antibodies. The mean serum IgE concentration of a group of 122 adult horses was 23,523ng/ml with a range of 425-82,610ng/ml. Total serum IgE of healthy horses was compared with that of horses with insect bite dermal hypersensitivity (IBDH) an allergic reaction to the bites of blood feeding insects of Culicoides or Simulium spp. IBDH does not occur in Iceland where Culicoides spp. are absent, but following importation into mainland Europe native Icelandic horses have an exceptionally high incidence of this condition. In the present study Icelandic horses with IBDH had significantly higher total IgE than healthy Icelandic horse controls (P<0.05). By contrast in horses of other breeds the difference in total serum IgE between those affected with IBDH and healthy controls was not statistically significant. Total serum IgE was also monitored in a cohort of Icelandic horses prior to import into Switzerland and for a period of 3 years thereafter. High levels of serum IgE were present in all horses at the start of the study but dropped in the first year after import. Thereafter the total serum IgE remained low in Icelandic horses that remained healthy but rose significantly (P<0.05) in those that developed IBDH. These results support the conclusion that IBDH is a type I hypersensitivity response to insect allergens but indicate that IBDH in Icelandic horses may have a different pathogenesis from the same condition in other breeds.  相似文献   

3.
Equine disease with an allergic etiology is common. Environmental antigens most often implicated as allergens in horses include molds, dusty hay, grass pollen, hay dust mites, and insect saliva. Although intradermal testing with allergen is a useful diagnostic tool for some species, skin testing frequently produces false positive results in horses. Allergen deprivation as a diagnostic tool is often impossible and at best it is ineffective at diagnosing the specific allergic reactivity. Synthesis of IgE after exposure to allergen is the instigator of the allergic process. While IgE exerts its effect after binding strongly to mast cell Fc receptors, the presence of free IgE in the serum can be used to quantify and determine the allergen specificity of the allergic disease. A lack of widely available reagents for detection of equine IgE has limited this approach in horses. We have used the nucleotide sequence of equine IgE to prepare a peptide-based immunogen to elicit equine epsilon chain-specific antisera. Selection of peptides was based on antigenic attributes of the deduced amino acid sequence of the equine epsilon chain. Six peptides were selected for conjugation to carrier molecules and rabbit immunization. Of these, one peptide elicited antisera that was successfully used in enzyme linked immunosorbant assay (ELISA) to screen horse serum from 64 allergic horses for allergen-specific IgE. Twenty-four of the 64 horses showed positive reactivity to one or more of the following allergens: grass, grain mill dust, mosquito, and horsefly. This study demonstrates the usefulness of peptide-based immunogens for development of antisera to rare or difficult to purify antigens such as IgE. Resultant antisera has great usefulness in diagnostic assays for equine allergy and as a research tool.  相似文献   

4.
Due to characteristic clinical signs, immunoglobulins of isotype E (IgE) are believed to be involved in several allergic diseases of the horse. To date, closer investigations have been hampered by the fact that neither purified equine IgE nor anti-equine IgE monoclonal antibodies were available for IgE isotype determination. As an approach to solve this problem, we constructed a stable cell line (EqE6) that expresses recombinant equi-murine IgE specific for 4-(hydroxy-3-nitro-phenyl) acetyl (NP). Biochemical analysis of the purified protein revealed a highly glycosilated IgE monomer of approximately 230,000 Da. The biological ability of the NP-IgE to mediate histamine release after crosslinking with antigen was demonstrated in vitro using equine blood leucocytes. In vivo, the intradermal application of NP-IgE followed by antigen crosslinking induced a type I hypersensitivity skin reaction in horses. Both results indicate that the recombinant NP-IgE contains an intact and functional Fc(epsilon) RI binding site and mediates effector functions in equine basophils and cutaneous mast cells. This equi-murine IgE can be used for the production of IgE-specific polyclonal and monoclonal antibodies. In addition, the NP specificity allows the antigen-specific activation of equine Fc(epsilon)-receptor-expressing cells, such as mast cells and basophils. This property could be used to investigate IgE-mediated mechanisms for a better understanding of equine type I allergic diseases.  相似文献   

5.
In horses, allergies have been characterized by clinical signs and/or intradermal (i.d.) allergen testing. Our aim was to find the first direct evidence that immunoglobulin E (IgE) mediates equine allergy. In addition, we tested the hypothesis that immediate skin reactions in horses can also be mediated by IgG. Anti-IgE affinity columns were used to purify IgE from serum of one healthy horse and three horses affected with summer eczema, an allergic dermatitis which is believed to be induced by Culicoides midges. A modified Prausnitz-Küstner experiment was performed in four clinical healthy horses by i.d. injection of the purified serum IgE antibodies. The following day, Culicoides allergen was injected at the same sites. Skin reactions were not observed in response to allergen alone, and in two horses after stimulation at any previous IgE injection site. However, the other two horses showed an immediate skin reaction at the previous injection sites of IgE obtained from allergic horses. In addition, purified monoclonal antibodies to various equine immunoglobulin isotypes were injected i.d. into six healthy horses. Immediate skin reactions were observed in response to anti-IgE (6/6 horses) and anti-IgG(T) injections (5/6 horses). The specificities of both antibodies for IgE and IgG(T), respectively, were confirmed by enzyme linked immunosorbent assays. The results provide the first direct evidence that IgE mediates classical Type-I allergy in horses and plays a major role in the pathogenesis of summer eczema. The data also suggest that IgG(T) can bind to skin mast cells and might contribute to clinical allergy.  相似文献   

6.
Insect bite hypersensitivity (IBH) and atopy can both be causes of pruritus in horses and are associated with allergen-specific IgE to biting insects and environmental allergens respectively. Information with respect to differences in IgE levels in diseased and healthy animals is crucial in enabling an understanding of the clinical relevance of results of allergen-specific IgE tests. The aim of this study was (i) to evaluate and compare levels of allergen-specific IgE, using an ELISA method, in Icelandic horses, with and without IBH, from Iceland and Sweden respectively; (ii) to investigate patterns of allergen-specific IgE to insects, pollens, moulds and mites in those groups of horses; and (iii) to investigate the clinical significance of employing two different cut-off levels for the ELISA. The study compromised a total number of 99 horses from Iceland and Sweden, with and without IBH, divided in 5 groups. Sera from the horses were analysed blindly with the use of Allercept , a non-competitive, solid-phase ELISA-test, designed to detect the presence of allergen-specific IgE in sera using the recombinant alpha chain of the high-affinity IgE receptor (FcepsilonR1alpha). The distribution of the ELISA values was shown for each insect, mould, mite and pollen allergen, in the different groups using 10th, 50th and 90th percentiles. The use of two cut-off levels, 150 EA and 300 EA, did not eliminate the false positives. Horses with IBH had a higher number of positive reactions, counting all the 29 allergens, than healthy controls and this was borderline significant (P=0.053). In this study it was shown that serological testing with an ELISA that uses the high-affinity IgE receptor (FcepsilonR1alpha) is presently not suitable as a tool for establishing a diagnosis of IBH or equine atopy. The importance of establishing a correct cut-off level for the ELISA for the different allergens is emphasised.  相似文献   

7.
CD23, also called FcεRII, is the low-affinity receptor for IgE and has first been described as a major receptor regulating IgE responses. In addition, CD23 also binds to CD21, integrins and MHC class II molecules and thus has a much wider functional role in immune regulation ranging from involvement in antigen-presentation to multiple cytokine-like functions of soluble CD23. The role of CD23 during immune responses of the horse is less well understood. Here, we expressed equine CD23 in mammalian cells using a novel IL-4 expression system. Expression resulted in high yield of recombinant IL-4/CD23 fusion protein which was purified and used for the generation of monoclonal antibodies (mAbs) to equine CD23. Seven anti-CD23 mAbs were further characterized. The expression of the low-affinity IgE receptor on equine peripheral blood mononuclear cells was analyzed by flow cytometric analysis. Cell surface staining showed that CD23 is mainly expressed by a subpopulation of equine B-cells. Only a very few equine T-cells or monocytes expressed CD23. CD23(+) B-cells were either IgM(+) or IgG1(+) cells. All CD23(+) cells were also positive for cell surface IgE staining suggesting in vivo IgE binding by the receptor. Two of the CD23 mAbs detected either the complete extracellular region of CD23 or a 22kDa cleavage product of CD23 by Western blotting. The new anti-CD23 mAbs provide valuable reagents to further analyze the roles of CD23 during immune responses of the horse in health and disease.  相似文献   

8.
Using an ELISA test with specific equine antisera, resting and post-exercise serumIgE concentrations were determined in 20 horses exhibiting varying degrees of exercise- induced pulmonary hemorrhage (EIPH), and in 10 horses identified endoscopically as non-bleeders.

Significantly higher serum IgE concentrations (P<0.01) were present in horses which bled profusely than in those which bled mildly or not at all. Reductions in serum IgE concentrations were evident following exercise in most horses and, even though these reductions were not statistically significant, this suggested the possibility that circulating IgE had become bound to basophils or to bronchial mast cells as a result of the exercise.  相似文献   


9.
Recurrent airway obstruction (RAO) is a common condition in stabled horses characterized by small airway inflammation, airway neutrophilia and obstruction following exposure of susceptible horses to mouldy hay and straw and is thus regarded as a hypersensitivity reaction to mould spores. However, the role of immunoglobulin E antibodies (IgE) in the pathogenesis of RAO is unclear. We hypothesized that the number of cells with receptor-bound IgE in bronchoalveolar lavage fluid (BALF) and IgE levels in serum would be higher in RAO-affected than in healthy horses living in the same environment. Therefore, IgE-positive (+) cells were identified by immunocytochemistry on cytospins from BALF and counted. IgE levels against the mould extracts Aspergillus fumigatus (Asp. f.) and Alternaria alternata (Alt. a.) and the recombinant mould allergen Aspergillus fumigatus 8 (rAsp f 8) were measured by enzyme-linked immunosorbent assay (ELISA) in the sera of seven RAO-affected and 22 clinically healthy mature horses housed in the same conventional stable environment. After correcting for the number of neutrophils, there were no significant differences in IgE+ cells on cytospins from BALF between both groups of horses (5% versus 7%, P > 0.1). Serum IgE levels against the mould extracts were significantly higher in RAO-affected than in clinically healthy horses [median = 119 versus 66 relative ELISA units (REU), P < 0.05]. Furthermore, significantly more RAO-affected than healthy horses had detectable serum IgE against the recombinant allergen rAsp f 8 (4/7 and 3/22, respectively, P < 0.05). Age had no significant effect on BALF cell ratios or on specific serum IgE levels. These results show that high IgE levels against mould antigens are associated with RAO under controlled environmental conditions but ranges of mould-specific serum IgE levels overlapped too much between diseased and clinically healthy animals to be of any diagnostic value. Further studies are needed to assess whether IgE-mediated reactions contribute to the pathogenesis of RAO.  相似文献   

10.
11.
The immunoreceptor NKp46 is considered to be the most consistent marker of NK cells across mammalian species. Here, we use a recombinant NKp46 protein to generate a panel of monoclonal antibodies that recognize equine NKp46. The extracellular region of equine NKp46 was expressed with equine IL-4 as a recombinant fusion protein (rIL-4/NKp46) and used as an immunogen to generate mouse monoclonal antibodies (mAbs). MAbs were first screened by ELISA for an ability to recognize NKp46, but not IL-4, or the structurally related immunoreceptor CD16. Nine mAbs were selected and were shown to recognize full-length NKp46 expressed on the surface of transfected CHO cells as a GFP fusion protein. The mAbs recognized a population of lymphocytes by flow cytometric analysis that was morphologically similar to NKp46+ cells in humans and cattle. In a study using nine horses, representative mAb 4F2 labeled 0.8-2.1% PBL with a mean fluorescence intensity consistent with gene expression data. MAb 4F2+ PBL were enriched by magnetic cell sorting and were found to express higher levels of NKP46 mRNA than 4F2- cells by quantitative RT-PCR. CD3-depleted PBL from five horses contained a higher percentage of 4F2+ cells than unsorted PBL. Using ELISA, we determined that the nine mAbs recognize three different epitopes. These mAbs will be useful tools in better understanding the largely uncharacterized equine NK cell population.  相似文献   

12.
Allergic horses react to innocuous environmental substances by activation of Th2 cells and production of allergen-specific IgE antibodies. The mechanisms leading to Th2 differentiation are not well understood. In humans and mice, epithelial cell-derived thymic stromal lymphopoietin (TSLP) plays a central role in this process. Little is known about equine TSLP (eqTSLP) and its role in allergic diseases and our current knowledge is limited to the assessment of TSLP mRNA expression. In order to be able to study eqTSLP at the protein level, the aim of the present study was to produce recombinant eqTSLP protein and generate TSLP-specific antibodies. EqTSLP was cloned from a skin biopsy sample from a horse with chronic urticaria and eqTSLP protein was expressed in E.coli and in mammalian cells. Recombinant proteins were designed to include C-terminal Histag, which allowed subsequent purification and detection by Histag-specific Ab. Polyclonal and monoclonal eqTSLP-specific Ab were generated after immunization of mice with E.coli-expressed TSLP. Their specificity was tested by western blotting and ELISA. In addition, a commercially available polyclonal human TSLP-specific antibody was tested for cross-reactivity with eqTSLP. Expression of TSLP protein was confirmed by western blotting using Histag-specific Ab. E.coli-expressed TSLP appears as a band of ~13 kDa, whereas mammalian cell-expressed TSLP showed several bands at 20-25 kDa, probably representing several glycosylation forms. Polyclonal and monoclonal antibodies generated in this study, as well as commercially available human TSLP-specific Ab reacted with both E.coli- and mammalian cell-expressed TSLP in western blotting and ELISA. A capture ELISA was established to quantitate TSLP in cell supernatants and validated using supernatants from primary equine keratinocytes and peripheral blood leukocytes (PBL). Increased TSLP concentrations were found after stimulation of keratinocytes with PMA+ionomycine and with Culicoides extract. Similarly, increased TSLP concentrations were detected in PBL after stimulation with ConA, Culicoides extract, or IgE cross-linking. In conclusion, recombinant TSLP proteins and TSLP-specific antibodies produced in this study will allow further studies of the role of TSLP in equine allergic diseases.  相似文献   

13.
Acute and chronic inflammation of the airway remains an important health problem for equids. "Heaves" or recurrent airway obstruction (RAO) remains one of the most commonly diagnosed conditions affecting the lung of older horses in Europe and the United States. The typical clinical signs of RAO include non-productive coughing, serous nasal discharge, labored expiratory effort, and flaring of the nostrils. Auscultation of the lungs of the affected horse often reveals abnormal respiratory sounds, described as crackles and wheezes, throughout the area of the lung field. These clinical signs occur secondary to an inflammatory response that results in bronchospasm, excessive mucus production and airway obstruction. This inflammatory response is characterized by the presence of excessive mucus and inflammatory cells, primarily neutrophils, in the small airways. Most evidence suggests that RAO is the result of a pulmonary hypersensitivity to inhaled antigens. Exposure of affected horses to hay dust, pollens, and mold spores leads to neutrophil accumulation in the lung and bronchospasm. The identification of allergen-specific IgE in bronchoalveolar lavage (BAL) fluid and sera of affected horses supports the involvement of a late phase, IgE-mediated, hypersensitivity reaction in the pathogenesis of equine RAO. The production of IgE antibodies is regulated by the cytokines IL-4 and IL-13. Using a quantitative PCR method we have reported that horses with RAO exhibit a modified Type 2 cytokine response characterized by the production of IL-4 and IL-13 mRNA, but not IL-5 mRNA in BAL cells. Interferon-gamma mRNA was also elevated, suggesting a mixed response. While these results are consistent with equine RAO being the result of an aberrant Type 2 cytokine response to inhaled allergens, others have failed to find any evidence of elevated Type 2 cytokine mRNA in BAL from horses with "heaves". It is likely that these disparate results could be the result of differences in the clinical stage of the affected animals or the timing of sample collection. Here, we report a diverse pattern of cytokine gene expression when sampling a group of affected horses over a period of time.  相似文献   

14.
Salivary gland proteins of Culicoides spp. have been suggested to be among the main allergens inducing IgE-mediated insect bite hypersensitivity (IBH), an allergic dermatitis of the horse. The aim of our study was to identify, produce and characterize IgE-binding salivary gland proteins of Culicoides nubeculosus relevant for IBH by phage surface display technology. A cDNA library constructed with mRNA derived from C. nubeculosus salivary glands was displayed on the surface of filamentous phage M13 and enriched for clones binding serum IgE of IBH-affected horses. Ten cDNA inserts encoding putative salivary gland allergens were isolated and termed Cul n 2 to Cul n 11. However, nine cDNA sequences coded for truncated proteins as determined by database searches. The cDNA sequences were amplified by PCR, subcloned into high level expression vectors and expressed as hexahistidine-tagged fusion proteins in Escherichia coli. Preliminary ELISA results obtained with these fusions confirmed the specific binding to serum IgE of affected horses. Therefore, the putative complete open reading frames derived from BLAST analyses were isolated by RACE-PCR and subcloned into expression vectors. The full length proteins expressed in Escherichia coli showed molecular masses in the range of 15.5-68.7 kDa in SDS-PAGE in good agreement with the masses calculated from the predicted protein sequences. Western blot analyses of all recombinant allergens with a serum pool of IBH-affected horses showed their ability to specifically bind serum IgE of sensitized horses, and ELISA determinations yielded individual horse recognition patterns with a frequency of sensitization ranging from 13 to 57%, depending on the allergen tested. The in vivo relevance of eight of the recombinant allergens was demonstrated in intradermal skin testing. For the two characterized allergens Cul n 6 and Cul n 11, sensitized horses were not available for intradermal tests. Control horses without clinical signs of IBH did not develop any relevant immediate hypersensitivity reactions to the recombinant allergens. The major contribution of this study was to provide a repertoire of recombinant salivary gland allergens repertoire from C. nubeculosus potentially involved in the pathogenesis of IBH as a starting basis for the development of a component-resolved serologic diagnosis of IBH and, perhaps, for the development of single horse tailored specific immunotherapy depending on their component-resolved sensitization patterns.  相似文献   

15.
The pathogenesis of equine urticaria is not well understood. In man, urticaria has been associated with immunological and nonimmunological mechanisms leading to the release of various mediators by mast cells. Skin biopsies of 32 horses with a history of urticaria were stained with toluidine blue, a double-labelling method for chymase and tryptase, and immunohistochemistry for immunoglobulin (Ig)E. These horses were compared with horses with pemphigus foliaceus, insect bite hypersensitivity and control horses with healthy skin. Neither formalin fixation time nor biopsy site influenced the staining methods. No chymase-positive cells were found. In all groups of horses, cells staining with toluidine blue and for tryptase and IgE were found in the epidermis and hair follicle papilla and significantly more positively staining cells were observed in the subepidermal dermis compared with the deep dermis. Horses with urticaria had significantly more IgE-bearing cells in the subepidermal dermis than control horses. However, horses with urticaria had significantly fewer toluidine-blue-stained mast cells in both subepidermal and deep dermis compared with the insect bite hypersensitivity and pemphigus foliaceus groups. This study suggests that IgE-mediated reactions play a role in the pathogenesis of urticaria.  相似文献   

16.
Interleukin-3 is a growth and differentiation factor for various hematopoietic cells. IL-3 also enhances stimulus-dependent release of mediators and cytokine production by mature basophils. Function of IL-3 has not been studied in horses because of lack of horse-specific reagents. Our aim was to produce recombinant equine IL-3 and test its effect on sulfidoleukotriene and cytokine production by equine peripheral blood leukocytes (PBL).Equine IL-3 was cloned, expressed in E. coli and purified. PBL of 19 healthy and 20 insect bite hypersensitivity (IBH)-affected horses were stimulated with Culicoides nubeculosus extract with or without IL-3. Sulfidoleukotriene (sLT) production was measured in supernatants by ELISA and mRNA expression of IL-4, IL-13 and thymic stromal lymphopoietin (TSLP) assessed in cell lysate by quantitative real-time PCR.Recombinant equine IL-3 (req-IL-3) had a dose dependent effect on sLT production by stimulated equine PBL and significantly increased IL-4, IL-13 and TSLP expression compared to non-primed cells.IL-3 priming significantly increased Culicoides-induced sLT production in IBH-affected but not in non-affected horses and was particularly effective in young IBH-affected horses (≤3 years).A functionally active recombinant equine IL-3 has been produced which will be useful for future immunological studies in horses. It will also allow improving the sensitivity of cellular in vitro tests for allergy diagnosis in horses.  相似文献   

17.
18.
Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by IgE-mediated reactions to bites of Culicoides and sometimes Simulium spp. The allergens causing IBH are probably salivary gland proteins from these insects, but they have not yet been identified. The aim of our study was to identify the number and molecular weight of salivary gland extract (SGE) proteins derived from Culicoides nubeculosus which are able to bind IgE antibodies (ab) from the sera of IBH-affected horses. Additionally, we sought to investigate the IgG subclass (IgGa, IgGb and IgGT) reactivity to these proteins. Individual IgE and IgG subclass responses to proteins of C. nubeculosus SGE were evaluated by immunoblot in 42 IBH-affected and 26 healthy horses belonging to different groups (Icelandic horses born in Iceland, Icelandic horses and horses from different breeds born in mainland Europe). Additionally, the specific antibody response was studied before exposure to bites of Culicoides spp. and over a period of 3 years in a cohort of 10 Icelandic horses born in Iceland and imported to Switzerland. Ten IgE-binding protein bands with approximate molecular weights of 75, 66, 52, 48, 47, 32, 22/21, 19, 15, 13/12 kDa were found in the SGE. Five of these bands bound IgE from 50% or more of the horse sera. Thirty-nine of the 42 IBH-affected horses but only 2 of the 26 healthy horses showed IgE-binding to the SGE (p<0.000001). Similarly, more IBH-affected than healthy horses had IgGa ab binding to the Culicoides SGE (19/22 and 9/22, respectively, p<0.01). Sera of IBH-affected horses contained IgE, IgGa and IgGT but not IgGb ab against significantly more protein bands than the sera of the healthy horses. The cohort of 10 Icelandic horses confirmed these results and showed that Culicoides SGE specific IgE correlates with onset of IBH. IBH-affected horses that were born in Iceland had IgGa and IgGT ab (p< or =0.01) as well as IgE ab (p=0.06) against a significantly higher number of SGE proteins than IBH-affected horses born in mainland Europe. The present study shows that Culicoides SGE contains at least 10 potential allergens for IBH and that IBH-affected horses show a large variety of IgE-binding patterns in immunoblots. These findings are important for the future development of a specific immunotherapy with recombinant salivary gland allergens.  相似文献   

19.
We postulated that all horses exposed to the bites of Culcoides (midges) would have an antibody response to the antigen secreted in Culcoides saliva, but that IgE antibody would be restricted to allergic individuals. Using immunohistology on sections of fixed Culicoides, we have demonstrated the presence of antibodies in horse serum which recognise Culicoides salivary glands. Antibodies were detected in the serum of horses with insect dermal hypersensitivity and in the serum of normal horses exposed to Culicoides bites. In contrast, no antibodies were detected in serum from native Icelandic ponies which had not been exposed to Culicoides. Anti-salivary gland IgG antibodies were detected in serum from both allergic and healthy horses exposed to Culicoides. IgE antibodies were only detected in horses with signs of insect dermal hypersensitivity, they were not found in serum of healthy controls nor in the serum of horses with a history of hypersensitivity but in remission at the time of sampling. Using western blotting we confirmed the presence of antibodies to Culicoides antigens and demonstrated that individual horses react to different numbers of antigens. This paper demonstrates the ability of serum from allergic horses to detect Culcoides antigens and will enable further studies to isolate and characterise the allergens.  相似文献   

20.
IgE is the dominant immunoglobulin isotype involved in type I hypersensitivities in mammals. The heavy chain constant region domains of equine IgE are encoded by a single gene, the Cvarepsilon gene. By restriction analysis of cDNA from 15 unrelated horses, we have now identified two Cvarepsilon alleles, characterised by a Sma I restriction fragment length polymorphism, which we designated Cvarepsilon(a) and Cvarepsilon(b). Sequence analysis of both, Cvarepsilon(a) and Cvarepsilon(b) cDNA, showed in addition two single base exchanges resulting in two amino acid substitutions. Both sequences have only 95.9% homology of the coding region sequence with the published equine Cvarepsilon sequence, which could represent a third haplotype. Polymorphism of the IgE heavy chain constant region gene, as described here, might well impose genetic variability on the effector functions of equine IgE predisposition to allergic diseases in horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号